
Orbix Programmer’s Guide C++ Edition
V3.3.17

Table of Contents

7Preface

7Audience

7Document Conventions

9Getting Started

9Introduction to CORBA and Orbix

9CORBA and Distributed Object Programming

13The Object Management Architecture

15How Orbix Implements CORBA

16Orbix Components

16Orbix Architecture

19Developing Applications with Orbix

20Developing a Distributed Application

20Defining IDL Interfaces

22Compiling IDL Interfaces

25Implementing the IDL Interfaces

28Writing an Orbix Server Application

33Writing an Orbix Client Application

36Compiling the Client and Server

37Running the Application

38Summary of Programming Steps

40Orbix C++ Programming

40Introduction to CORBA IDL

40IDL Modules and Scoping

41Defining IDL Interfaces

49Overview of the IDL Data Types

57The CORBA IDL to C++ Mapping

58Overview of the Mapping

58Mapping for Modules and Scoping

60Mapping for Interfaces

Table of Contents

- 2/124 -

72Mapping for IDL Data Types

96Mapping for Pseudo-Object Types

97Memory Management and _var Types

101Memory Management for Parameters

110ImplementingIDL

110Overview of an Example Application

110Overview of the Programming Steps

111Defining IDL Interfaces

112Implementing IDL Interfaces

0Developing a Server Program

0Developing a Client Program

0Registering the Server

0Execution Trace for the Example Application

0Comparing the TIE and BOAImpl Approaches

0Making Objects Available in Orbix

0Identifying CORBA Objects

0Using the CORBA Naming Service

0Transferring Object References

0Binding to Orbix Objects

0Exception Handling in Orbix

0An Example of Raising and Handling Exceptions

0Using Inheritance of IDL Interfaces

0The IDL Interfaces

0Implementation Class Hierarchies

0The Implementation Classes

0Using Inheritance in a Client

0Multiple Inheritance of IDL Interfaces

0Orbix Connections and Events

0Overview of the Direct API to Orbix

Table of Contents

- 3/124 -

0Managing Orbix Connections and Events

0Advanced Programming Topics

0Developing Collocated Clients and Servers

0Determining Locality of Objects

0Determining Hierarchy of Objects

0Casting from Interface to Implementation Class

0Actions when Proxy Code is Unavailable

0Multiple Implementations of an Interface

0Multiple Interfaces per Implementation

0Passing Context Information to IDL Operations

0Receiving Diagnostic Messages from Orbix

0Dynamic Orbix C++ Programming

0The TypeCode Data Type

0Overview of the TypeCode Data Type

0Implementation of TypeCode in Orbix

0Examples of Using TypeCode

0The Any Data Type

0Inserting Data into an Any with operator<<=()

0Interpreting an any with operator>>=()

0Other Ways to Construct and Interpret an Any

0Any Constructors, Destructor and Assignment

0Any as a Parameter or Return Value

0Dynamic Invocation Interface

0Using the DII

0The CORBA Approach to Using the DII

0The Orbix-Specific Approach to Using the DII

0Dynamic Skeleton Interface

0Uses of the DSI

0Using the DSI

Table of Contents

- 4/124 -

0Example of Using the DSI

0The Interface Repository

0Configuring the Interface Repository

0Runtime Information about IDL Definitions

0The Structure of Interface Repository Data

0Abstract Interfaces in the Interface Repository

0Containment in the Interface Repository

0Type Interfaces in the Interface Repository

0Retrieving Information about IDL Definitions

0Example of Using the Interface Repository

0Repository IDs

0Advanced Orbix C++ Programming

0Filtering Operation Calls

0Introduction to Per-process Filters

0Introduction to Per-Object Filters

0Using Per-Process Filters

0Using Per-Object Filters

0Using Smart Proxy Classes

0Management of Proxies by Proxy Factories

0Generating Smart Proxies

0A Simple Smart Proxy Example

0Callbacks from Servers to Clients

0Implementing Callbacks in Orbix

0Defining the IDL Interfaces

0Implementing the IDL Interfaces

0Writing the Client

0Writing the Server

0Preventing Deadlock in a Callback Model

0Callbacks and Bidirectional Connections

0Loading Objects at Runtime

0Overview of Creating a Loader

Table of Contents

- 5/124 -

0Loaders and Object Naming

0Loading Objects

0Saving Objects

0Writing a Loader

0Example Loader

0Using Opaque Types in IDL

0Using Opaque Types

0Transforming Requests

0Transforming Request Data

0An Example Transformer

0Using Threads with Orbix

0Benefits of Multi-threaded Clients and Servers

0Thread Programming in Orbix

0Concurrency Control

0Models of Thread Support

0Changing Internal Orbix Thread Creation

0Service Contexts in Orbix

0The Orbix Service Context API

0Using Service Contexts in Orbix Applications

0Service Context Handlers and Filter points

0Appendix

0Orbix IDL Compiler Options

0Notices

0Copyright

0Trademarks

0Examples

0License agreement

0Corporate information

0Contacting Technical Support

0Country and Toll-free telephone number

Table of Contents

- 6/124 -

Preface

Orbix is a standards-based programming environment for building and integrating distributed
applications. Orbix is a full implementation of the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA).

Audience
This guide is intended for use by application programmers who wish to familiarize themselves with
distributed programming with Orbix. This guide addresses all levels of Orbix programming, from
getting started to advanced topics. Users should be familiar with the C++ programming language.

Document Conventions
This guide uses the following typographical conventions:

Constant
width

Constant width in normal text represents portions of code and literal names
of items such as classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Preface

- 7/124 -

This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/your_name !!! note
some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, no prompt is
used.

% A percent sign represents the UNIX command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS, Windows NT, or Windows 95 command
prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in format
and syntax descriptions.

Document Conventions

- 8/124 -

Getting Started

Introduction to CORBA and Orbix
Orbix is a software environment that allows you to build and integrate distributed applications. Orbix is
a full implementation of the Object Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA) specification. This section introduces CORBA and describes how Orbix implements
this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network programming very difficult. Distributed
applications often consist of several communicating programs written in different programming
languages and running on different operating systems. Network programmers must consider all of
these factors when developing applications.

The Common Object Request Broker Architecture (CORBA) defines a framework for developing object-
oriented, distributed applications. This architecture makes network programming much easier by
allowing you to create distributed applications that interact as though they were implemented in a
single programming language on one computer.

CORBA also brings the advantages of object-oriented techniques to a distributed environment. It allows
you to design a distributed application as a set of cooperating objects and to re-use existing objects in
new applications.

The Role of an Object Request Broker
CORBA defines a standard architecture for Object Request Brokers (ORBs). An ORB is a software
component that mediates the transfer of messages from a program to an object located on a remote
network host. The role of the ORB is to hide the underlying complexity of network communications
from the programmer.

An ORB allows you to create standard software objects whose member functions can be invoked by
client programs located anywhere in your network. A program that contains instances of CORBA objects
is often known as a server.

When a client invokes a member function on a CORBA object, the ORB intercepts the function call. As
shown in Figure 1, the ORB redirects the function call across the network to the target object. The ORB
then collects results from the function call and returns these to the client.

Getting Started

- 9/124 -

The Nature of Objects in CORBA
CORBA objects are just standard software objects implemented in any supported programming
language. CORBA supports several languages, including C++, Java, and Smalltalk.

With a few calls to an ORB’s application programming interface (API), you can make CORBA objects
available to client programs in your network. Clients can be written in any supported programming
language and can call the member functions of a CORBA object using the normal programming
language syntax.

Although CORBA objects are implemented using standard programming languages, each CORBA object
has a clearly-defined interface, specified in the CORBA Interface Definition Language (IDL). The interface
definition specifies which member functions are available to a client, without making any assumptions
about the implementation of the object.

To call member functions on a CORBA object, a client needs only the object’s IDL definition. The client
does not need to know details such as the programming language used to implement the object, the
location of the object in the network, or the operating system on which the object runs.

The separation between an object’s interface and its implementation has several advantages. For
example, it allows you to change the programming language in which an object is implemented without
changing clients that access the object. It also allows you to make existing objects available across a
network.

CORBA and Distributed Object Programming

- 10/124 -

The Structure of a CORBA Application
The first step in developing a CORBA application is use CORBA IDL to define the interfaces to objects in
your system. You then compile these interfaces using an IDL compiler.

An IDL compiler generates C++ from IDL definitions. This C++ includes client stub code, which allows you
to develop client programs, and object skeleton code, which allows you to implement CORBA objects.

As shown in Figure 2, when a client calls a member function on a CORBA object, the call is transferred
through the client stub code to the ORB. If the client has not accessed the object before, the ORB refers
to a database, known as the Implementation Repository, to determine exactly which object should receive
the function call. The ORB then passes the function call through the object skeleton code to the target
object.

The Structure of a Dynamic CORBA Application
One difficulty with normal CORBA programming is that you have to compile the IDL associated with
your objects and use the generated C++ code in your applications. This means that your client programs
can only call member functions on objects whose interfaces are known at compile-time. If a client
wishes to obtain information about an object’s IDL interface at runtime, it needs an alternative, dynamic
approach to CORBA programming.

The CORBA .

CORBA and Distributed Object Programming

- 11/124 -

CORBA also supports dynamic server programming. A CORBA program can receive function calls
through IDL interfaces for which no CORBA object exists. Using an ORB component called the Dynamic
Skeleton Interface (DSI), the server can then examine the structure of these function calls and implement
them at runtime. Figure 4 on page 7 shows a dynamic client program communicating with a dynamic
server implementation.

Interoperability between Object Request Brokers
The components of an ORB make the distribution of programs transparent to network programmers.
To achieve this, the ORB components must communicate with each other across the network.

In many networks, several ORB implementations coexist and programs developed with one ORB
implementation must communicate with those developed with another. To ensure that this happens,
CORBA specifies that ORB components must communicate using a standard network protocol, called
the Internet Inter-ORB Protocol (IIOP).

CORBA and Distributed Object Programming

- 12/124 -

The Object Management Architecture
An ORB is one component of the OMG’s Object Management Architecture (OMA). This architecture
defines a framework for communications between distributed objects.

As shown in Figure 5 on page 8, the OMA includes four elements:

Application objects.

The ORB.

The CORBAservices.

The CORBAfacilities.

Application objects are objects that implement programmer-defined IDL interfaces. These objects
communicate with each other, and with the CORBAservices and CORBAfacilities, through the ORB.
The CORBAservices and CORBAfacilities are sets of objects that implement IDL interfaces defined
by CORBA and provide useful services for some distributed applications.

When writing Orbix applications, you may require one or more CORBAservices or CORBAfacilities.
This section provides a brief overview of these components of the OMA.

• •

• •

• •

• •

The Object Management Architecture

- 13/124 -

The
The CORBAservices define a set of low-level services that allow application objects to communicate in a
standard way. These services include the following:

The

The Trader Service. This service allows a client to locate object references based on the desired
properties of an object.

The Security Service. This service allows CORBA programs to interact using secure communications.

Orbix 3 implements several CORBAservices including all the services listed above.

• •

• •

• •

The Object Management Architecture

- 14/124 -

The CORBAfacilities
The CORBAfacilities define a set of high-level services that applications frequently require when
manipulating distributed objects. The CORBAfacilities are divided into two categories:

The horizontal CORBAfacilities.

The vertical CORBAfacilities.

The horizontal CORBAfacilities consist of user interface, information management, systems
management, and task management facilities. The vertical CORBAfacilities standardize IDL
specifications for market sectors such as healthcare and telecommunications.

How Orbix Implements CORBA
Orbix is an ORB that fully implements the CORBA 2 specification. By default, all Orbix components and
applications communicate using the CORBA standard IIOP protocol.

The components of Orbix are as follows:

The

The Orbix

The Orbix

The Orbix Interface Repository server is a process that implements the Interface Repository.

Orbix also includes several programming features that extend the capabilities of the ORB.

In addition, Orbix is an enterprise ORB that combines the functionality of the core CORBA
standard with an integrated suite of services including OrbixNames and OrbixSSL. This section
introduces the architecture of Orbix and briefly describes each of these services.

Only an overview of these components is given here. For more detailed descriptions of
functionality, refer to the individual programming guides and reference guides that accompany
each component.

• •

• •

• •

• •

• •

• •

Note

How Orbix Implements CORBA

- 15/124 -

Orbix Components
Table 1 gives a brief synopsis of the Orbix suite.

Table 1 The Orbix Suite

Orbix Architecture
The overall architecture of Orbix and its components is shown in Figure 6. On the lower part of Figure 6,
a number of CORBA servers and clients are shown attached to an intranet and, on the top left, a sample
client is shown attached to the system via the Internet. It is necessary to pencil in a number of server
hosts in this basic illustration because Orbix is an intrinsically distributed system. In contrast to the
star-shaped architecture of many traditional systems, with clients attached to a central monolithic
server, the architecture of Orbix is based on a collection of components cooperating across a number
of hosts.

Some standard services, such as the CORBA Naming Service (OrbixNames) are implemented as clearly
identifiable processes with an associated executable. There can be many instances of these processes
running on one or more machines.

Other services rely on cooperation between components. They are, either wholly or partly, based on
libraries linked with each component. Services such as this are intrinsically distributed.

Since Orbix has an open, standards-based architecture it can readily be extended to integrate with
other CORBA-based products. In particular, as Figure 6 shows, integration with a mainframe is possible
when Orbix is combined with an ORB running on z/OS/.

For more information on Orbix, see the Orbix Programmer’s Guide C++ Edition, Orbix Programmer’s
Reference C++ Edition and Orbix Administrator’s Guide C++ Edition.

In the remainder of this section on Orbix architecture, each of the components of Orbix will be
presented with a brief description of the main features.

Orbix The multithreaded Orbix Object Request Broker (ORB) is at the heart of Orbix.
This is Rocket Software’s implementation of the OMG (Object Management
Group) CORBA specification.

OrbixSSL OrbixSSL integrates Orbix with Secure Socket Layer (SSL) security. Using
OrbixSSL, distributed applications can securely transfer confidential data across
a network. OrbixSSL offers CORBA level zero security.

OrbixNames OrbixNames maintains a repository of mappings that associate objects with
recognisable names. This is Rocket Software’s implementation of the OMG
CORBA Services Naming Service.

Orbix Components

- 16/124 -

OrbixNames—The Naming Service
OrbixNames is Rocket Software’s implementation of the CORBA Naming Service. The role of
OrbixNames is to allow a name to be associated with an object and to allow that object to be found
using that name. A server that holds an object can register it with OrbixNames, giving it a name that
can be used by other components of the system to subsequently find the object. OrbixNames maintains
a repository of mappings (bindings) between names and object references. OrbixNames provides
operations to do the following:

Resolve a name.

Create new bindings.

Delete existing bindings.

List the bound names.

Using a Naming Service such as OrbixNames to locate objects allows developers to hide a server
application’s location details from the client. This facilitates the invisible relocation of a service to
another host. The entire process is hidden from the client.

• •

• •

• •

• •

Orbix Architecture

- 17/124 -

Figure 7 summarizes the functionality of OrbixNames, which is as follows:

A server registers object references in OrbixNames. OrbixNames then maps these object
references to names.

Clients resolve names in OrbixNames.

Clients remotely invoke on object references in the server.

OrbixNames, which runs as an Orbix server, has a number of interfaces defined in IDL that allow the
components of the system to use its facilities. Other features of OrbixNames include an enhanced GUI
browser interface. OrbixNames can support clients that use either IIOP or the Orbix protocol.

For more information on OrbixNames, see the OrbixNames Programmer’s and Administrator’s
Guide.

Security with OrbixSSL
OrbixSSL introduces Level 0 CORBA security, as specified by the OMG, to the Orbix product suite. Level 0
corresponds to the provision of authentication and session encryption, which maps onto the
functionality provided by the Secure Socket Layer (SSL) library.

SSL is a protocol for providing data security for applications that communicate across networks via TCP/
IP. By default, Orbix applications communicate using the standard CORBA Internet Inter-ORB Protocol
(IIOP). These application-level protocols are layered above the transport-level protocol TCP/IP.

OrbixSSL provides authentication, privacy, and integrity for communications across TCP/IP connections
as follows:

a. 1.

b. 2.

c. 3.

Authentication Allows an application to verify the identity of another application with which
it communicates.

Orbix Architecture

- 18/124 -

To initiate a TCP/IP connection, OrbixSSL provides a security ‘handshake’. This handshake results in the
client and server agreeing on an ‘on the wire’ encryption algorithm, and also fulfils any authentication
requirements for the connection. Thereafter, OrbixSSL’s only role is to encrypt and decrypt the byte
stream between client and server.

The steps involved in establishing an OrbixSSL connection are as follows:

The client initiates a connection by contacting the server.

The server sends an X.509 certificate to the client. This certificate includes the server’s public
encryption key.

The client authenticates the server’s certificate (for example, an X.509 certificate, endorsed by an
accredited certifying authority).

The client sends the certificate to the server for authentication.

The server generates a session encryption key and sends it to the client encrypted using the client’s
public key: the session is now established.

Once the connection has been established, certain data is cached so that in the event of a dropping and
resumption of the dialogue, the handshake is curtailed and connection re-establishment is accelerated.

For more information on OrbixSSL, see OrbixSSL Programmer’s and Administrator’s Guide C++
Edition.

Developing Applications with Orbix
The section describes how to develop a distributed application using Orbix. An example application
illustrates the steps involved in the development process. These include defining an IDL interface,
implementing this interface in C++, and developing a C++ client application.

This section describes the basic programming steps required to create Orbix objects, write server
programs that expose those objects, and write client programs that access those objects.

Privacy Ensures that data transmitted between applications can not be understood
by a third party.

Integrity Allows applications to detect whether data was modified during
transmission.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Developing Applications with Orbix

- 19/124 -

This section illustrates the programming steps using an example named BankSimple . In this example, an
Orbix server program implements two types of objects: a single object implementing the Bank
interface, and multiple objects implementing the Account interface. A client program uses these clearly-
defined object interfaces to create and find accounts, and to deposit and withdraw money.

On both Windows and UNIX, the source code for the example described in this section is available in the
demos\common\banksimple directory of your Orbix installation.

Developing a Distributed Application
To develop an Orbix application, you must perform the following steps:

Identify the objects required in your system and define public interfaces to those objects using
CORBA Interface Definition Language (IDL).

Compile the IDL interfaces.

Implement the IDL interfaces using C++ classes.

Write a server program that creates instances of the implementation classes.

Write a client program that accesses the server object.

Compile the client and server.

Run the application

Defining IDL Interfaces
Defining IDL interfaces to your objects is the most important step in developing an Orbix application.
These interfaces define how clients access objects regardless of the location of those objects on the
network.

An interface definition contains attributes and operations. Attributes allow clients to get and set values
on the object. Operations are functions that clients can call on an object.

For example, the following IDL from the BankSimple example defines two interfaces for objects
representing a bank application. The interfaces are defined inside an IDL module to prevent clashes
with similarly-named interfaces defined in subsequent examples.

The interfaces to the BankSimple example are defined in IDL as follows:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Developing a Distributed Application

- 20/124 -

This code is explained as follows:

An IDL module is equivalent to a C++ namespace, and groups the definitions into a common
namespace. Using a module is not mandatory, but is good practice.

This is a forward declaration to the Account interface. It allows you to refer to Account in the Bank
interface, before actually defining Account .

The Bank interface contains two operations: create_account() and find_account() , allowing a client to
create and search for an account.

The Account interface contains two attributes: name and balance ; both are readonly. This means that
clients can get the balance or name, but cannot directly set them. If the readonly keyword is omitted,
clients can also set these values .

The Account interface also contains two operations: deposit() and withdraw() . The deposit()
operation allows a client to deposit money in the account. The withdraw() operation allows a client to
withdraw money from the account.

The parameters to these operations are labeled with the IDL keyword in . This means that their values
are passed from the client to the object. Operation parameters can be labeled as in , out (passed from
the object to the client) or inout (passed in both directions).

// IDL
// In file banksimple.idl
1 module BankSimple {
 typedef float CashAmount;
2 interface Account;
3 interface Bank {
 Account create_account (in string name);
 Account find_account (in string name);
 };
4 interface Account {
 readonly attribute string name;
 readonly attribute CashAmount balance;
5 void deposit (in CashAmount amount);
 void withdraw (in CashAmount amount);
 };
};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Defining IDL Interfaces

- 21/124 -

Compiling IDL Interfaces
You must compile IDL definitions using the Orbix IDL compiler. Before running the IDL compiler, ensure
that your configuration is correct.

Setting Up Configuration for the IDL Compiler
You should ensure that the environment variable IT_CONFIG_PATH is set to the location of iona.cfg , the
root Orbix configuration file.

UNIX
On UNIX, if iona.cfg is in directory /local/microfocus/orbix33 , perform the following steps:

Under sh enter :

or under csh enter:

Set the environment variable LD_LIBRARY_PATH to include the location of the Orbix lib directory in a
similar manner.

Windows
On Windows, if iona.config is in directory C:\Micro Focus\Orbix 3.3\config , enter the following at a
command prompt:

Running the IDL Compiler
The IDL compiler checks the validity of the specification and generates C++ code that allows you to write
client and server programs.

Windows and UNIX
To compile the Bank and Account interfaces defined in file banksimple.idl , run the IDL compiler as
follows:

1. 1.

% IT_CONFIG_PATH=/local/microfocus/orbix33
% export IT_CONFIG_PATH

2. 2.

% setenv IT_CONFIG_PATH /local/microfocus/orbix33

3. 3.

set IT CONFIG PATH = C:\Micro Focus\Orbix 3.3\config

Compiling IDL Interfaces

- 22/124 -

The -B compiler option produces BOAImpl classes for the server. Refer to Orbix IDL Compiler Options
for a complete list of IDL compiler options.

Output from the IDL Compiler
The IDL compiler produces three C++ files that communicate with Orbix:

A common header file containing declarations used by both client and server mode. This header file
should be included in all client and server programs.

A source file to be compiled and linked with servers (object skeleton code).

A source file to be compiled and linked with clients (client stub code).

These source files contain C++ definitions that correspond to your IDL definitions. These C++ definitions
allow you to write C++ client and server programs.

By default, these files are named as follows:

The Client Stub Code
The files banksimple.hh and banksimple.client.cxx define the C++ code that a client uses to access a Bank
object. This code is termed the client stub code. For example, the banksimple.hh file for the BankSimple
IDL includes a class to represent Bank and Account objects from a client’s point of view.

The IDL declarations for the Account interface include the C++ definitions in the following code extract:

idl [options] banksimple.idl

1. 1.

2. 2.

3. 3.

File Windows UNIX

Header file banksimple.hh banksimple.hh

Client stub code banksimpleC.cpp banksimpleC.C

Server skeleton code banksimpleS.cpp banksimpleS.C

Compiling IDL Interfaces

- 23/124 -

The environment argument (the last argument passed to each method) is omitted here.

This class represents the IDL Account interface in C++ allowing C++ clients to treat Account objects like
any other C++ object. The readonly name and balance attributes map to member functions of the same
name. The deposit() and withdraw() operations map to C++ member functions with equivalent
parameters.

The Object Skeleton Code
The files banksimple.hh and banksimple.server.cxx define the C++ code that allows a server program to
implement IDL interfaces and accept operation calls from clients to objects. This code is known as the
object skeleton code. These server-side skeletons receive CORBA calls and pass them onto application
code. When implementing a server using the BOAImpl approach, you inherit from a BOAImpl class
generated by the IDL compiler.

For the Account interface the BOAImpl class includes the following C++ definitions:

 // C++
 // In file banksimple.hh
 // Automatically generated by the IDL compiler.
 class Account: public virtual CORBA::Object {
 public:
 // CORBA support functions and error handling are
 // omitted here for clarity
 virtual char* name ()
 throw (CORBA::SystemException);
 virtual CashAmount balance ()
 throw (CORBA::SystemException);
 virtual void deposit (CashAmount amount)
 throw (CORBA::SystemException);
 virtual void withdraw (CashAmount amount)
 throw (CORBA::SystemException);
 };

Compiling IDL Interfaces

- 24/124 -

To implement the Account interface, you must inherit from this class and override the pure virtual
functions that represent IDL operations with application code.

Implementing the IDL Interfaces
This example uses the CORBA BOAImpl approach to implementing an IDL interface. It uses two classes
to implement the Bank and Account IDL interfaces in C++: BankSimple_BankImpl and
BankSimple_AccountImpl . These classes inherit the IDL compiler-generated BankSimple::BankBOAImpl and
BankSimple::AccountBOAImpl classes. These base classes provide all the Orbix functionality. All that
remains is to override the abstract member functions that represent the IDL operations.

For example, the code for BankSimple_BankImpl is as follows:

 // C++
 // In file banksimple.hh
 // Automatically generated by IDL compiler.
 class AccountBOAImpl: public virtual Account {
 public:
 virtual char* name ()
 throw (CORBA::SystemException) = 0;
 virtual CashAmount balance ()
 throw (CORBA::SystemException) = 0;
 virtual void deposit (CashAmount amount)
 throw (CORBA::SystemException) = 0;
 virtual void withdraw(CashAmount amount)
 throw (CORBA::SystemException) = 0;
 };

Implementing the IDL Interfaces

- 25/124 -

This code is explained as follows:

Inheriting from the BOAImpl class generated by the IDL compiler provides Orbix functionality for the
server objects.

Operations defined in IDL are implemented by corresponding operations in C++. The IDL Account
type is represented by an Account_ptr .

The constructor and destructor are normal C++ functions that can be called by server code. Only IDL
functions can be called remotely by clients.

The accounts created by the bank are stored in an array of Account_var . These are like pointers; for
more information on Account_var , refer to CORBA Object References.

You can implement the member functions of BankSimple_BankImpl as follows:

// C++
// In file BankSimple\banksimple_bankimpl.h
// Implementation class for the Bank IDL interface.
...
1 class BankSimple_BankImpl : public virtual
 BankSimple::BankBOAImpl
{
 public:
 // Mapped IDL operations.
2 virtual BankSimple::Account_ptr
 create_account(const char* name, CORBA::Environment&);
 virtual BankSimple::Account_ptr
 find_account(const char* name, CORBA::Environment&);
 // C++ constructor and destructor.
3 BankSimple_BankImpl();
 virtual ~BankSimple_BankImpl();
 protected:
 static const int MAX_ACCOUNTS;
4 BankSimple::Account_var* m_accounts;
};

1. 1.

2. 2.

3. 3.

4. 4.

Implementing the IDL Interfaces

- 26/124 -

// C++
// In file banksimple_bankimpl.cxx
#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”
1 const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;
BankSimple_BankImpl::BankSimple_BankImpl() :
m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
// Make sure all accounts are nil.
 for (int i = 0; i < MAX_ACCOUNTS; ++i){
 m_accounts[i] = BankSimple::Account::_nil();
 }
}
BankSimple_BankImpl::~BankSimple_BankImpl() {
 delete [] m_accounts;
}
// Add a new account.
BankSimple::Account_ptr BankSimple_BankImpl::create_account
(const char* name, CORBA::Environment&) {
 int i = 0;
 for (; i < MAX_ACCOUNTS && !CORBA::is_nil(m_accounts[i]);
 ++i)
 {}
 if (i < MAX_ACCOUNTS){
2 m_accounts[i] = new BankSimple_AccountImpl(name, 0.0);
 cout << “create_account: Created account with name: ”
 << name << endl;
3 return BankSimple::Account::_duplicate(m_accounts[i]);
 }
 else{
 cout << “create_account: failed, no space left!” << endl;
4 return BankSimple::Account::_nil();
 }
}
// Find a named account.
BankSimple::Account_ptr BankSimple_BankImpl::find_account
(const char* name, CORBA::Environment&) {
 int i = 0;
 for (; i < MAX_ACCOUNTS &&(CORBA::is_nil(m_accounts[i]) ||
 strcmp(name, m_accounts[i]->name()) != 0); ++i)
 { }
 if (i < MAX_ACCOUNTS){
 cout << “find_account: found account named” << name << endl;
 return BankSimple::Account::_duplicate(m_accounts[i]);
 }
 else{
 cout << “find_account: no account named” << name << endl;

Implementing the IDL Interfaces

- 27/124 -

The code is explained as follows:

The maximum number of accounts that the bank can handle in this simple implementation is set as a
constant of 1000 .

New accounts are created with a balance of zero.

When an Account reference is returned from create_account() and find_account() operations, it must
be duplicated. According to CORBA memory management rules, this reference is released by the
caller.

If an account cannot be created, nil is returned.

Refer to the banksimple\demos directory of your Orbix installation for the corresponding code for
BankSimple_AccountImpl .

Writing an Orbix Server Application
To write a C++ program that acts as an Orbix server, perform the following steps:

Initialize the server connection to the Orbix ORB, and to the Basic Object Adapter (BOA).

Create an implementation object. This is done by creating instances of the implementation classes.

Allow Orbix to receive and process incoming requests from clients.

This section describes each of these programming steps in turn.

Initializing the ORB
Because Orbix uses the standard OMG IDL to C++ mapping, all servers and clients must call
CORBA::ORB_init() to initialize the ORB. This returns a reference to the ORB object. The ORB methods
defined by the standard can then be invoked on this instance.

 return BankSimple::Account::_nil();
 }
}

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

Writing an Orbix Server Application

- 28/124 -

In this code sample, the argc parameter refers to the number of arguments in argv . The argv
parameter is a sequence of configuration strings used if “Orbix” is a null string; the string “Orbix”
identifies the ORB. Refer to the Orbix Reference Guide for more information on CORBA::ORB_init() .

Orbix raises a C++ exception to indicate that a function call has failed. All CORBA exceptions derive from
CORBA::Exception . Many Orbix functions (for example, ORB_init()) and all IDL operations may raise a
CORBA system exception, of type CORBA::SystemException .

You must use C++ try/catch statements to handle exceptions, as illustrated in the preceding code
sample. In the remainder of this section, try/catch statements are omitted for clarity.

Creating an Implementation Object
To create an implementation object, you must create an instance of your implementation class in your
server program. Typically a server program creates a small number of objects in its main() function, and
these objects may in turn create further objects. In the BankSimple example, the server creates a single
bank object in its main() function. This bank object then creates accounts when create_account() is
called by the client.

For example, to create an instance of BankSimple::Bank in your server main() function, do the following:

 // C++
 // In file server.cxx
 ...
 try {
 ...
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,“Orbix”);
 ...
 }
 catch (const CORBA::SystemException& e) {
 cout << “Unexpected exception” << e << endl;
 }

Writing an Orbix Server Application

- 29/124 -

A server program can create any number of implementation objects for any number of IDL interfaces.

Note that implementation object has a name that uniquely identifies it to the server. This name is called
the “marker” (discussed more in Making Objects Available in Orbix). The above code does not explicitly
set the marker for the Bank implementation object, hence the ORB picks an unused random name. In
general, you always need to explicitly set the marker from your implementation objects (see Making
Objects Available in Orbix).

Receiving Client Requests
When a server instantiates an Orbix object (for example, one inheriting from the BOAImpl class), it is
automatically registered with Orbix as a distributed object. To make objects available to clients, the
server must call the Orbix function CORBA::BOA::impl_is_ready() to complete its initialization and to
process operation calls from clients.

You can code a complete server main() function as follows:

 // C++
 // In file server.cxx
 #include “banksimple_bankimpl.h”
 int main (...) {
 ...
 // Create a bank implementation object.
 BankSimple::Bank_var my_bank = new BankSimple_BankImpl;
 ...
 }

Writing an Orbix Server Application

- 30/124 -

// C++
// In file server.cxx
#include “banksimple_bankImpl.h”
#include “banksimple_accountImpl.h”
#include <it_demo_nsw.h>
// Server mainline.
int main (int argc, char* argv[]) {
 try {
 // Use standard demo server options.
1 IT_Demo_ServerOptions
 serveropt(“IT_Demo/BankSimple/Bank”);
 ...
2 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv,
 “Orbix”);
 CORBA::BOA_var boa = orb->BOA_init(argc, argv, “Orbix_BOA”);
 // Set diagnostics.
 orb->setDiagnostics(serveropt.diagnostics());
 // Set server name.
3 orb->setServerName(serveropt.server_name());
4 // Indicate server should not quit while clients
 // are connected.
 boa->setNoHangup(1);
 // Set up Naming Service Wrappers (NSW).
5 IT_Demo_NSW ns_wrapper;
6 ns_wrapper.setNamePrefix(serveropt.context());
7 const char* bank_name = “BankSimple.Bank”;
 ...
 // Create a bank implementation object.
8 BankSimple::Bank_var my_bank = new BankSimple_BankImpl;
9 // Register server object with the Naming Service.
 if (serveropt.bindns()) {
 cout << “Binding objects in the Naming Service”
 << endl;
 ns_wrapper.registerObject(bank_name, my_bank);
 }
 // Server has completed initialization, wait for
 // incoming requests.
10 boa->impl_is_ready((char*)serveropt.server_name(),
 serveropt.timeout());
 // impl_is_ready() returns only when Orbix times-out
 // an idle server.
 cout << “server exiting” << endl;
 }
 catch (const CORBA::Exception& e) {
 cerr << “Unexpected exception” << e << endl;
 return 1;

Writing an Orbix Server Application

- 31/124 -

This code is explained as follows:

Create the standard server options for use throughout the demonstration and set the server name to
IT_Demo/BankSimple/Bank. The Orbix demos\demolib directory contains the standard server and client
options used by the Bank series examples in this book.

Initialize the ORB and BOA. The ORB object provides functionality common to both clients and
servers. The BOA (Basic Object Adapter) object is derived from the ORB and provides additional
server-side functionality.

The ORB and the BOA are different views of the same ORB API—this object is also available via the
global variable CORBA::Orbix . However, use of this variable is not CORBA-defined and is discouraged.

Set the server name using setServerName(serveropt.server_name()) . This is required by Orbix before
exporting object references.

Create a Naming Service Wrapper (NSW) object. To simplify the use of the Naming Service, a Naming
Service Wrapper is provided. This hides the low-level detail of the CORBA Naming Service. Refer to
Using the Naming Service in Orbix Example Applications for details of the Naming Service wrapper
functions.

Define a name prefix that is used for subsequent operations.

BankSimple.Bank is the name that the bank object is known by in the Naming Service.

The created BankSimple instance is my_bank . This object implements an instance of the IDL interface
Bank . This is called directly from client applications using the CORBA standard Internet Inter-ORB
Protocol (IIOP).

The server now registers its objects in the Naming Service using the Naming Service wrapper
function registerObject() .

The CORBA::BOA::impl_is_ready() operation is called to complete server initialization. This takes a
server name and a timeout value as parameters. You can specify any name for your server; however,
the name should match the name used to register the server in the Implementation Repository, and
the argument used to call setServerName() .

The timeout value indicates the period of time, in milliseconds, that the impl_is_ready() call should
block for while waiting for an operation call to arrive from a client. If no call arrives in this period,
impl_is_ready() returns. If a call arrives, Orbix calls the appropriate member function on the
implementation object and the timeout counter starts again from zero.

 }
 return 0;
};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

10. 10.

11. 11.

Writing an Orbix Server Application

- 32/124 -

Writing an Orbix Client Application
To write a C++ client program to an Orbix object, you must perform the following steps:

Initialize the client connection to the ORB.

Get a reference to an object.

Invoke attributes and operations defined in the object’s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB
All clients and servers must call CORBA::ORB_init() to initialize the ORB. This returns a reference to the
ORB object. The ORB methods defined by the standard can then be invoked on this instance.

CORBA Object References
A CORBA object reference identifies an object in your system. When an object reference enters a client
address space, Orbix creates a proxy object that acts as a local representative for the remote
implementation object. Orbix forwards operation invocations on the proxy object to corresponding
functions in the implementation object.

Consider an object reference as a pointer that can point to an object in a remote server process. Object
references to an object of interface X are represented by a type X_ptr , which behaves like a normal C++
pointer.

An object reference requires some memory in the client (the memory needed by the proxy object), so
you must release each reference when finished by calling CORBA::release() . The CORBA::release()
method releases the client memory used by the object reference—it does not affect the remote server
object.

For interface X , the IDL compiler also generates a smart pointer class called X_var that automates
memory management. X_var behaves just like X_ptr , except it releases the reference when it goes out
of scope, or if a new reference is assigned.

Getting a Reference to an Object
The flexible CORBA-defined way to obtain object references is to use the standard CORBA Naming
Service. The CORBA Naming Service allows a name to be bound to an object and allows that object to be
found subsequently by resolving that name within the Naming Service.

1. 1.

2. 2.

3. 3.

Writing an Orbix Client Application

- 33/124 -

A server that holds an object reference can register it with the Naming Service, giving it a name that can
be used by other components of the system to find the object. The Naming Service maintains a
database of bindings between names and object references. A binding is an association between a
name and an object reference. Clients can call the Naming Service to resolve a name, and this returns
the object reference bound to that name. The Naming Service provides operations to resolve a name, to
create new bindings, to delete existing bindings, and to list the bound names.

A name is always resolved within a given naming context. The naming context objects in the system are
organized into a graph, which may form a naming hierarchy, much like that of a file system. The
following sample code shows how the client uses the Naming Service wrapper functions to obtain an
object reference:

This code is described as follows:

Define a name prefix used by the Naming Service wrapper object for subsequent operations.

BankSimple.Bank is the name by which the bank object is known in the Naming Service.

 // C++
 // In file client.cxx
 ...
 // Naming Service Setup.
 // Create a Naming Service Wrapper object.
 IT_Demo_NSW ns_wrapper;
1 ns_wrapper.setNamePrefix(clientopt.context());
 // Get CORBA object.
 // Specify the object name in the Naming Service.
2 const char* object_name = "BankSimple.Bank";
 // Get a reference to the required object from the NSW.
3 CORBA::Object_var obj = ns_wrapper.resolveName(object_name);
 // Narrow the object reference.
4 BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);
 if (CORBA::is_nil(bnk)) {
 cerr << "Object \"" << object_name
 << "\"in the Naming Service" << endl
 << "\tis not of the expected type."<< endl;
 return 1;
 }
 // Start client menu loop
5 BankMenu main_menu(bank);
 main_menu.start);
 }
 ...
}

1. 1.

2. 2.

Writing an Orbix Client Application

- 34/124 -

The method nswrapper::resolveName() retrieves the object reference from the Naming Service placed
there by servers. The object_name parameter is the name of the object to resolve. This must match
the name used by the server when it calls registerObject () .

The return type from resolveName() is of type CORBA::Object . You must call _narrow() to safely cast
down from the base class to the Bank IDL class, before you can make invocations on remote Bank
objects. The client stub code generated for every IDL class contains the _narrow() function definition
for that class.

This creates and runs a main menu for Bank clients. This menu enables you to find or create accounts
by calling the appropriate C++ member function on the object reference.

Invoking IDL Attributes and Operations
To access an attribute or an operation associated with an object, call the appropriate C++ member
function on the object reference. The client-side proxy redirects this C++ call across the network to the
appropriate member function of the implementation object.

The main BankSimple client program calls a simple interactive menu. This enables you to call IDL
operations on a Bank . The following code extracts show the code called when you choose to create or
find an account:

This code is explained as follows:

3. 3.

4. 4.

5. 5.

// C++
// In file bankmenu.cxx
void BankMenu::do_create() throw(CORBA::SystemException) {
 cout << “Enter account name: ” << flush;
 CORBA::String_var name = IT_Demo_Menu::get_string();
1 BankSimple::Account_var account =
m_bank->create_account(name);
 // Start a sub-menu with the returned account ref.
 AccountMenu sub_menu(account);
 sub_menu.start();
}
// do_find -- calls find account and runs account menu.
void BankMenu::do_find throw (CORBA::SystemException) {
 cout << “Enter account name: “ << flush;
2 CORBA::String_var name = IT_Demo_Menu::get_string();
 BankSimple::Account_var account = m_bank->find_account(name);
 AccountMenu sub_menu(account)
 sub_menu.start();
}

Writing an Orbix Client Application

- 35/124 -

m_bank is a Bank_var —a C++ helper class automatically generated by the IDL compiler from the Bank
interface. This is used like a normal C++ pointer to call IDL operations just like C++ operations.

The String_var name variable is used for the account name entered. The caller is not responsible for
releasing the memory— String_var automatically does this when it goes out of scope.

Use the C++ arrow operator (->) to access the operations defined in IDL through a BankSimple::Bank_var
object. Call those member functions using normal C++ calls and test for errors using C++ exception
handling.

Compiling the Client and Server
To build the client and server, you must compile and link the relevant C++ files with the Orbix library. On
UNIX, this is liborbix ; on Windows, this is ITMi.lib . These files are available in the Orbix lib directory.

For demonstration-specific functionality, you must also include libdemo.a on UNIX and demolib.lib
on Windows.

Compiling the Client
To build the client application, compile and link the following C++ files, and the Orbix library:

banksimple.client.cxx

client.cxx

bankmenu.cxx

accountmenu.cxx

client.cxx is the source file for the client main() function.

Compiling the Server
To build the server application, compile and link the following C++ files, and the Orbix library.

banksimple.server.cxx

banksimple_bankimpl.cxx

banksimple_accountimpl.cxx

server.cxx

1. 1.

2. 2.

Note

• •

• •

• •

• •

• •

• •

• •

• •

Compiling the Client and Server

- 36/124 -

server.cxx is the source file for the server main() function.

The Orbix demos/common/banksimple directory includes a makefile that compiles and links the bank client
and server demonstration code.

To build the executables, type one of the following in the demos\common\banksimple directory of your Orbix
installation:

Running the Application
To run the application, do the following:

Run the Orbix daemon process (orbixd) on the server host.

Register the server in the Orbix Implementation Repository.

Run the client program.

Running the Orbix Daemon
Before a client can access a server, the server must be registered with the Orbix daemon. Before
running the Orbix daemon, ensure that the environment variable IT_CONFIG_PATH is set as described in
Setting Up Configuration for the IDL Compiler.

Windows and UNIX
You can run the Orbix daemon on the server host by typing orbixd at the command line or using the
Start menu on Windows.

Registering the Server
The Implementation Repository is the component of Orbix that stores information about servers
available in the system. Before running your application, you must register your server in the
Implementation Repository.

Windows and UNIX and OpenVMS
To register the server(s), use either the Server Manager GUI tool or run the Orbix putit command on
the server host as follows:

Windows >nmake

UNIX %make

1. 1.

2. 2.

3. 3.

Running the Application

- 37/124 -

On all platforms, server_name is the name of your server passed to impl_is_ready() .

If a server binds names in the Naming Service, you may need to run it once to allow it to set up the
name bindings. Details of how to do this depend on the server used. The demonstrations provide a
makefile that do the necessary server registration and set up names in the Naming Service.

To register the server, type one of the following:

Running the Client
When a client binds to an object in a server registered in the Implementation Repository, the Orbix
daemon automatically launches the server executable file. Consequently, you can run the client without
running the server in advance.

Before running the client, ensure that the environment variable IT_CONFIG_PATH is set as described in
Setting Up Configuration for the IDL Compiler.

Windows and UNIX
Run the example client by entering client at the command-line prompt. The client displays a text menu
allowing you to choose the actions you want to take, and then prompts you for the necessary
information. The server outputs messages when it processes incoming calls. You can see these
messages by looking at the application shell window launched by the Orbix daemon.

Summary of Programming Steps
To develop a distributed application with Orbix, do the following:

Identify the objects required in your system and define the public interfaces to those objects using
the CORBA Interface Definition Language (IDL).

Compile the IDL interfaces.

Implement the IDL interfaces with C++ classes.

Write a server program that creates instances of the implementation classes. This involves:

Initializing the ORB.

putit server_name server_executable

Windows > nmake register

UNIX % make register

1. 1.

2. 2.

3. 3.

4. 4.

Summary of Programming Steps

- 38/124 -

Creating initial implementation objects.

Allowing Orbix to receive and process incoming requests from clients.

Write a client program that accesses the server objects. This involves:

Initializing the ORB.

Getting a reference to an object.

Invoking object attributes and operations.

Compile the client and server.

Run the application. This involves:

Running the Orbix daemon process.

Registering the server in the Implementation Repository.

Running the client.

5. 5.

6. 6.

7. 7.

Summary of Programming Steps

- 39/124 -

Orbix C++ Programming

Introduction to CORBA IDL
The CORBA Interface Definition Language (IDL) is used to define interfaces to objects in your network.
This section introduces the features of CORBA IDL and illustrates the syntax used to describe interfaces.

The first step in developing a CORBA application is to define the interfaces to the objects required in
your distributed system. To define these interfaces, you use CORBA IDL.

IDL allows you to define interfaces to objects without specifying the implementation of those interfaces.
To implement an IDL interface, you define a C++ class that can be accessed through that interface and
then you create objects of that class within an Orbix server application.

In fact, you can implement IDL interfaces using any programming language for which an IDL mapping
is available. An IDL mapping specifies how an interface defined in IDL corresponds to an
implementation defined in a programming language. CORBA applications written in different
programming languages are fully interoperable.

CORBA defines standard mappings from IDL to several programming languages, including C++, Java,
and Smalltalk. The Orbix IDL compiler converts IDL definitions to corresponding C++ definitions, in
accordance with the standard IDL to C++ mapping.

IDL Modules and Scoping
An IDL module defines a naming scope for a set of IDL definitions. Modules allow you to group
interface and other IDL type definitions in logical name spaces. When writing IDL definitions, always
use modules to avoid possible name clashes.

The following example illustrates the use of modules in IDL:

Orbix C++ Programming

- 40/124 -

The interfaces Bank and Account are scoped within the module BankSimple . IDL definitions are available
directly within the scope in which you define them. In other naming scopes, you must use the scoping
operator (::) to access these definitions. For example, the fully scoped name of interfaces Bank and
Account are BankSimple::Bank and BankSimple::Account respectively.

IDL modules can be reopened. For example, a module declaration can appear several times in a single
IDL specification if each declaration contains different data types. In most IDL specifications, this
feature of modules is not required.

Defining IDL Interfaces
An IDL interface describes the functions that an object supports in a distributed application. Interface
definitions provide all of the information that clients need to access the object across a network.

Consider the example of an interface that describes objects which implement bank accounts in a
distributed application. The IDL interface definition is as follows:

// IDL
module BankSimple {
interface Bank {
...
};
interface Account {
...
};
};

Defining IDL Interfaces

- 41/124 -

The definition of interface Account includes both attributes and operations. These are the main elements
of any IDL interface definition.

Attributes in IDL Interface Definitions
Conceptually, attributes correspond to variables that an object implements. Attributes indicate that
these variables are available in an object and that clients can read or write their values.

In general, attributes map to a pair of functions in the programming language used to implement the
object. These functions allow client applications to read or write the attribute values. However, if an
attribute is preceded by the keyword readonly , then clients can only read the attribute value.

For example, the Account interface defines the attributes name and balance . These attributes represent
information about the account which the object implementation can set, but which client applications
can only read.

Operations in IDL Interface Definitions
IDL operations define the format of functions, methods, or operations that clients use to access the
functionality of an object. An IDL operation can take parameters and return a value, using any of the
available IDL data types.

For example, the Account interface defines the operations deposit() and withdraw() as follows:

//IDL
module BankSimple {
 // Define a named type to represent money.
 typedef float CashAmount;
 // Forward declaration of interface Account.
 interface Account;
 interface Bank {
 ...
 };
 interface Account {
 // The account owner and balance.
 readonly attribute string name;
 readonly attribute CashAmount balance;
 // Operations available on the account.
 void deposit (in CashAmount amount);
 void withdraw (in CashAmount amount);
 };
};

Defining IDL Interfaces

- 42/124 -

Each operation takes a parameter and has a void return type.

Each parameter definition must specify the direction in which the parameter value is passed. The
possible parameter passing modes are as follows:

Parameter passing modes clarify operation definitions and allow an IDL compiler to map operations
accurately to a target programming language.

Raising Exceptions in IDL Operations
IDL operations can raise exceptions to indicate the occurrence of an error. CORBA defines two types of
exceptions:

System exceptions are a set of standard exceptions defined by CORBA.

User-defined exceptions are exceptions that you define in your IDL specification.

Implicitly, all IDL operations can raise any of the CORBA system exceptions. No reference to
system exceptions appears in an IDL specification.

To specify that an operation can raise a user-defined exception, first define the exception
structure and then add an IDL raises clause to the operation definition.

For example, the operation withdraw() in interface Account could raise an exception to indicate
that the withdrawal has failed, as follows:

//IDL
module BankSimple {
 typedef float CashAmount;
 ...
 interface Account {
 // Operations available on the account
 void deposit(in CashAmount amount);
 void withdraw(in CashAmount amount);
 ...
 };
};

in The parameter is passed from the caller of the operation to the object.

out The parameter is passed from the object to the caller.

inout The parameter is passed in both directions.

• •

• •

Defining IDL Interfaces

- 43/124 -

An IDL exception is a data structure that contains member fields. In the preceding example, the
exception InsufficientFunds includes a single member of type string.

The raises clause follows the definition of operation withdraw() to indicate that this operation can
raise exception InsufficientFunds . If an operation can raise more then one type of user-defined
exception, include each exception identifier in the raises clause and separate the identifiers using
commas.

Invocation Semantics for IDL Operations
By default, IDL operations calls are synchronous, that is a client calls an operation and blocks until the
object has processed the operation call and returned a value. The IDL keyword oneway allows you to
modify these invocation semantics.

If you precede an operation definition with the keyword oneway , a client that calls the operation will not
block while the object processes the call. For example, you could add a oneway operation to interface
Account that sends a notice to an Account object, as follows:

// IDL
module BankExceptions {
 typedef float CashAmount;
 ...
 interface Account {
 exception InsufficientFunds {
 string reason;
 };
 void withdraw(in CashAmount amount)
 raises(InsufficientFunds);
 ...
 };
};

Defining IDL Interfaces

- 44/124 -

Orbix does not guarantee that a oneway operation call will succeed; so if a oneway operation fails, a
client may never know. There is only one circumstance in which Orbix indicates failure of a oneway
operation. If a oneway operation call fails before Orbix transmits the call from the client address space,
then Orbix raises a system exception.

A oneway operation can not have any out or inout parameters and can not return a value. In addition,
a oneway operation can not have an associated raises clause.

Passing Context Information to IDL Operations
CORBA context objects allow a client to map a set of identifiers to a set of string values. When defining
an IDL operation, you can specify that the operation should receive the client mapping for particular
identifiers as an implicit part of the operation call. To do this, add a context clause to the operation
definition.

Consider the example of an Account object, where each client maintains a set of identifiers, such as
sys_time and sys_location that map to information that the operation deposit() logs for each deposit
received. To ensure that this information is passed with every operation call, extend the definition of
deposit() as follows:

A context clause includes the identifiers for which the operation expects to receive mappings.

Note that IDL contexts are rarely used in practice.

module BankSimple {
 ...
 interface Account {
 oneway void notice(in string text);
 ...
 };
};

// IDL
module BankSimple {
 typedef float CashAmount;
 ...
 interface Account {
 void deposit(in CashAmount amount)
 context(“sys_time”, “sys_location”);
 ...
 };
};

Defining IDL Interfaces

- 45/124 -

Inheritance of IDL Interfaces
IDL supports inheritance of interfaces. An IDL interface can inherit all the elements of one or more
other interfaces.

For example, the following IDL definition illustrates two interfaces, called CheckingAccount and
SavingsAccount , that inherit from interface Account :

Interfaces CheckingAccount and SavingsAccount implicitly include all elements of interface Account .

An object that implements CheckingAccount can accept invocations on any of the attributes and
operations of this interface, and on any of the elements of interface Account . However, a CheckingAccount
object may provide different implementations of the elements of interface Account to an object that
implements Account only.

The following IDL definition shows how to define an interface that inherits both CheckingAccount and
SavingsAccount :

// IDL
module BankSimple{
 interface Account {
 ...
 };
 interface CheckingAccount : Account {
 readonly attribute overdraftLimit;
 boolean orderChequeBook ();
 };
 interface SavingsAccount : Account {
 float calculateInterest ();
 };
};

Defining IDL Interfaces

- 46/124 -

Interface PremiumAccount is an example of multiple inheritance in IDL. Figure 8 on page 36 illustrates the
inheritance hierarchy for this interface.

If you define an interface that inherits from two interfaces which contain a constant, type, or exception
definition of the same name, you must fully scope that name when using that constant, type, or
exception. An interface can not inherit from two interfaces that include operations or attributes that
have the same name.

The Object Interface Type
IDL includes the pre-defined interface Object , which all user-defined interfaces inherit implicitly. The
operations defined in this interface are described in the Orbix Programmer’s Reference C++ Edition.

// IDL
module BankSimple {
 interface Account {
 ...
 };
 interface CheckingAccount : Account {
 ...
 };
 interface SavingsAccount : Account {
 ...
 };
 interface PremiumAccount :
 CheckingAccount, SavingsAccount {
 ...
 };
};

Defining IDL Interfaces

- 47/124 -

While interface Object is never defined explicitly in your IDL specification, the operations of this
interface are available through all your interface types. In addition, you can use Object as an attribute
or operation parameter type to indicate that the attribute or operation accepts any interface type, for
example:

Note that it is not legal IDL syntax to inherit interface Object explicitly.

Forward Declaration of IDL Interfaces
In an IDL definition, you must declare an IDL interface before you reference it. A forward declaration
declares the name of an interface without defining it. This feature of IDL allows you to define interfaces
that mutually reference each other.

For example, IDL interface Bank includes an operation of IDL interface type Account , to indicate that
Bank stores a reference to an Account object. If the definition of interface Account follows the definition
of interface Bank , you must forward declare Account as follows:

The syntax for a forward declaration is the keyword interface followed by the interface identifier.

// IDL
interface ObjectLocator
{
 void getAnyObject (out Object obj);
};

// IDL
module BankSimple {
 // Forward declaration of Account.
 interface Account;
 interface Bank {
 Account create_account (in string name);
 Account find_account (in string name);
 };
 // Full definition of Account.
 interface Account {
 ...
 };
};

Defining IDL Interfaces

- 48/124 -

Overview of the IDL Data Types
In addition to IDL module, interface, and exception types, there are three general categories of data
type in IDL:

Basic types.

Complex types.

Pseudo object types.

This section examines each category of IDL types in turn and also describes how you can define
new data type names in IDL.

IDL Basic Types
The following table lists the basic types supported in IDL.

• •

• •

• •

IDL Type Range of Values

short -2``15``...2``15``-1 (16-bit)

unsigned short 0...2``16``-1 (16-bit)

long –2``31``...2``31``-1 (32-bit)

unsigned long 0...2``32``-1 (32-bit)

long long –2``63``...2``63``-1 (64-bit)

unsigned long
long

0...-2``64 (64-bit)

float IEEE single-precision floating point numbers.

double IEEE double-precision floating point numbers.

char An 8-bit value.

boolean TRUE or FALSE .

octet An 8-bit value that is guaranteed not to undergo any conversion
during transmission.

Overview of the IDL Data Types

- 49/124 -

The any data type allows you to specify that an attribute value, an operation parameter, or an operation
return value can contain an arbitrary type of value to be determined at runtime. Type any is described
in detail in The Any Data Type.

IDL Complex Types
This section describes the IDL data types enum, struct, union, string, sequence, array, and fixed.

Enum
An enumerated type allows you to assign identifiers to the members of a set of values, for example:

In this example, attribute balanceCurrency in interface Account can take any one of the values pound ,
dollar , yen , or franc .

Struct
A struct data type allows you to package a set of named members of various types, for example:

any The any type allows the specification of values that can express an
arbitrary IDL type.

// IDL
module BankSimple {
 enum Currency {pound, dollar, yen, franc};
 interface Account {
 readonly attribute CashAmount balance;
 readonly attribute Currency
 balanceCurrency;
 ...
 };
};

Overview of the IDL Data Types

- 50/124 -

In this example, the struct CustomerDetails has two members. The operation getCustomerDetails()
returns a struct of type CustomerDetails that includes values for the customer name and age.

Union
A union data type allows you to define a structure that can contain only one of several alternative
members at any given time. A union saves space in memory, as the amount of storage required for a
union is the amount necessary to store its largest member.

All IDL unions are discriminated. A discriminated union associates a label value with each member. The
value of the label indicates which member of the union currently stores a value.

For example, consider the following IDL union definition:

The union type Date is discriminated by a short value. For example, if this short value is 1 , then the
union member stringFormat stores a date value as an IDL string. The default label associated with the
member structFormat indicates that if the short value is not 1 or 2 , then the structFormat member
stores a date value as an IDL struct.

// IDL
module BankSimple{
 struct CustomerDetails {
 string name;
 short age;
 };
 interface Bank {
 CustomerDetails getCustomerDetails
 (in string name);
 ...
 };
};

// IDL
struct DateStructure {
 short Day;
 short Month;
 short Year;
};
union Date switch (short) {
 case 1: string stringFormat;
 case 2: long digitalFormat;
 default: DateStructure structFormat;
};

Overview of the IDL Data Types

- 51/124 -

Note that the type specified in parentheses after the switch keyword must be an integer, char, boolean
or enum type and the value of each case label must be compatible with this type.

String
An IDL string represents a character string, where each character can take any value of the char basic
type.

If the maximum length of an IDL string is specified in the string declaration, then the string is bounded.
Otherwise the string is unbounded.

The following example shows how to declare bounded and unbounded strings:

Sequence
In IDL, you can declare a sequence of any IDL data type. An IDL sequence is similar to a one-
dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed maximum length, then the
sequence is bounded. Otherwise, the sequence is unbounded.

For example, the following code shows how to declare bounded and unbounded sequences as
members of an IDL struct:

// IDL
module BankSimple {
 interface Account {
 // A bounded string with maximum length 10.
 attribute string<10> sortCode;
 // An unbounded string.
 readonly attribute string name;
 ...
 };
};

Overview of the IDL Data Types

- 52/124 -

A sequence must be named by an IDL typedef declaration before it can be used as the type of an IDL
attribute or operation parameter. Refer to Defining Data Type Names and Constants for details. The
following code illustrates this:

Arrays
In IDL, you can declare an array of any IDL data type. IDL arrays can be multi-dimensional and always
have a fixed size. For example, you can define an IDL struct with an array member as follows:

// IDL
module BankSimple {
 interface Account {
 ...
 };
 struct LimitedAccounts {
 string bankSortCode<10>;
 // Maximum length of sequence is 50.
 sequence<Account, 50> accounts;
 };
 struct UnlimitedAccounts {
 string bankSortCode<10>;
 // No maximum length of sequence.
 sequence<Account> accounts;
 };
};

// IDL
module BankSimple {
 typedef sequence<string> CustomerSeq;
 interface Account {
 void getCustomerList(out CustomerSeq names);
 ...
 };
};

Overview of the IDL Data Types

- 53/124 -

In this example, struct CustomerAccountInfo provides access to an array of Account objects for a bank
customer, where each customer can have a maximum of three accounts.

An array must be named by an IDL typedef declaration before it can be used as the type of an IDL
attribute or operation parameter. The IDL typedef declaration allows you define an alias for a data type,
as described in Defining Data Type Names and Constants.

The following code illustrates this:

Note that an array is a less flexible data type than an IDL sequence, because an array always has a fixed
length. An IDL sequence always has a variable length, although it may have an associated maximum
length value.

// IDL
module BankSimple {
 ...
 interface Account {
 ...
 };
 struct CustomerAccountInfo {
 string name;
 Account accounts[3];
 };
 interface Bank {
 getCustomerAccountInfo (in string name,
 out CustomerAccountInfo accounts);
 ...
 };
};

// IDL
module BankSimple {
 interface Account {
 ...
 };
 typedef Account AccountArray[100];
 interface Bank {
 readonly attribute AccountArray accounts;
 ...
 };
};

Overview of the IDL Data Types

- 54/124 -

Fixed
The fixed data type allows you to represent number in two parts: a digit and a scale. The digit represents
the length of the number, and the scale is a non-negative integer that represents the position of the
decimal point in the number, relative to the rightmost digit.

In this case, the ExchangeRate type has a digit of size 10, and a scale of 4. This means that it can
represent numbers up to (+/-)999999.9999.

The maximum value for the digits is 31, and scale cannot be greater than digits. The maximum value
that a fixed type can hold is equal to the maximum value of a double .

Scale can also be a negative number. This means that the decimal point is moved scale digits in a
rightward direction, causing trailing zeros to be added to the value of the fixed. For example, fixed
<3,-4> with a numeric value of 123 actually represents the number 1230000 . This provides a mechanism
for storing numbers with trailing zeros in an efficient manner.

Fixed <3, -4> can also be represented as fixed <7, 0> .

Constant fixed types can also be declared in IDL. The digits and scale are automatically calculated from
the constant value. For example:

This yields a fixed type with a digits value of 7 , and a scale value of 6 .

module BankSimple {
 typedef fixed<10,4> ExchangeRate;
 struct Rates {
 ExchangeRate USRate;
 ExchangeRate UKRate;
 ExchangeRate IRRate;
 };
};

Note

module Circle {
 const fixed pi = 3.142857;
};

Overview of the IDL Data Types

- 55/124 -

IDL Pseudo Object Types
CORBA defines a set of pseudo object types that ORB implementations use when mapping IDL to some
programming languages. These object types have interfaces defined in IDL but do not have to follow
the normal IDL mapping for interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation parameter types in an IDL
specification:

To use any of these three types in an IDL specification, include the file orb.idl in the IDL file as follows:

This statement indicates to the IDL compiler that types NamedValue , Principal , and TypeCode may be
used. The file orb.idl should not actually exist in your system. Do not name any of your IDL files
orb.idl .

Defining Data Type Names and Constants
IDL allows you to define new data type names and constants. This section describes how to use each of
these features of IDL.

Data Type Names
The typedef keyword allows you define a meaningful or more simple name for an IDL type. The
following IDL provides a simple example of using this keyword:

CORBA::NamedValue
CORBA::Principal
CORBA::TypeCode

// IDL
#include <orb.idl>
...

Overview of the IDL Data Types

- 56/124 -

The identifier StandardAccount can act as an alias for type Account in subsequent IDL definitions. Note
that CORBA does not specify whether the identifiers Account and StandardAccount represent distinct IDL
data types in this example.

Constants
IDL allows you to specify constant data values using one of several basic data types. To declare a
constant, use the IDL keyword const , for example:

The value of an IDL constant cannot change. You can define a constant at any level of scope in your IDL
specification.

The CORBA IDL to C++ Mapping
The CORBA Interface Definition Language (IDL) to C++ mapping specifies how to write C++ programs that
access or implement IDL interfaces. This section describes this mapping in full.

CORBA separates the definition of an object’s interface from the implementation of that interface. As
described in Introduction to CORBA IDL, IDL allows you to define interfaces to objects. To implement
and use those interfaces, you must use a programming language such as C, C++, Java, Ada, or Smalltalk.

The Orbix IDL compiler allows you to implement and use IDL interfaces in C++. The compiler does this
by generating C++ constructs that correspond to your IDL definitions, in accordance with the standard
CORBA IDL to C++ mapping.

// IDL
module BankSimple {
 interface Account {
 ...
 };
 typedef Account StandardAccount;
};

// IDL
module BankSimple {
 interface Bank {
 const long MaxAccounts = 10000;
 const float Factor = (10.0 - 6.5) * 3.91;
 ...
 };
};

The CORBA IDL to C++ Mapping

- 57/124 -

This section describes the CORBA IDL to C++ mapping, as defined in the C++ mapping section of the
OMG Common Object Request Broker Architecture. The purpose of the section is to explain the rules by
which the Orbix IDL compiler converts IDL definitions into C++ code and how to use the generated C++
constructs.

This section contains a lot of detailed technical information that you require when developing Orbix
applications. However, you should not try to learn all the technical details at once. Instead, read this
section briefly to understand the mappings for the main IDL constructs, such as modules, interfaces,
and basic types, and the C++ memory management rules associated with the mapping. When writing
applications, consult this section for detailed information about mapping the specific IDL constructs you
require.

Overview of the Mapping
The major elements of the IDL to C++ mapping are:

An IDL module maps to a C++ namespace of the same name. Alternative mappings are provided for
C++ compilers that do not support the namespace construct.

An IDL interface maps to a C++ class of the same name.

An IDL operation maps to a C++ member function in the corresponding C++ class.

An IDL attribute maps to a pair of overloaded C++ member functions in the corresponding C++
class. These functions allow a client program to set and read the attribute value.

Note that IDL identifiers map directly to identifiers of the same name in C++. However, if an IDL
definition contains an identifier that exactly matches a C++ keyword, the identifier is mapped to
the name of the identifier preceded by an underscore. An IDL identifier cannot begin with an
underscore.

Mapping for Modules and Scoping
IDL modules map to C++ namespaces, where your C++ compiler supports them. For example:

This maps to:

• •

• •

• •

• •

// IDL
module BankSimple {
 struct Details {
 ...
 };
};

Overview of the Mapping

- 58/124 -

Outside of namespace BankSimple , the struct Details can be referred to as BankSimple::Details .
Alternatively, a C++ using directive allows you to refer to Details without explicit scoping:

Alternative Mappings for Modules
Since namespaces have only recently been added to the C++ language, few compilers support them. In
the absence of support for namespaces, IDL modules map to C++ classes that have no member
functions or data. This allows IDL scoped names to be mapped directly onto C++ scoped names. For
example:

This maps to:

// C++
namespace BankSimple {
 struct Details {
 ...
 };
};

// C++
using namespace BankSimple;
Details d;

// IDL
module BankSimple {
 interface Bank {
 ...
 struct Details {
 ...
 };
 };
};

Mapping for Modules and Scoping

- 59/124 -

You can use struct Details in C++ as follows:

Mapping for Interfaces
Each IDL interface maps to a C++ class that defines a client programmer’s view of the interface. This
class lists the C++ member functions that a client can call on objects that implement the interface.

Each IDL interface also maps to other C++ classes that allow a server programmer to implement the
interface using either the BOAImpl or TIE approach. However, this section describes only the C++ class
that describes the client view of the interface, as this class is sufficient to illustrate the principles of the
mapping for interfaces.

Consider a simple interface to describe a bank account:

This maps to the following IDL C++ class:

// C++
class BankSimple {
public:
 ...
 class Bank : public virtual CORBA::Object {
 ...
 struct Details {
 ...
 };
 };
};

// C++
BankSimple::Bank::Details d;

// IDL
...
typedef float CashAmount;
...
 interface Account {
 readonly attribute CashAmount balance;
 void deposit (in CashAmount amount);
 void withdraw (in CashAmount amount);
 };

Mapping for Interfaces

- 60/124 -

Implicitly, all IDL interfaces inherit from interface CORBA::Object . Class Account inherits from the Orbix
class CORBA::Object , which maps the functionality of interface CORBA::Object .

Class Account defines the client view of the IDL interface Account . Conceptually, instances of class
Account allow a client to access CORBA objects that implement interface Account . However, an Orbix
program should never create an instance of class Account and should never use a pointer (Account*) or
a reference (Account&) to this class.

Instead, an Orbix program should access objects of type Account through an interface helper type. Two
helper types are generated for each IDL interface: a _var type and a _ptr type. For example, the helper
types for interface Account are Account_var and Account_ptr .

Conceptually, a _var type is a managed pointer that assumes ownership of the data to which it points.
This means that you can use a _var type such as Account_var as a pointer to an object of type Account ,
without ever deallocating the object memory. If a _var type goes out of scope or is assigned a new
value, Orbix automatically manages the memory associated with the existing value of the _var type.

A _ptr type is more primitive and has similar semantics to a C++ pointer. In fact, _ptr types in Orbix are
currently implemented as C++ pointers. However, it is important that you do not use this knowledge
because this implementation may change. For example, you should not attempt conversion to void* ,
arithmetic operations and relational operations, including test for equality on _ptr types.

The _var and _ptr types for an IDL interface allow a client to access IDL attributes and operations
defined by the interface. Examples of how to use the _var and _ptr types are provided later in this
section.

Mapping for Attributes
Each attribute in an IDL interface maps to two member functions in the corresponding C++ class. Both
member functions have the same name as the attribute: one function allows clients to set the
attribute’s value and the other allows clients to read the value. A readonly attribute maps to a single
member function that allows clients to read the value.

Consider the following IDL interfaces:

// C++
class Account : public virtual CORBA::Object {
public:
 virtual CashAmount balance();
 virtual void deposit (in CashAmount amount);
 virtual void withdraw (in CashAmount amount);
};

Mapping for Interfaces

- 61/124 -

The following code illustrates the mapping for attributes balance and accountNumber :

Note that the IDL type float maps to CORBA::Float , while type long maps to CORBA::Long . Mapping for
Basic Types provides a detailed description of this mapping.

The following code illustrates how a client program could access attributes balance and accountnumber of
an Account object:

// IDL
interface Account {
 readonly attribute float balance;
 attribute long accountnumber;
 ...
};

 // C++
 class Account : public virtual CORBA::Object {
 public:
 virtual CORBA::Float balance(CORBA::Environment&);
 virtual CORBA::Long
 accountNumber(CORBA::Environment&);
 virtual void accountNumber
 (Long accountNumber, CORBA::Environment&);
 ...
 };

Mapping for Interfaces

- 62/124 -

Mapping for Operations
Operations within an interface map to virtual member functions of the corresponding C++ class. These
member functions have the same name as the relevant IDL operations. This mapping applies to all
operations, including those preceded by the IDL keyword oneway .

Consider the following IDL interfaces:

The following code illustrates the mapping for IDL operations:

// C++
Account_var aVar;
CORBA::Float bal = 0;
CORBA::Long number = 99;
// Code to bind aVar to an Account object omitted.
...
try {
 // Get value of balance.
 bal = aVar->balance();
 // Set and get value of accountNumber.
 aVar->accountnumber(number);
 number = aVar->accountnumber();
}
catch (const CORBA::SystemException& se) {
 ...
}

// IDL
typedef float CashAmount;
....
interface Account {
 void deposit(in CashAmount amount);
 void withdraw(in CashAmount amount);
 ...
};
interface Bank {
 Account create_account(in string name);
};

Mapping for Interfaces

- 63/124 -

The IDL operation create_account() has an object reference return type; that is, it returns an Account
object. In the corresponding C++ code for create_account() , the IDL object reference return type is
mapped to the type Account_ptr . Note that you can assign the return value of function create_account()
to either an Account_ptr or an Account_var value.

The following code illustrates how a client calls IDL operations on Account and Bank objects:

Memory Management for Parameters provides more information about the mapping for operation
parameters.

Mapping for Exceptions
A user-defined IDL exception type maps to a C++ class that derives from class CORBA::UserException and
that contains the exception’s data. For example, consider the following exception definition:

// C++
class Account : public virtual CORBA::Object {
public:
 virtual void deposit(CashAmount amount);
 virtual void withdraw(CashAmount amount);
 ...
};
class Bank : public virtual CORBA::Object {
public:
 virtual Account_ptr create_account
 (const char* name);
};

// C++
Account_var aVar;
Bank_var bVar;
// Code to bind bVar to a Bank object omitted.
...
try {
 aVar = bVar->create_account(“Chris”);
 aVar->deposit(100.00);
}
catch (const CORBA::SystemException& se) {
 ...
}

Mapping for Interfaces

- 64/124 -

This maps to the following C++:

The mapping defines a constructor with one parameter for each exception member; this constructor
initializes the exception member to the passed-in value. In the example, this constructor has two
parameters, one for each of the fields reason and s defined in the exception.

You can throw an exception of type CannotCreate in an operation implementation as follows:

The default exception constructor performs no explicit member initialization. The copy constructor,
assignment operator, and destructor automatically copy or free the storage associated with the
exception. Exceptions are mapped similarly to variable length structs in that each member of the
exception must be self-managing.

// IDL
exception CannotCreate {
 string reason;
 short s;
};

// C++
class CannotCreate : public CORBA::UserException {
public:
 CORBA::String_mgr reason;
 CORBA::Short s;
 CannotCreate(const char* _reason,
 const CORBA::Short& _s);
 CannotCreate();
 CannotCreate(const CannotCreate&);
 ~CannotCreate();
 CannotCreate()& operator = (const
 CannotCreate&);
 static CannotCreate*
 _narrow(CORBA::Exception* e);
};

// C++
// Server code.
throw CannotCreate(“My reason”, 13)

Mapping for Interfaces

- 65/124 -

Mapping for Contexts
An operation that specifies a context clause is mapped to a C++ member function in which an input
parameter of type Context_ptr follows all operation-specific arguments. For example:

This interface maps to:

The Context_ptr parameter appears before the Environment parameter. This order allows the Environment
parameter to have a default value.

Mapping for Inheritance of IDL Interfaces
This section describes the mapping for interfaces that inherit from other interfaces. Consider the
following example:

The corresponding C++ is:

// IDL
interface A {
 void op(in unsigned long s)
 context (“accuracy”, “base”);
};

// C++
class A : public virtual CORBA::Object {
public:
 virtual void op(CORBA::ULong s,
 CORBA::Context_ptr IT_c);
};

// IDL
interface CheckingAccount : Account {
 void setOverdraftLimit(in float limit);
};

Mapping for Interfaces

- 66/124 -

A C++ client program that uses the CheckingAccount interface can call the inherited deposit() function :

Naturally, assignments from a derived to a base class object reference are allowed, for example:

Note that you should not attempt to make normal or cast assignments in the opposite direction—from
a base class object reference to a derived class object reference. To make such assignments, you should
use the Orbix narrow mechanism as described in Narrowing Object References.

Widening Object References
The C++ types generated for IDL interfaces support normal inheritance conversions. For example, for
the preceeding Account and CheckingAccount classes defined the following conversions from a derived
class object reference to a base class reference, known as widenings, are implicit:

CheckingAccount_ptr to Account_ptr

CheckingAccount_ptr to Object_ptr

CheckingAccount_var to Account_ptr

CheckingAccount_var to Object_ptr

// C++
class CheckingAccount : public virtual Account {
public:
 virtual void setOverdraftLimit(
 CORBA::Float limit);
};

// C++
CheckingAccount_var checkingAc;
// Code for binding checkingAc omitted.
...
checkingAc->deposit(90.97);

// C++
Account_ptr ac = checkingAc;

• •

• •

• •

• •

Mapping for Interfaces

- 67/124 -

There is no implicit conversion between _var types. An attempt to widen from one _var type to
another causes a compile-time error. Instead conversion between two _var types requires a call
to _duplicate() .

Some widening examples are shown in the code below:

Narrowing Object References
If a client program receives an object reference of type Account that actually refers to an
implementation object of type CheckingAccount , the client can safely convert the Account reference to a
CheckingAccount reference. This conversion gives the client access to the operations defined in the
derived interface CheckingAccount .

The process of converting an object reference for a base interface to a reference for a derived interface
is known as narrowing an object reference. To narrow an object reference, you must use the _narrow()
function that is defined as a static member function for each C++ class generated from an IDL
interface.

For example, for interface T, the following C++ class is generated:

Note

// C++
CheckingAccount_ptr cPtr =;
// Implicit widening:
Account_ptr aPtr = cPtr;
// Implicit widening:
Object_ptr objPtr = cPtr;
// Implicit widening:
objPtr = aPtr;
CheckingAccount_var cVar = cPtr;
// cVar assumes ownership of cPtr.
aPtr = cVar;
 // Implicit widening, cVar retains ownership of cPtr.
objPtr = cVar;
 // Implicit widening, cVar retains ownership of cPtr.
Account_var av = cVar;
 // Illegal, compile-time error, cannot assign
 // between _var variables of different types.
 Account_var aVar = CheckingAccount::_duplicate(cVar);
 // aVar and cVar both refer to cPtr.
 // The reference count of cPtr is incremented.

Mapping for Interfaces

- 68/124 -

The following code shows how to narrow an Account reference to a CheckingAccount reference:

If the parameter passed to T::_narrow() is not of class T or one of its derived classes, T::_narrow()
returns a nil object reference. The _narrow() function can also raise a system exception, and you should
always check for this.

Each object reference in an address space has an associated reference count. A successful call to
_narrow() increases the reference count of an object reference by one.

Object Reference Counts and Nil Object References
Each Orbix program may use a single object reference several times. To determine whether an object
reference is currently in use in a program, Orbix associates a reference count with each reference. This
section describes the Orbix reference counting mechanism and explains how to test for nil object
references.

Object Reference Counts
In Orbix, the reference count of an object is the number of pointers to the object that exist within the
same address space. Each object is initially created with a reference count of one.

You can explicitly increase the reference count of an object by calling the object’s _duplicate() static
member function. The CORBA::release() function on a pointer to an object reduces the object’s reference
count by one, and destroys the object if the reference count is then zero.

// C++
class T : public virtual CORBA::Object {
 static T_ptr _narrow(CORBA::Object_ptr);
 ...
};

// C++
Account_ptr aPtr;
CheckingAccount_ptr caPtr;
// Code to bind aPtr to an object that implements
// CheckingAccount omitted.
...
// Narrow aPtr to be a CheckingAccount.
if (caPtr = CheckingAccount::_narrow(aPtr))
 ...
else
 // Deal with failure of _narrow().

Mapping for Interfaces

- 69/124 -

For example, consider the following server code:

Both implementation objects in servers, and proxies in clients have reference counts. Calls to
_duplicate() and CORBA::release() by a client do not affect the reference count of the target object in the
server. Instead, each proxy has its own reference count that the client can manipulate by calling
_duplicate() and CORBA::release() . Deletion of a proxy (by a call to CORBA::release() that causes the
reference count to drop to zero) does not affect the reference count of the target object.

A server can delete an object (by calling CORBA::release() an appropriate number of times) even if one
or more clients hold proxies for this object. If this happens, subsequent invocations through the proxy
causes an CORBA::INV_OBJREF system exception to be raised.

Some operations implicitly increase the reference count of an object. For example, if a client obtains a
reference to the same object many times—for example, using the Naming Service—this results in only
one proxy being created in that client’s address space. The reference count of this proxy is the number
of references obtained by the client.

To find the current reference count for an object, call the function _refCount() on the object reference.
This function is defined in class CORBA::Object as follows:

You can call this function as follows:

// C++
// Create a new Bank object:
Bank_ptr bPtr = new Bank_i;
// The reference count of the new object is 1.
Bank::_duplicate(bPtr);
// The reference count of the object is 2.
CORBA::release(bPtr);
// The reference count of the object is 1.

// C++
// In class CORBA::Object.
CORBA::ULong _refCount();

Mapping for Interfaces

- 70/124 -

Nil Object References
A nil object reference is a reference that does not refer to any valid Orbix object. Each C++ class for an
IDL interface defines a static function _nil() that returns a nil object reference for that interface type.

For example, an IDL interface T generates the following C++:

To obtain a nil object reference for T , do the following:

The function is_nil() , defined in the CORBA namespace, determines whether an object reference is nil.
The function is_nil() is declared as:

The following call is guaranteed to be true:

Note that calling is_nil() is the only CORBA-compliant way in which you can check if an object
reference is nil. Do not compare object references using operator = = () .

// C++
T_ptr tPtr;
...
CORBA::ULong count = tPtr->_refCount();

// C++
class T : public virtual CORBA::Object {
 static T_ptr _nil(CORBA::Environment&);
 ...
};

// C++
// Obtain a nil object reference for T:
T_ptr tPtr = T::_nil();

// C++
// In CORBA namespace.
Boolean is_nil(Object_ptr obj);

// C++
CORBA::Boolean result = CORBA::is_nil(T::_nil());

Mapping for Interfaces

- 71/124 -

Mapping for IDL Data Types
This section describes the mapping for each of the IDL basic types, constructed types, and template
types.

Mapping for Basic Types
The IDL basic data types have the mappings shown in the following table:

Each IDL basic type maps to a typedef in the CORBA module; for example, the IDL type short maps to
CORBA::Short in C++. This is because on different platforms, C++ types such as short and long may have
different representations.

The types CORBA::Short , CORBA::UShort , CORBA::Long , CORBA::ULong , CORBA::LongLong , CORBA::ULongLong ,
CORBA::Float , and CORBA::Double are implemented using distinguishable C++ types. This enables these
types to be used to distinguish between overloaded C++ functions and operators.

The IDL type boolean maps to CORBA::Boolean which is implemented as a typedef to the C++ type
unsigned char in Orbix. The mapping of the IDL boolean type to C++ defines only the values 1 (TRUE)
and 0 (FALSE); other values produce undefined behavior.

IDL C++

short CORBA::Short

long CORBA::Long

long long CORBA::LongLong

unsigned short CORBA::UShort

unsigned long CORBA::ULong

unsigned long long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

char CORBA::Char

boolean CORBA::Boolean

octet CORBA::Octet

any CORBA::Any

Mapping for IDL Data Types

- 72/124 -

The mapping for type any is described in The Any Data Type.

Mapping for Complex Types
The remainder of this section describes the mapping for IDL types enum, struct, union, string,
sequence, fixed, and array. This section also describes the mapping for IDL typedefs and constants.

The mappings for IDL types struct, union, array, and sequence depend on whether these types are fixed
length or variable length. A fixed length type is one whose size in bytes is known at compile time. A
variable length type is one in which the number of bytes occupied by the type can only be calculated at
runtime.

The following IDL types are considered to be variable length types:

A bounded or unbounded string.

A bounded or unbounded sequence.

An object reference.

A struct or union that contains a member whose type is variable length.

An array with a variable length element type.

A typedef to a variable length type.

The type any .

Mapping for Enum
An IDL enum maps to a corresponding C++ enum . For example:

This maps to:

The additional constant IT__ENUM_Colour is generated in order to force the C++ compiler to use exactly
32 bits for values declared to be of the enumerated type.

• •

• •

• •

• •

• •

• •

• •

// IDL
enum Colour {blue, green};

// C++
enum Colour {blue, green,
 IT__ENUM_Colour = CORBA_ULONG_MAX};

Mapping for IDL Data Types

- 73/124 -

Mapping for Struct
An IDL struct maps directly to a C++ struct. Each member of the IDL struct maps to a corresponding
member of the C++ struct. The generated struct contains an empty default constructor, an empty
destructor, a copy constructor and an assignment operator.

Fixed Length Structs
Consider the following IDL fixed length struct:

This maps to:

Variable Length structs
Consider the following IDL variable length struct:

This maps to a C++ struct as follows:

// IDL
struct AStruct {
 long l;
 float f;
};

// C++
struct AStruct {
 CORBA::Long l;
 CORBA::Float f;
};

// IDL
interface A {
 ...
};
struct VariableLengthStruct {
 short i;
 float f;
 string str;
 A a;
};

Mapping for IDL Data Types

- 74/124 -

Except for strings and object references, the type of the C++ struct member is the normal mapping of
the IDL member’s type.

String and object reference members of a variable length struct map to special manager classes. Note
these manager (_mgr) types are only used internally in Orbix. You should not write application code that
explicitly declares or names manager classes.

The behavior of manager types is the same as the normal mapping (char* for string and A_ptr for an
interface) except that the manager type is responsible for managing the member’s memory. In
particular, the assignment operator releases the storage for the existing member and the copy
constructor copies the member’s storage.

The implications of this are that the following code, for example, does not cause a memory leak:

Mapping for Union
An IDL union maps to a C++ struct. Consider the following IDL declaration:

// C++
struct VariableLengthStruct {
 CORBA::Short i;
 CORBA::Float f;
 CORBA::String_mgr str;
 A_mgr a;
};

// C++
VariableLengthStruct vls;
char* s1 = CORBA::string_alloc(5+1);
char* s2 = CORBA::string_alloc(6+1);
strcpy(s1, “first”);
strcpy(s2, “second”);
vls.str = s1;
vls.str = s2; // No memory leak, s1 is released.

Mapping for IDL Data Types

- 75/124 -

This maps to the following C++ struct:

// IDL
typedef long vector[100];
struct S { ... };
interface A;
union U switch(long) {
 case 1: float f;
 case 2: vector v;
 case 3: string s;
 case 4: S st;
 default: A obj;
};

Mapping for IDL Data Types

- 76/124 -

The Discriminant
The value of the discriminant indicates the type of the value that the union currently holds. This is the
value specified in the IDL union definition. The function _d() (1) returns the current value of the
discriminant.

// C++
struct U {
public:
 // The discriminant.
 CORBA::Long _d() const; (1)
 // Constructors, Destructor, and Assignment.
 U(); (2)
 U(const CORBA::Long); (2a)
 U(const U&); (3)
 ~U(); (4)
 U& operator = (const U&); (5)
 // Accessor and modifier functions for members.
 // Basic type member:
 CORBA::Float f() const; (6)
 void f(CORBA::Float IT_member); (7)
 // Array member:
 vector_slice* v() const; (8)
 void v(vector_slice* IT_member);
(9)
 // String member:
 const char* s() const; (10)
 void s(char* IT_member); (11)
 void s(CORBA::String_var IT_member);
(12)
 void s(const char* IT_member); (13)
 // Struct member:
 S& st(); (14)
 const S& st() const; (15)
 void st(const S& IT_member); (16)
 // Object reference member:
 A_ptr obj() const; (17)
 void obj(A_ptr IT_member); (18)
 ...
};

Mapping for IDL Data Types

- 77/124 -

Constructors, Destructor and Assignment
The default constructor (2) does not initialize the discriminant and it does not initialize any union
members. Therefore, it is an error for an application to access a union before setting it and Orbix does
not detect this error. The Orbix IDL Compiler generates an extra constructor (2a) that takes an
argument of the same type as the discriminant.

The copy constructor (3) and assignment operator (5) perform a deep-copy of their parameters; the
assignment operator releases old storage if necessary and then performs a deep copy. The destructor
(4) releases all storage owned by the union.

Accessors and Modifiers
For each member of the union, an accessor function is generated to read the value of the member and,
depending on the type of the member, one or more modifier functions are generated to change the
value of the member.

Setting the union value through a modifier function also sets the discriminant and, depending on the
type of the previous value, may release storage associated with that value. An attempt to get a value
through an accessor function that does not match the discriminant results in undefined behavior.

Only the accessor functions for struct, union, sequence, and any return a reference to the appropriate
type: thus, the value of this type may be modified either by using the appropriate modifier function or
by directly modifying the return value of the accessor. Because the memory associated with these types
is owned by the union, the return value of an accessor function should not be assigned to a _var type. A
_var type would attempt to assume ownership of the memory.

For a union member whose type is an array, the accessor function (8) returns a pointer to the array slice
(refer to Mapping for Array). The array slice return type allows for read-write access for array members
using operator[]() defined for arrays.

For string union members, the char* modifier function (11) first frees old storage before taking
ownership of the char* parameter; that is, the parameter is not copied. The const char* modifier (13)
and the String_var modifier (12) both free old storage before the parameter’s storage is copied.

Since the type of a string literal is char* rather than const char* , the following code would result in a
delete error:

Mapping for IDL Data Types

- 78/124 -

The string (char *) is managed by a CORBA::String_mgr whose destructor calls delete. This results in
undefined behavior which the C++ compiler is not required to flag.

Thus, an explicit cast to const char* is required in the special case where a string literal is passed to a
string modifier function.

For object reference union members, the modifier function (18) releases the old object reference and
duplicates the new one. An object reference return value from the accessor function (17) is not
duplicated, because the union retains ownership of the object reference.

Example Program
A C++ program may access the elements of a union as follows:

// C++
{
 U u;
 u.s(“A String”);
 // Calls char* version of s. The string is
 // not copied.
} // Error: u destructor tries to delete
// the string literal “A String”.

Note

Mapping for IDL Data Types

- 79/124 -

Mapping for String
IDL strings are mapped to character arrays that terminate with ‘ \0 ’ (the ASCII NUL character). The
length of the string is encoded in the character array itself through the placement of the NUL character.

In addition, the CORBA namespace defines a class String_var that contains a char* value and
automatically frees the memory referenced by this pointer when a String_var object is deallocated, for
example, by going out of scope.

The String_var class provides operations to convert to and from char* values, and operator[]() allows
access to characters within the string.

Consider the following IDL:

The corresponding C++ is:

 // C++
 U* u;
 u = new U;
 u->f(19.2);
 // And later:
 switch (u->_d()) {
 case 1 : cout << “f = ” << u->f()
 << endl; break;
 case 2 : cout << “v = ” << u->v()
 << endl; break;
 case 3 : cout << “s = ” << u->s()
 << endl; break;
 // Do not free the returned string.
 case 4 : cout << “st = ” << “x = ” << u->st().x
 << “ ” << “y = ” << u->st().y
 << endl; break;
 default: cout << “A = ” << u->obj() << endl; break;
 // Do not release the returned object
 // reference.
 }

// IDL
typedef string<10> stringTen; // A bounded string.
typedef string stringInf; // An unbounded string.

Mapping for IDL Data Types

- 80/124 -

You can define instances of these types in C++ as follows:

At all times, a bounded string pointer, such as stringTen , should reference a storage area large enough
to hold its type’s maximum string length.

Dynamic Allocation of Strings
To allocate and free a string dynamically, you must use the following functions from the CORBA
namespace:

Do not use the C++ new and delete operators to allocate memory for strings passed to Orbix from a
client or server. However, you can use new and delete to allocate a string that is local to the program
and is never passed to Orbix.

The string_alloc() function dynamically allocates a string, or returns a null pointer if it cannot perform
the allocation. The string_free() function deallocates a string that was allocated with string_alloc() .
For example:

// C++
typedef char* stringTen;
typedef CORBA::String_var stringTen_var;
typedef char* stringInf;
typedef CORBA::String_var stringInf_var;

// C++
stringTen s1 = 0;
stringInf s2 = 0;
// Or using the _var type:
CORBA::stringTen_var sv1;
CORBA::stringInf_var sv2;

// C++
// In namespace CORBA.
char* string_alloc(CORBA::ULong len);
void string_free(char*);

Mapping for IDL Data Types

- 81/124 -

The function CORBA::string_dup() copies a string passed to it: as a parameter

Space for the copy is allocated using string_alloc() .

By using the CORBA::String_var types, you are relieved of the responsibility of freeing the space for a
string. For example:

Bounds Checking of String Parameters
Although you can define bounded IDL string types, C++ does not perform any bounds checking to
prevent a string from exceeding the bound. Since strings map to char* , they are effectively unbounded.

Consequently, Orbix takes responsibility for checking the bounds of strings passed as operation
parameters. If you attempt to pass a string to Orbix that exceeds the bound for the corresponding IDL
string type, Orbix detects this error and raises a system exception.

General Mapping for Sequences
The IDL data type sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. A _var type is also generated for each sequence.

// C++
{
 char* s = CORBA::string_alloc(10+1);
 strcpy(s, “0123456789”);
 ...
 CORBA::string_free(s);
}

// C++
char* string_dup(const char*);

// C++
{
 CORBA::String_var sVar = CORBA::string_alloc(10+1);
 strcpy(sVar, “0123456789”);
 ...
} // String held by sVar automatically freed here.

Mapping for IDL Data Types

- 82/124 -

The maximum length for a bounded sequence is defined in the sequence’s IDL type and cannot be
explicitly controlled by the programmer. Attempting to set the current length to a value larger than the
maximum length given in the IDL specification is undefined. Orbix checks the length against maximum
bound and, if this is greater, does nothing.

For an unbounded sequence, the initial value of the maximum length can be specified in the sequence
constructor to allow control over the size of the initial buffer allocation. The programmer may always
explicitly modify the current length of any sequence.

If the length of an unbounded sequence is set to a larger value than the current length, the sequence
data may be reallocated. Reallocation is conceptually equivalent to creating a new sequence of the
desired new length, copying the old sequence elements into the new sequence, releasing the original
elements, and then assigning the old sequence to be the same as the new sequence. Setting the length
to a smaller value than the current length does not result in any reallocation. The current length is set
to the new value and the maximum remains the same.

Mapping for Unbounded Sequences
Consider the following IDL declaration:

The IDL compiler generates the following class definition:

// IDL
typedef sequence<long> unbounded;

Mapping for IDL Data Types

- 83/124 -

Constructors, Destructor and Assignment
The default constructor (1) sets the sequence length to 0 and sets the maximum length to 0 .

The copy constructor (2) creates a new sequence with the same maximum and length as the given
sequence, and copies each of its current elements.

Constructor (3) allows the buffer space for a sequence to be allocated externally to the definition of the
sequence itself. Normally sequences manage their own memory. However, this constructor allows
ownership of the buffer to be determined by the release parameter: 0 (false) means the caller owns
the storage, while 1 (true) means that the sequence assumes ownership of the storage. If release is
true , the buffer must have been allocated using the sequence allocbuf() function, and the sequence
passes it to freebuf() when finished with it. In general, constructor (3) particularly with the release
parameter set to 0 , should be used with caution and only when absolutely necessary.

// C++
class unbounded {
public:
 unbounded(); (1)
 unbounded(const unbounded&); (2)
 // This constructor uses existing space.
 unbounded((3)
 CORBA::ULong max,
 CORBA::ULong length,
 CORBA::Long* data,
 CORBA::Boolean release = 0);
 // This constructor allocates space.
 unbounded(CORBA::ULong max); (4)
 ~unbounded(); (5)
 unbounded& operator = (const
unbounded&); (6)
 static CORBA::Long* allocbuf((7)
 CORBA::ULong nelems);
 static void freebuf(CORBA::Long*
data); (8)
 CORBA::ULong maximum() const; (9)
 CORBA::ULong length() const; (10)
 void length(CORBA::ULong len); (11)
 CORBA::Long& operator[]((12)
 CORBA::ULong IT_i);
 const CORBA::Long& operator[]((13)
 CORBA::ULong IT_i) const;
};

Mapping for IDL Data Types

- 84/124 -

For constructor (3), the type of the data parameter for string s and object references is char* and A_ptr
(for interface A) respectively. In other words, string buffers are passed as char** and object reference
buffers are passed as A_ptr* .

Constructor (4) allows only the initial value of the maximum length to be set. This allows applications to
control how much buffer space is initially allocated by the sequence. This constructor also sets the
length to 0 .

The destructor (5) automatically frees the allocated storage containing the sequence’s elements, unless
the sequence was created using constructor (3) with the release parameter set to false . For sequences
of strings, CORBA::string_free() is called on each string; for sequences of object references,
CORBA::release() is called on each object reference.

Sequence Buffer Management: allocbuf() and freebuf()
The static member functions, allocbuf() (7) and freebuf() (8) control memory allocation for sequence
buffers when constructor (3) is used.

The function allocbuf() dynamically allocates a buffer of elements that can be passed to constructor (3)
in its data parameter; it returns a null pointer if it cannot perform the allocation.

The freebuf() function deallocates a buffer that was allocated with allocbuf() . The freebuf() function
ignores null pointers passed to it. For sequences of array types, the return type of allocbuf() and the
argument type of freebuf() are pointers to array slices (refer to Mapping for Array).

When the release flag is set to true and the sequence element type is either a string or an object
reference, the sequence individually frees each element before freeing the buffer. It frees string s using
string_free() , and it frees object references using release() .

Other Functions
The function maximum() (9) returns the total amount of buffer space currently available. This allows
applications to know how many items they can insert into an unbounded sequence without causing a
reallocation to occur.

The overloaded operators operator[]() (12, 13) return the element of the sequence at the given index.
They may not be used to access or modify any element beyond the current sequence length. Before
operator[]() is used on a sequence, the length of the sequence must first be set using the modifier
function length() (11) function, unless the sequence was constructed using constructor (3).

For string s and object references, operator[]() for a sequence returns a type with the same semantics
as the types used for the string and object reference members of struct s and arrays, so that
assignment to the string or object reference sequence member releases old storage when
appropriate.

Mapping for IDL Data Types

- 85/124 -

Unbounded Sequences Example
This section shows how to create the unbounded sequence defined in the following IDL:

You can create an instance of this sequence in any of the following ways:

Using the default constructor:

The sequence length is set to 0 and the maximum length is set to 0 . This does not allocate any
space for the buffer elements.

By specifying the initial value for the maximum length of the sequence:

The initial buffer allocation for this sequence is enough to hold ten elements. The sequence
length is set to 0 , the maximum is set to 10 .

Using the copy constructor:

This copies y ’s state into c . The buffer is copied, not shared.

Dynamically allocating the sequence using the C++ new operator:

By defining a _var type, you do not have to explicitly free the sequence when you are finished
with it. Like the mapped class, the _var type for a sequence provides the operator[]() .

// IDL
typedef sequence<long> unbounded;

• •

// C++
unbounded x;

• •

// C++
unbounded y(10);

• •

// C++
unbounded c = y;

• •

// C++
unbounded* s1 = new unbounded;
unbounded* s2 = new unbounded(10);
...
delete s1;
delete s2

Mapping for IDL Data Types

- 86/124 -

Allocating the buffer space externally to the definition of the sequence itself.

In this example, the last parameter to z ’s constructor is 1 . This indicates that sequence assumes
ownership of the buffer. The data buffer is freed automatically when z goes out of scope.

If the last parameter were 0 , the data buffer would have to be freed by calling
unbounded::freebuf(data) .

It is not often necessary to use this form of sequence construction.

Mapping for Bounded Sequences
This section describes the mapping for bounded sequences. For example, consider the following IDL:

The corresponding C++ code is as follows:

// C++
unbounded_var uVar = new unbounded;
uVar->length(10);
CORBA::Long i;
for (i = 0; i<10; i++)
 uVar[i] = i;
...
// Do not call ‘delete uVar’.

• •

// C++
CORBA::Long* data = unbounded::allocbuf(10);
unbounded z(10, 10, data, 1);
CORBA::Long i;
// You can initialize the sequence as follows:
for (i = 0; i<10; i++)
 z[i] = i;
...
z::freebuf(data);

// IDL
typedef sequence<long, 10> bounded;

Mapping for IDL Data Types

- 87/124 -

The mapping is as described for unbounded sequences except for the differences indicated in the
following paragraphs.

The maximum length is part of the type and cannot be set or modified.

The maximum() function (8) always returns the bound of the sequence as given in its IDL type declaration.

Bounded Sequence Examples
Consider the following IDL declaration:

You can declare an instance of boundedTen in a variety of ways:

Using the default constructor:

// C++
class bounded {
public:
 bounded(); (1)
 bounded(const bounded&); (2)
 bounded(CORBA::ULong length, (3)
 CORBA::Long* data,
 CORBA::Boolean release = 0);
 ~bounded(); (4)
 bounded& operator = (const
bounded&); (5)
 static CORBA::Long* allocbuf((6)
 CORBA::ULong nelems);
 static void freebuf(CORBA::Long*
data); (7)
 CORBA::ULong maximum() const; (8)
 CORBA::ULong length() const; (9)
 void length(CORBA::ULong len); (10)
 CORBA::Long& operator[]((11)
 CORBA::ULong IT_i);
 const CORBA::Long& operator[]((12)
 CORBA::ULong IT_i) const;
};

// IDL
typedef sequence<long, 10> boundedTen;

• •

Mapping for IDL Data Types

- 88/124 -

The length of the sequence is set to 0 and the maximum length is set to 10 . Space is allocated in
the buffer for 10 elements.

Using the copy constructor:

This copies x ’s state into c . The buffer is copied, not shared.

By dynamically allocating the sequence:

By defining a _var type, you do not have to explicitly free the sequence when you are finished
with it. Like the mapped class, the _var type for a sequence provides the operator[]() . For
example:

Using constructor (3) as follows:

// C++
boundedTen x;

• •

// C++
boundedTen c = x;

• •

// C++
boundedTen* w = new boundedTen;
CORBA::Long i;
w->length(10);
for (i = 0; i<10; i++)
 (*w)[i] = i;
...
delete w;

// C++
boundedTen_var wVar = new boundedTen;
CORBA::Long i;
for (i = 0; i<10; i++)
 wVar[i] = i;
...
// Do not call ‘delete wVar’.

• •

Mapping for IDL Data Types

- 89/124 -

As for unbounded sequences, avoid this form of sequence construction whenever possible. In this
example, the release parameter is set to 1 (true) to indicate that sequence z is to responsible for
releasing the buffer, data .

Mapping for Fixed
The fixed type maps to a C++ template class, as shown in the following example:

The fixed template class is defined as follows:

// C++
CORBA::Long* data = boundedTen::allocbuf(10);
CORBA::Long i;
boundedTen z(10, data, 1); // 1 for true.
// You can initialize the sequence as follows
// using the overloaded operator[]():
for (i = 0; i<10; i++)
 z[i] = i;

// IDL
typedef fixed <10, 6> ExchangeRate;
const fixed pi = 3.1415926;
// C++
typedef CORBA_Fixed<10, 6> ExchangeRate;
static const CORBA_Fixed
 <(unsigned short)7, (short)6> pi = 3.1415926;

Mapping for IDL Data Types

- 90/124 -

The class mainly consists of conversion and arithmetic operators to all the fixed types. These types are
for use as native numeric types and allow assignment from and to other numeric types.

The Fixed_Digits() and Fixed_Scale() operations return the digits and scale of the fixed type.

A set of global operators for the fixed type is also provided.

Streaming Operators
The streaming operators for fixed are as follows:

 template<unsigned short d, short s> class CORBA_Fixed
{
 public:
 CORBA_Fixed(const int val = 0);
 CORBA_Fixed(const long double val);
 CORBA_Fixed(const CORBA_Fixed<d, s>& val);
 ~CORBA_Fixed();
 operator CORBA_Fixed<d, s> () const;
 operator double() const;
 CORBA_Fixed<d, s>& operator= (const CORBA_Fixed<d, s>& val);
 CORBA_Fixed<d, s>& operator++();
 const CORBA_Fixed<d, s> operator++(int);
 CORBA_Fixed<d, s>& operator--();
 const CORBA_Fixed<d, s> operator--(int);
 CORBA_Fixed<d, s>& operator+() const;
 CORBA_Fixed<d, s>& operator-() const;
 int operator!() const;
 CORBA_Fixed<d, s>& operator+= (const CORBA_Fixed<d, s>& val1);
 CORBA_Fixed<d, s>& operator-= (const CORBA_Fixed<d, s>& val1);
 CORBA_Fixed<d, s>& operator*= (const CORBA_Fixed<d, s>& val1);
 CORBA_Fixed<d, s>& operator/= (const CORBA_Fixed<d, s>& val1);
 const unsigned short Fixed_Digits() const;
 const short Fixed_Scale() const;

// C++
double rate = 1.4234;
ExchangeRate USRate(rate);
USRate + = 0.1;
cout << “US Exchange Rate = ” << USRate << endl;
 // outputs 0001.523400

Mapping for IDL Data Types

- 91/124 -

These operators allow native streaming to ostreams and input from istreams . This output is padded:

Arithmetic Operators
The arithmethic operators for fixed are as follows:

These operations allow binary arithmetic operations between fixed types. For example:

Logical Operators
The logical operators for fixed are as follows:

 ostream& operator<<(ostream& os, const Fixed<d, s>& val);
 istream& operator<<(istream& is, Fixed<d, s>& val);

// C++
ExchangeRate USRate(1.40);
cout << “US Exchange Rate = ” << USRate << endl;
 // outputs 0001.400000

 CORBA_Fixed<d, s> operator+ (const CORBA_Fixed<d, s>& val1,
 const CORBA_Fixed<d, s>& val2);
 CORBA_Fixed<d, s> operator- (const CORBA_Fixed<d, s>& val1,
 const CORBA_Fixed<d, s>& val2);
 CORBA_Fixed<d, s> operator* (const CORBA_Fixed<d, s>& val1,
 const CORBA_Fixed<d, s>& val2);
 CORBA_Fixed<d, s> operator/ (const CORBA_Fixed<d, s>& val1,
 const CORBA_Fixed<d, s>& val2);

 // C++
 ExchangeRate USRate(1.453);
 ExchangeRate UKRate(0.84);
 ExchangeRate diff;
 diff = USRate - UKRate;
 cout << “difference between US rate and UK rate is ”
 << diff << endl;
 // outputs 0000.613000;

Mapping for IDL Data Types

- 92/124 -

These operators provide logical arithmetic on fixed types. For example:

Mapping for Array
An IDL array maps to a corresponding C++ array definition. A _var type for the array and a _forany
type, which allows the array to be inserted into and extracted from an any , are also generated.

All array indices in IDL and C++ run from 0 to <size-1> . If the array element is a string or an object
reference, the mapping to C++ uses the same rule as for structure members, that is, assignment to an
array element releases the storage associated with the old value.

Arrays as Out Parameters and Return Values
Arrays as out parameters and return values are handled via a pointer to an array slice. An array slice is
an array with all the dimensions of the original specified except the first one; for example, a slice of a 2-
dimensional array is a 1-dimensional array, a slice of a 1-dimensional array is the element type.

The CORBA IDL to C++ mapping provides a typedef for each array slice type. For example, consider the
following IDL:

 int operator> (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);
 int operator< (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);
 int operator>= (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);
 int operator>= (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);
 int operator== (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);
 int operator!= (const Fixed<d1, s1>& val1,
 const Fixed<d2, s2>& val2);

// C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);
if (USRate<= UKRate)
 {
 // Do stuff...
 };

Mapping for IDL Data Types

- 93/124 -

This generates the following array and array slice typedefs:

Dynamic Allocation of Arrays
To allocate an array dynamically, you must use functions which are defined at the same scope as the
array type. For array T , these functions are defined as:

The function T_alloc() dynamically allocates an array, or returns a null pointer if it cannot perform the
allocation. The T_free() function deallocates an array that was allocated with T_alloc() . For example,
consider the following array definition:

You can use the functions vector_alloc() and vector_free() as follows:

// IDL
typedef long arrayLong[10];
typedef float arrayFloat[5][3];

// C++
typedef long arrayLong[10];
typedef long arrayLong_slice;
typedef float arrayFloat[5][3];
typedef float arrayFloat_slice[3];

// C++
T_slice* T_alloc();
void T_free (T_slice*);

// IDL
typedef long vector[10];

Mapping for IDL Data Types

- 94/124 -

Mapping for Typedef
A typedef definition maps to corresponding C++ typedef definitions. For example, consider the
following typedef:

This generates the following C++ typedef:

Mapping for Constants
Consider a global, file level, IDL constant such as:

This maps to a file level C++ static const :

An IDL constant in an interface or module maps to a C++ static const member of the corresponding C+
+ class. For example:

// C++
vector_slice* aVector = vector_alloc();
// The size of the array is as specified
// in the IDL definition. It allocates a 10
// element array of CORBA::Long.
...
vector_free(aVector);

// IDL
typedef long CustomerId;

// C++
typedef CORBA::Long CustomerId;

// IDL
const long MaxLen = 4;

// C++
static const CORBA::Long MaxLen = 4;

Mapping for IDL Data Types

- 95/124 -

This maps to the following C++:

The following definition is also generated for the value of this constant, and is placed in the client stub
implementation file:

Mapping for Pseudo-Object Types
For most pseudo-object types, the CORBA specification defines an operation to create a pseudo-object.
For example, the pseudo-interface ORB defines the operations create_list() and
create_operation_list() to create an NVList (an NVList describes the arguments of an IDL operation)
and operation create_environment() to create an Environment .

To provide a consistent way to create pseudo-objects, in particular, for those pseudo-object types for
which the CORBA specification does not provide a creation operation, Orbix provides static IT_create()
function(s) for all pseudo-object types in the corresponding C++ class. These functions provide an Orbix-
specific means to create and obtain a pseudo-object reference. An overloaded version of IT_create() is
provided that corresponds to each C++ constructor defined on the class. IT_create() should be used in
preference to C++ operator new but only where there is no suitable compliant way to obtain a pseudo-
object reference. Use of IT_create() in preference to new ensures memory management consistency.

The Orbix Programmer’s Reference C++ Edition gives details of the IT_create() functions available for
each pseudo-interface. The entry for IT_create() also indicates the compliant way, if any, of obtaining
an object reference to a pseudo-object.

// IDL
interface CheckingAccount : Account {
 const float MaxOverdraft = 1000.00;
};

// C++
class CheckingAccount : public virtual Account {
public:
 static const CORBA::Float MaxOverdraft;
};

// C++
const CORBA::Float
 CheckingAccount::MaxOverdraft = 1000.00;

Mapping for Pseudo-Object Types

- 96/124 -

Memory Management and _var Types
This section describes the _var types that help you to manage memory deallocation for some IDL
types. The Orbix IDL compiler generates _var types for the following:

Each interface type.

Type string .

All variable length complex data types; for example, an array or sequence of string s, and structs
of variable data length.

All fixed length complex data types, for consistency with variable length types.

Conceptually, a _var type can be considered as an abstract pointer that assumes ownership of the
data to which it points.

For example, consider the following interface definition:

The following C++ code illustrates the functionality of a _var type for this interface:

The general form of the _var class for IDL type T is:

• •

• •

• •

• •

// IDL
interface A {
 void op();
};

// C++
{
 // Set aPtr to refer to an object:
 A_ptr aPtr = ...
 A_var aVar = aPtr;
 // Here, aVar assumes ownership of aPtr.
 // The object reference is not duplicated.
 aVar->op();
 ...
}
 // Here, aVar is released (its
 // reference count decremented).

Memory Management and _var Types

- 97/124 -

Constructors and Destructor
The default constructor (1) creates a T_var containing a null pointer to its data or a nil object reference
as appropriate. A T_var initialized using the default constructor can always legally be passed as an out
parameter.

Constructor (2) creates a T_var that, when destroyed, frees the storage pointed to by its parameter. The
parameter to this constructor should never be a null pointer. Orbix does not detect null pointers passed
to this constructor.

The copy constructor (3) deep-copies any data pointed to by the T_var constructor parameter. This copy
is freed when the T_var is destroyed or when a new value is assigned to it.

The destructor frees any data pointed to by the T_var string s and array types are deallocated using the
CORBA::string_free() and S_free() (for array of type S) deallocation functions respectively; object
references are released.

The following code illustrates some of these points:

// C++
class T_var {
public:
 T_var(); (1)
 T_var(T_ptr IT_p); (2)
 T_var(const T_var& IT_s); (3)
 T_var& operator = (T_ptr IT_p);
(4)
 T_var& operator = (const T_var&
IT_s); (5)
 ~T_var(); (6)
 T* operator->(); (7)
};

Memory Management and _var Types

- 98/124 -

Assignment Operators
The assignment operator (4) results in any old data pointed to by the T_var being freed before
assuming ownership of the T* (or T_ptr) parameter. For example:

The normal assignment operator (5) deep-copies any data pointed to by the T_var assignment
parameter. This copy is destroyed when the T_var is destroyed or when a new value is assigned to it.

// C++
{
 A_var aVar = ...
 String_var sVar = string_alloc(10);
 ...
 aVar->op();
 ...
} // Here, aVar is released,
// sVar is freed.

// C++
// Set aVar to refer to an object reference.
A_var aVar = ...
// Set aPtr to refer to an object reference.
A_ptr aPtr = ...
// The following assignment causes the _ptr
// owned by aVar to be released before aVar
// assumes ownership of aPtr.
aVar = aPtr;

Memory Management and _var Types

- 99/124 -

Assignment between _var types is only allowed between _var s of the same type. In particular, no
widening or narrowing is allowed. Thus the following assignments are illegal:

You cannot create a T_var from a const T* , or assign a const T* to a T_var . Recall that a T_var
assumes ownership of the pointers passed to it and frees this pointer when the T_var goes out of scope
or is otherwise freed. This deletion cannot be done on a const T* . To allow construction from a const T*
or assignment to a T_var , the T_var would have to copy the const object. This copy is forbidden by the
standard C++ mapping, allowing the application programmer to decide if a copy is really wanted or not.
Explicit copying of const T* objects into T_var types can be achieved via the copy constructor for T , as
shown below:

operator->()
The overloaded operator->() (7) returns the T* or T_ptr held by the T_var , but retains ownership of it.
You should not call this function unless the T_var has been initialized with a valid T* or T_var .

For example:

// C++
{
 T_var t1Var = ...
 T_var t2Var = ...
 // The following assignment frees t1Var and
 // deep copies t2Var, duplicating its
 // object reference.
 t1Var = t2Var;
}
// Here, t1Var and t2Var are released. They both /// refer to the same object
so the reference count
// of the object is decremented twice.

// C++
// B is a derived interface of A.
A_var aVar = ...
B_var bVar = ...
aVar = bVar; // ILLEGAL.
bVar = aVar; // ILLEGAL.

// C++
const T* t = ...;
T_var tVar = new T(*t);

Memory Management and _var Types

- 100/124 -

The following are some examples of illegal code:

The second example above is illegal because an uninitialized _var contains no pointer, and thus cannot
be converted to a _ptr type.

Memory Management for Parameters
When passing operation parameters between clients and objects in a distributed application, you must
ensure that memory leakage does not occur. Since main memory pointers cannot be meaningfully
passed between hosts in a distributed system, the transmission of a pointer to a block of memory
requires the block to be transmitted by value and re-constructed in the receiver’s address space. You
must take care not to cause memory leakage for the original or the new copy.

This section explains the mapping for parameters and return values and explains the memory
management rules that clients and servers must follow to ensure that memory is not leaked in their
address spaces.

Passing basic types, enums, and fixed length structs as parameters is quite straightforward in Orbix.
However, you must be careful when passing strings and other variable length data types, including
object references.

// C++
A_var aVar;
// First initialize aVar.
aVar = ... // Perhaps an object reference
// returned from the Naming Service.
// You can now call member functions.
aVar->op();

// C++
A_var aVar;
aVar->op(); // ILLEGAL! Attempt to call function
// on uninitialized _var.
A_ptr aPtr;
aPtr = aVar; // ILLEGAL! Attempt to convert
// uninitialized _var. Orbix does
// not detect this error.

Memory Management for Parameters

- 101/124 -

in Parameters
When passing an in parameter, a client programmer allocates the necessary storage and provides a
data value. Orbix does not automatically free this storage on the client side.

For example, consider the following IDL operation:

A client can call operation op() as follows:

On the server side, the parameter is passed to the function that implements the IDL operation. Orbix
frees the parameter upon completion of the function call in order to avoid a memory leak. If you wish to
keep a copy of the parameter in the server, you must copy it before the implementation function
returns.

This is illustrated in the following implementation function for operation op() :

// IDL
interface A {
 ...
};
interface B {
 void op(in float f, in string s, in A a);
};

// C++
{
 CORBA::Float f = 12.0;
 char* s = CORBA::string_alloc(4);
 strcpy(s, “Two”);
 A_ptr aPtr = ...
 B_ptr bPtr = ...
 bPtr->op(f, s, aPtr);
 ...
 CORBA::string_free(s);
 CORBA::release(aPtr);
 CORBA::release(bPtr);
}

Memory Management for Parameters

- 102/124 -

A client program should not pass a NULL or uninitialized pointer for an in parameter type that maps
to a pointer (*) or a reference to a pointer (*&).

inout Parameters
In the case of inout parameters, a value is both passed from the client to the server and vice versa.
Thus, it is the responsibility of the client programmer to allocate memory for a value to be passed in.

In the case of variable length types, the value being passed back out from the server is potentially
longer than the value which was passed in. This leads to memory management rules that you must
examine on a type-by-type basis.

Object Reference inout Parameters
On the client side, the programmer must ensure that the parameter is a valid object reference that
actually refers to an object. In particular, when passing a T_var as an inout parameter, where T is an
interface type, the T_var should be initialized to refer to some object.

If the client wishes to continue to use the object reference being passed in as an inout parameter, it
must first duplicate the reference. This is because the server can modify the object reference to refer to
something else when the operation is invoked. If this were to happen, the object reference for the
existing object would be automatically released.

On the server side, the object reference is made available to the programmer for the duration of the
function call. The object referenced is automatically released at the end of the function call. If the server
wishes to keep this reference, it must duplicate it.

// C++
void B_i::op(CORBA::Float f, const char* s,
 A_ptr a, CORBA::Environment&) {
 ...
 // Retain in parameters.
 // Copy the string and maybe assign it to
 // member data:
 char* copy = CORBA::string_alloc(strlen(s));
 strcpy(copy, s);
 ...
 // Duplicate the object reference:
 A::_duplicate(a);
}

Note

Memory Management for Parameters

- 103/124 -

The server programmer is free to modify the object reference to refer to another object. To do so, you
must first release the existing object reference using CORBA::release() . Alternatively, you can release the
existing object reference by assigning it to a local _var variable, for example:

Any previous value held in the _var variable is properly deallocated at the end of the function call.

String inout Parameters
On the client side, you must ensure that the parameter is a valid NUL -terminated char* . It is your
responsibility to allocate storage for the passed char* . This storage must be allocated via
string_alloc() .

After the operation has been invoked, the char* may point to a different area of memory, since the
server is free to deallocate the input string and reassign the char* to point to new storage. It is your
responsibility to free the storage when it is no longer needed.

On the server side, the string pointed to by the char* which is passed in may be modified before being
implicitly returned to the client, or the char* itself may be modified. In the latter case, it is your
responsibility to free the memory pointed to by the char* before reassigning the parameter. In both
cases, the storage is automatically freed at the end of the function call. If the server wishes to keep a
copy of the string, it must take an explicit copy of it.

An alternative way to ensure that the storage for an inout string parameter is released is to assign it to
a local _var variable, for example:

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,
 char*& s, A_ptr& a,
 CORBA::Environment&) {
 A_var aTempVar = a;
 a = ... // New object reference.
 ...
}

Memory Management for Parameters

- 104/124 -

Any previous value held in the _var variable is properly deallocated at the end of the function call.

For unbounded strings, the server programmer is free to pass a string back to the client that is longer
than the string which was passed in. Doing so would, of course, cause an automatic reallocation of
memory at the client side to accommodate the new string.

Sequence inout Parameters
On the client side, you must ensure that the parameter is a valid sequence of the appropriate type.
Recall that this sequence may have been created with either ‘ release = 0 ’ (false) semantics or
‘ release = 1 ’ (true) semantics. In the former case, the sequence is not responsible for managing its own
memory. In the latter case, the sequence frees its storage when it is destroyed, or when a new value is
assigned into the sequence.

In all cases, it is the responsibility of the client programmer to release the storage associated with a
sequence passed back from a server as an inout parameter.

On the server side, Orbix is unaware of whether the incoming sequence parameter was created with
release = 0 or release = 1 semantics, since this information is not transmitted as part of a sequence.
Orbix must assume that release is set to 1 , since failure to release the memory could result in a
memory leak.

The sequence is made available to the server for the duration of the function call, and is freed
automatically upon completion of the call. If the server programmer wishes to use the sequence after
the call is complete, the sequence must be copied.

A server programmer is free to modify the contents of the sequence received as an inout parameter. In
particular, the length of the sequence that is passed back to the client is not constrained by the length
of the sequence that was passed in.

Where possible, use only sequences created with release = 1 as inout parameters.

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,
 char*& s, A_ptr& a,
 CORBA::Environment&) {
 String_var sTempVar = s;
 s = ... // New string.
 ...
}

Memory Management for Parameters

- 105/124 -

Type any inout Parameters
The memory management rules for inout parameters of type any are the same as those for sequence
parameters as described above.

There is a constructor for type CORBA::Any which has a release parameter, analogous to that of the
sequence constructors (refer to the section The Any Data Type). However, the warning provided above
in relation to inout sequence parameters does not apply to type any .

Other inout Parameters
For all other types, including variable length unions, arrays and structs, the rules are the same.

The client must make sure that a valid value of the correct type is passed to the server. The client must
allocate any necessary storage for this value, except that which is encapsulated and managed within
the parameter itself. The client is responsible for freeing any storage associated with the value passed
back from the server in the inout parameter, except that which is managed by the parameter itself. This
client responsibility is alleviated by the use of _var types, where appropriate.

The server is free to change any value which is passed to it as an inout parameter. The value is made
available to the server for the duration of the function call. If the server wishes to continue to use the
memory associated with the parameter, it must take a copy of this memory.

out Parameters
A client program passes an out parameter as a pointer. A client may pass a reference to a pointer with a
null value for out parameters because the server does not examine the value but instead just
overwrites it.

The client programmer is responsible for freeing storage returned to it via a variable length out
parameter. The memory associated with a variable length parameter is properly freed if a _var variable
is passed to the operation.

For example, consider the following IDL:

Memory Management for Parameters

- 106/124 -

The operation opOut() is implemented by the following C++ function:

A client calls this operation as follows:

The client must explicitly free memory if _var types are not used.

A fixed-length struct out parameter maps to a struct reference parameter. A variable-length struct out
parameter maps to a reference to a pointer to a struct. Since the _var type contains conversion
operators to both of these types, the difference in the mapping for out parameters for fixed length and
variable length structs is hidden. If _var types are not used, you must use a different syntax when
passing fixed and variable length structs. For example:

// IDL
struct VariableLengthStruct {
 string aString;
};
struct FixedLengthStruct {
 float aFloat;
};
interface A {
 void opOut(out float f,
 out FixedLengthStruct fs,
 out VariableLengthStruct vs);
};

// C++
A_i::opOut(
 CORBA::Float& f,
 FixedLengthStruct& fs,
 VariableLengthStruct*& vs,
 CORBA::Environment&) {
 ...
}

// C++
{
 FixedLengthStruct_var fs;
 VariableLengthStruct_var vs;
 A_var aVar = ...;
 aVar->opOut(fs, vs);
 aVar->opOut(fs, vs); // 1st results freed.
} // 2nd results freed.

Memory Management for Parameters

- 107/124 -

On the server side, the storage associated with out parameters is freed by Orbix when the function call
completes. The programmer must retain a copy (or duplicate an object reference) to retain the value.
For example:

In this example, you take a copy of the struct parameter by using the default C++ copy constructor.

A server may not return a null pointer for an out parameter returned as a T* or T*& —that is, for a
variable length struct or union, a sequence, a variable length or fixed length array, a string or any.

// C++
{
 //You must allocate memory for a fixed
 //length struct
 FixedLengthStruct fs;
 //No need to initialize memory for a variable
 //length struct
 VariableLengthStruct* vs_p;
 aVar->opOut(fs, vs_p)
 // Use fs and vs_p.
 ...
 // Free pointer vs_p before passing it to
 // A_i::opOut() again.
 delete vs_p;
 aVar->opOut(*fs, vs_p);
 // Use fs and vs_p.
 ...
// Delete memory pointed to by vs_p
 delete vs_p;
}

// C++
A_i::opOut(
 CORBA::Float& f,
 FixedLengthStruct& fs,
 VariableLengthStruct*& vs,
 CORBA::Environment&) {
 // To retain the variable length struct:
 VariableLengthStruct* myVs =
 new VariableLengthStruct(*vs);
 ...
}

Memory Management for Parameters

- 108/124 -

In all cases, the client is responsible for releasing the storage associated with the out parameter when
the value is no longer required. This responsibility can be eased by associating the storage with a _var
type, where appropriate, which assumes responsibility for its management.

Return Values
The rules for managing the memory of return values are the same as those for managing the memory
of out parameters, with the exception of fixed-length arrays. A fixed-length array out parameter maps
to a C++ array parameter, whereas a fixed-length array return value maps to a pointer to an array slice.
The server should set the pointer to a valid instance of the array. This cannot be a null pointer. It is the
responsibility of the client to release the storage associated with the return value when the value is no
longer required.

An Example of Applying the Rules for Object References
An important example of the parameter passing rules arises in the case of object references. Consider
the following IDL definitions:

The following implementation of operation I2::op() is incorrect:

If the object referenced by the parameter par does not exist in the server process’s address space
before the call, Orbix creates a proxy for this object within that address space. This object initially has a
reference count of one. At the end of the call to I2::op() , this count is decremented twice—once
because par is an in parameter, and once because it is also a return value. The code therefore tries to
return a reference that is found by attempting to access a proxy that no longer exists—with undefined
results.

A similar error in reference counts results if the object (or its proxy) referenced by the parameter par
already exists in the server process’s address space.

// IDL
interface I1 {
};
interface I2 {
 I1 op(in I1 par);
};

// C++
I1_ptr I2::op(I1_ptr par) {
 return par;
}

Memory Management for Parameters

- 109/124 -

The correct coding of I2::op() is:

ImplementingIDL
This section describes how servers create objects that implement IDL interfaces, and shows how clients
access these objects through IDL interfaces. This section shows how to use and implement CORBA
objects through a detailed description of the banking application introduced in Introduction to CORBA
and Orbix.

Overview of an Example Application
In the BankSimple example, an Orbix server creates a single distributed object that represents a bank.
This object manages other distributed objects that represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. This client then calls operations on
the bank object, instructing the bank to create new accounts for specified customers. The bank object
creates account objects in response to these requests and returns them to the client. The client can
then call operations on these new account objects.

This application design, where one type of distributed object acts as a factory for creating another type
of distributed object, is very common in CORBA.

The source code for the example described in this section is available in the demos\common\banksimple
directory of your Orbix installation.

Overview of the Programming Steps

Define IDL interfaces to your application objects.

Compile the IDL interfaces.

Implement the IDL interfaces with C++ classes.

Write a server program that creates instances of the implementation classes. This involves:

Initializing the ORB.

// C++
I1_ptr I2::op(I1_ptr par) {
 return I1::_duplicate(par);
}

1. 1.

2. 2.

3. 3.

4. 4.

ImplementingIDL

- 110/124 -

Creating initial implementation objects.

Allowing Orbix to receive and process incoming requests from clients.

Write a client program that accesses the server objects. This involves:

Initializing the ORB.

Getting a reference to an object.

Invoking object attributes and operations.

Compile the client and server.

Run the application. This involves:

Running the Orbix daemon process.

Registering the server in the Implementation Repository.

Running the client.

Defining IDL Interfaces
This example uses two IDL interfaces: an interface for the bank object created by the server and an
interface that allows clients to access the account objects created by the bank.

The IDL interfaces are called Bank and Account , defined as follows:

5. 5.

6. 6.

7. 7.

Defining IDL Interfaces

- 111/124 -

The server creates a Bank object that accepts operation calls such as create_account() from clients. The
operation create_account() instructs the Bank object to create a new Account object in the server. The
operation find_account() instructs the Bank object to find an existing Account object.

In this example, all of the objects (both Bank and Account objects) are created in a single server process.
A real system could use several different servers and many server processes.

For details on how to compile your IDL interfaces, refer to Compiling IDL Interfaces.

Implementing IDL Interfaces
This section describes in detail the mechanisms enabling you to define C++ classes to implement IDL
interfaces. To implement an IDL interface, you must provide a C++ class that includes member
functions corresponding to the operations and attributes of the IDL interface. Orbix supports two
mechanisms for relating an implementation class to its IDL interface:

The BOAImpl approach.

The TIE approach.

Most server programmers use one of these approaches exclusively, but you can use both in the same
server. Client programmers do not need to be concerned with which of these mechanisms is used.

// IDL
// In banksimple.idl
module BankSimple {
 typedef float CashAmount;
 interface Account;
 // A factory for bank accounts.
 interface Bank {
 // Create new account with specified name.
 Account create_account(in string name);
 // Find the specified named account.
 Account find_account(in string name);
 };
 interface Account {
 readonly attribute string name;
 readonly attribute CashAmount balance;
 void deposit(in CashAmount amount);
 void withdraw(in CashAmount amount);
 };
 };

• •

• •

Implementing IDL Interfaces

- 112/124 -

The BOAImpl Approach to Implementing Interfaces
For each IDL interface, Orbix generates a C++ class with the same name. Orbix also generates a second
C++ class for each IDL interface, taking the name of the interface with BOAImpl appended. For example,
it generates the class AccountBOAImpl for the IDL interface Account , and the class BankBOAImpl for the IDL
interface Bank . To indicate that a C++ class implements a given IDL interface, that class should inherit
from the corresponding BOAImpl-class.

Each BOAImpl class inherits from a corresponding IDL Compiler-generated C++ class; for example,
AccountBOAImpl inherits from Account . BOAImpl classes inherit from each other in the same way that the
corresponding IDL interfaces do.

The BOAImpl approach is shown in Figure 9 for the Account IDL interface. For simplicity, the fully-scoped
name (BankSimple::Account) is not used.

The Orbix IDL compiler produces the C++ classes Account and AccountBOAImpl . You define a new class,
AccountImpl , that implements the functions defined in the IDL interface. In addition to functions that
correspond to IDL operations and attributes, class AccountImpl can contain user-defined constructors, a
destructor, and private and protected members.

This guide uses the convention that interface A is implemented by class AImpl. It is not necessary to
follow this naming scheme. In any case, some applications might need to implement interface A
several times.

Note

Implementing IDL Interfaces

- 113/124 -

The TIE Approach to Implementing Interfaces
Using the TIE approach, you can implement the IDL operations and attributes in a class that does not
inherit from the BOAImpl class. In this case, you must indicate to Orbix that the class implements a
particular IDL interface by using a C++ macro to tie together your class and the IDL interface.

To use the TIE mechanism, the server programmer indicates that a particular class implements a given
IDL C++ class by calling a DEF_TIE macro, which has the general form:

Each call to this macro defines a TIE class. This class records that a particular IDL C++ class is
implemented by a particular implementation class. Consider the macro call:

This generates a class named TIE_Account(AccountImpl) . Figure 10 shows the TIE approach. For simplicity,
the fully scoped name, BankSimple::Account , is not used.

DEF_TIE macros also work when interfaces are defined in IDL modules. For example, if interface I is
defined in module M , the macros take the following form:

For example, interface Account is defined in module BankSimple and implemented by C++ class
AccountImpl . The macros thus take the following form:

DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation header file (in this case, banksimple_accountimpl.h).

DEF_TIE_*IDL C++ class name* (*implementation class name*)

DEF_TIE_Account(AccountImpl)

DEF_TIE_M_Impl (*implementation class name*)
TIE_M_Impl (*implementation class name*)

• •

Implementing IDL Interfaces

- 114/124 -

TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation file (in this case, banksimple_bankimpl.cxx).

Refer to Using the TIE Approach for more details.

Defining Implementation Classes for IDL Interfaces
This section illustrates both the BOAImpl and TIE approaches. Two implementation classes are required:

You can automatically generate a skeleton version of the class and function definitions for
BankSimple::BankImpl and BankSimple::AccountImpl by specifying the -S switch to the IDL compiler.

The -S switch produces two files. If the IDL definitions are in the file banksimple.idl , the skeleton
definitions are placed in the following files:

You can edit both files to provide a full implementation class. You must add member variables,
constructors, and destructors. Other member functions can be added if required. You can use either the
BOAImpl or the TIE approach to relate the implementation classes to your IDL C++ classes.

Using the BOAImpl Approach
Using this approach, you should indicate that a class implements a specific IDL interface by inheriting
from the corresponding BOAImpl-class generated by the IDL compiler:

• •

BankSimple_BankImpl Implements the Bank interface.

BankSimple_AccountImpl Implements the Account interface.

Note

banksimple_
ih

This is the class header file that defines the class. This file declares the
member functions that you must implement. It can be renamed to banksim
ple_bankimpl.h.

banksimple.
ic

This is the code file. It gives an empty body for each member function and
can be renamed to banksimple_bankimpl.cxx .

Implementing IDL Interfaces

- 115/124 -

// C++
// In file banksimple_accountimpl.h
#define BANKSIMPLE_ACCOUNTIMPL_H_
#include “banksimple.hh”
// The Account implementation class.
class BankSimple_AccountImpl :
 public virtual BankSimple::AccountBOAImpl {
 public:
 // IDL operations
 virtual void deposit
 (BankSimple::CashAmount amount,
 CORBA::Environment&);
 virtual void withdraw
 (BankSimple::CashAmount amount,
 CORBA::Environment&);
 // IDL attributes
 virtual char* name(CORBA::Environment&);
 virtual void name
 (const char* _new_value, CORBA::Environment&);
 virtual BankSimple::CashAmount balance
 (CORBA::Environment&);
 // C++ operations
 BankSimple_AccountImpl
 (const char* name, BankSimple::CashAmount
 balance);
 virtual ~BankSimple_AccountImpl();
 protected:
 CORBA::String_var m_name;
 BankSimple::CashAmount m_balance;
 ...
};
// C++
// In file banksimple_bankimpl.h.
#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>
// The Bank implementation class.
class BankSimple_BankImpl : public virtual BankSimple::BankBOAImpl {
 public:
 // IDL operations.
 virtual BankSimple::Account_ptr
 create_account(const char* name,
 CORBA::Environment&);
 virtual BankSimple::Account_ptr
 find_account(const char* name,
 CORBA::Environment&);
 // C++ operations.

Implementing IDL Interfaces

- 116/124 -

The BOAImpl class is produced only if the -B switch is specified to the IDL compiler.

Classes BankSimple_BankImpl and BankSimple_AccountImpl redefine each of the functions inherited from
their respective BOAImpl classes. They can also add constructors, destructors, member functions and
member variables. Virtual inheritance is not strictly necessary in the code shown; it is used in case C++
multiple inheritance is required later. Any function inherited from the BOAImpl class is virtual because it
is defined as virtual in the BOAImpl class. Therefore, it is not strictly necessary to explicitly mark them as
virtual in an implementation class (for example, BankSimple_AccountImpl).

The accounts managed by a bank are stored in a array with members of type BankSimple::Account_var .

Outline of the Bank Implementation (BOAImpl Approach)
First, in BankSimple_BankImpl::create_account() , you should construct a new BankSimple::Bank object. The
function create_account() corresponds to an IDL operation, and its return value is of type
BankSimple::Account_ptr :

 BankSimple_BankImpl();
 virtual ~BankSimple_BankImpl();
 protected:
 // This bank stores account in an array in memory.
 static const int MAX_ACCOUNTS;
 BankSimple::Account_var* m_accounts;

};

Note

Implementing IDL Interfaces

- 117/124 -

You must call BankSimple::Account::_duplicate() because Orbix calls CORBA::release() on any object
returned as an out / inout parameter or as a return value. The reference count on the new object is
initially one, and subsequently calling CORBA::release() without first calling
BankSimple::Account::_duplicate() results in deletion of the object.

Using the BOAImpl approach, the Bank implementation code is as follows:

// C++
// In file banksimple_bankimpl.cxx.
// Add a new account.
BaBankSimple::Account_ptr
BankSimple_AccountImpl::create_account
 (const char* name, CORBA::Environment&) {
 int i = 0;
 for (; i < MAX_ACCOUNTS& !CORBA::is_nil(m_accounts[i]); ++i)
 { }
 if (i < MAX_ACCOUNTS){
 // Create an account with zero balance.
 m_accounts[i]=new BankSimple_AccountImpl(name, 0.0);
 cout << “create_account: Created with name:” << name << endl;
 return BankSimple::Account::_duplicate(m_accounts[i]);
 }
 else {
 // Cannot create an account, return nil.
 cout << “create_account: failed, no space left!” << endl;
 return BankSimple::Account::_nil();
 }
}

Implementing IDL Interfaces

- 118/124 -

In this example, the possibility of making the server objects persistent is ignored. You can do this by
storing the account and bank data in files or in a database. Refer to the section Loading Objects at
Runtime for more details.

Using the TIE Approach
Using the TIE Approach, an implementation class does not have to inherit from any particular base
class. Instead, a class implements a specific IDL interface by using the DEF_TIE macro.

The DEF_TIE Macro
A version of the DEF_TIE macro is available for each IDL C++ class. The macro takes one parameter—the
name of a C++ class implementing this interface:

// C++
// In file bankSimple_bankImpl.cxx.
// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”
// Maximum number of accounts handled by the bank.
const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;
// BankSimple_BankImpl constructor.
BankSimple_BankImpl::BankSimple_BankImpl():
 m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
 // Make sure all accounts are nil.
 for (int i = 0; i < MAX_ACCOUNTS; ++i) {
 m_accounts[i] = BankSimple::Account::_nil();
 }
 // BankSimple_BankImpl destructor.
 BankSimple_BankImpl::~BankSimple_BankImpl() {
 delete [] m_accounts;
 }
 // Add a new account.
 BankSimple::Account_ptr
 BankSimple_AccountImpl::create_account
 (const char* name, CORBA::Environment&) {
 ...
 }
 // Find a named account
 BankSimple::Account_ptr
 BankSimple_BankImpl::find_account
 (const char* name, CORBA::Environment&) {
 ...
 }
}

Implementing IDL Interfaces

- 119/124 -

This macro call defines a TIE class that indicates that class BankSimple_AccountImpl implements interface
BankSimple::Account.

This macro call defines a TIE class which indicates that class BankSimple_BankImp l implements interface
BankSimple::Bank.

The TIE Class
The TIE_BankSimple_Account(BankSimple_AccountImpl) construct is a preprocessor macro call that expands
to the name of a C++ class representing the relationship between the BankSimple::Account and
BankSimple_AccountImpl classes. This class is defined by the macro call
DEF_TIE_BankSimple_Account(BankSimple_AccountImpl) . Its constructor takes a pointer to a
BankSimple_AccountImpl object as a parameter.

The C++ class generated by calling the macro TIE_BankSimple_Account(BankSimple_AccountImpl) has a name
that is a legal C++ identifier, but you do not need to use its actual name. You should use the macro call
TIE_BankSimple_Account(BankSimple_AccountImpl) when you wish to use this class.

The TIE approach gives a complete separation of the class hierarchies for the IDL Compiler-generated C+
+ classes and the class hierarchies of the C++ classes used to implement the IDL interfaces.

Consider an IDL operation that returns a reference to an Account object; for example,
BankSimple::Bank::create_account() . In the IDL C++ class, this is translated into a function returning an
BankSimple::Account_ptr .

 // C++
 // In file banksimple_accountimpl.h
 class BankSimple_AccountImpl {
 ... // As before.
 };
 // DEF_TIE Macro call.
 DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

 // C++
 // In file banksimple_bankimpl.h
 class BankSimple_BankImpl {
 . . . // As before.
 };
 // DEF_TIE Macro call.
 DEF_TIE_BankSimple_Bank(BankSimple_BankImpl)

Implementing IDL Interfaces

- 120/124 -

However, using the TIE approach, the actual object to which a reference is returned is of type
BankSimple_AccountImpl . This is not a derived class of BankSimple::Account . Therefore, the server should
create an object of type TIE_BankSimple_Account(BankSimple_AccountImpl) . This TIE object references the
BankSimple_AccountImpl object, and a reference to the TIE object should be returned by the function.
This is because the class TIE_BankSimple_Account(BankSimple_AccountImpl) is a derived class of class
BankSimple::Account . All invocations on the TIE object are automatically forwarded by it to the
associated BankSimple_AccountImpl object.

When you code the server you create the BankSimple_AccountImpl object and a TIE object. The server
should then use the TIE object, rather than the BankSimple_AccountImpl object directly. A bank’s linked
list of accounts, for example, should then point to TIE objects, rather than directly pointing to the
BankSimple_AccountImpl objects.

A TIE object automatically delegates all incoming operation calls to its corresponding implementation
object. For example, all invocations on a TIE_Account(BankSimple_AccountImpl) object are automatically
passed to the BankSimple_AccountImpl object to which the TIE object holds a pointer.

By default, calling CORBA::release() on a TIE object with a reference count of one also deletes the
referenced object. The TIE object’s destructor calls the delete operator on the implementation
object pointer it holds. This is usually the desired behavior; however, you can use
CORBA::BOA::propagateTIEdelete() to specify whether the TIE object should be deleted. Refer to the
Orbix Programmer’s Reference C++ Edition for more details.

Using the TIE approach, the bank service header file might look as follows:

Note

Implementing IDL Interfaces

- 121/124 -

Outline of the Bank Implementation (TIE Approach)
An outline of the code for BankSimple_BankImpl::create_account() is shown below:

// C++
// In file banksimple_bankimpl.h
#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>
class BankSimple_BankImpl {
public:
 // IDL-defined operations.
 virtual BankSimple::Account_ptr
 create_account(const char* name, CORBA::Environment&);
 virtual BankSimple::Account_ptr
 find_account(const char* name, CORBA::Environment&);
 // C++ operations.
 BankSimple_BankImpl();
 virtual ~BankSimple_BankImpl();
protected:
 // This bank steored accounts in an array of Account_var.
 static const int MAX_ACCOUNTS;
 BankSimple::Account_var* m_accounts;
};
// Indicate that BankSimple_BankImp implements
// IDL interface BankSimple::Account.
DEF_TIE_BankSimple_Account(BankSimple_BankImpl)

Implementing IDL Interfaces

- 122/124 -

The BankSimple::Account_ptr is initialized to reference a TIE object that points in turn to the new
BankSimple_AccountImpl object.

The object that a TIE object points to must be dynamically allocated using C++ operator new . By
default, when a TIE object is destroyed, it deletes the object that it points to. The object must
therefore be dynamically allocated.

Using the TIE approach, the Bank implementation class code is:

// C++
// In file banksimple_bankimpl.cxx
BankSimple::Account_ptr BankSimple_BankImpl::create_account
 (const char* name, CORBA::Environment&) {
 // Ensure that a valid account name is found.
 int i = 0;
 for (; i < MAX_ACCOUNTS& & CORBA::is_nil(m_accounts[i])
 ++i) {
 ...
 }
 if (i < MAX_ACCOUNTS) {
 // Create an account with zero balance.
 m_accounts[i] =
 new TIE_BankSimple_Account(BankSimple_AccountImpl)
 (new BankSimple_AccountImpl(name, 0.0));
 ...
 }
 else {
 ... // Cannot create account, return nil.
 }
};

Note

Implementing IDL Interfaces

- 123/124 -

// C++
// In file banksimple_bankimpl.cxx
// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_bccountimpl.h”
const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;
// Constructor.
BankSimple_BankImpl::BankSimple_BankImpl():
 m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
 // Make sure all accounts are nil.
 for (int i = 0; i < MAX_ACCOUNTS; ++i) {
 m_accounts[i] = BankSimple::Account::_nil();
 }
}
// Destructor.
BankSimple_BankImpl::~BankSimple_BankImpl() {
 delete [] m_accounts;
}
// Add a new account.
BankSimple::Account_ptr
 BankSimple_AccountImpl::create_account(const char*name,
 CORBA::Enviroment&) {
 int i = 0;
 for (; i < MAX_ACCOUNTS& !CORBA::is_nil(m_accounts[i]);
 ++i)
 { }
 if (i < MAX_ACCOUNTS) {
 m_accounts[i]=
 new TIE_BankSimple_Account(BankSimple_AccountImpl)
 (new BankSimple_AccountImpl(name, 0.0));
 cout << “create_account: Created with name:” << name
 << endl;
 return BankSimple::Account::_duplicate(m_accounts[i]);
 }
 else {
 cout << “create_account: failed, no space left!” << endl;
 return BankSimple::Account::_nil();
 }
}
// Find a named account
BankSimple::Account_ptr
 BankSimple_BankImpl::find_account (const char* name,
 CORBA::Enviroment&) {
 ... // Same as for BOAImpl approach.
 }
};

Implementing IDL Interfaces

- 124/124 -

	Orbix Programmer’s Guide C++ Edition
	V3.3.17

	Preface
	Audience
	Document Conventions

	Getting Started
	Introduction to CORBA and Orbix
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Nature of Objects in CORBA

	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The
	The CORBAfacilities

	How Orbix Implements CORBA
	Orbix Components
	Orbix Architecture
	OrbixNames—The Naming Service
	Security with OrbixSSL

	Developing Applications with Orbix
	Developing a Distributed Application
	Defining IDL Interfaces
	Compiling IDL Interfaces
	Setting Up Configuration for the IDL Compiler
	UNIX
	Windows

	Running the IDL Compiler
	Windows and UNIX

	Output from the IDL Compiler
	The Client Stub Code
	The Object Skeleton Code

	Implementing the IDL Interfaces
	Writing an Orbix Server Application
	Initializing the ORB
	Creating an Implementation Object
	Receiving Client Requests

	Writing an Orbix Client Application
	Initializing the ORB
	CORBA Object References
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations

	Compiling the Client and Server
	Compiling the Client
	Compiling the Server

	Running the Application
	Running the Orbix Daemon
	Windows and UNIX

	Registering the Server
	Windows and UNIX and OpenVMS

	Running the Client
	Windows and UNIX

	Summary of Programming Steps

	Orbix C++ Programming
	Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	Attributes in IDL Interface Definitions
	Operations in IDL Interface Definitions
	Raising Exceptions in IDL Operations
	Invocation Semantics for IDL Operations
	Passing Context Information to IDL Operations

	Inheritance of IDL Interfaces
	The Object Interface Type

	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Complex Types
	Enum
	Struct
	Union
	String
	Sequence
	Arrays
	Fixed

	IDL Pseudo Object Types
	Defining Data Type Names and Constants
	Data Type Names
	Constants

	The CORBA IDL to C++ Mapping
	Overview of the Mapping
	Mapping for Modules and Scoping
	Alternative Mappings for Modules

	Mapping for Interfaces
	Mapping for Attributes
	Mapping for Operations
	Mapping for Exceptions
	Mapping for Contexts

	Mapping for Inheritance of IDL Interfaces
	Widening Object References
	Narrowing Object References

	Object Reference Counts and Nil Object References
	Object Reference Counts
	Nil Object References

	Mapping for IDL Data Types
	Mapping for Basic Types
	Mapping for Complex Types
	Mapping for Enum
	Mapping for Struct
	Fixed Length Structs
	Variable Length structs

	Mapping for Union
	The Discriminant
	Constructors, Destructor and Assignment
	Accessors and Modifiers
	Example Program

	Mapping for String
	Dynamic Allocation of Strings
	Bounds Checking of String Parameters

	General Mapping for Sequences
	Mapping for Unbounded Sequences
	Constructors, Destructor and Assignment
	Sequence Buffer Management: allocbuf() and freebuf()
	Other Functions
	Unbounded Sequences Example

	Mapping for Bounded Sequences
	Bounded Sequence Examples
	Mapping for Fixed
	Streaming Operators
	Arithmetic Operators
	Logical Operators

	Mapping for Array
	Arrays as Out Parameters and Return Values
	Dynamic Allocation of Arrays

	Mapping for Typedef
	Mapping for Constants

	Mapping for Pseudo-Object Types
	Memory Management and _var Types
	Constructors and Destructor
	Assignment Operators
	operator->()

	Memory Management for Parameters
	in Parameters
	inout Parameters
	Object Reference inout Parameters
	String inout Parameters
	Sequence inout Parameters
	Type any inout Parameters
	Other inout Parameters

	out Parameters
	Return Values
	An Example of Applying the Rules for Object References

	ImplementingIDL
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces
	Implementing IDL Interfaces
	The BOAImpl Approach to Implementing Interfaces
	The TIE Approach to Implementing Interfaces
	Defining Implementation Classes for IDL Interfaces
	Using the BOAImpl Approach
	Outline of the Bank Implementation (BOAImpl Approach)
	Using the TIE Approach
	The DEF_TIE Macro
	The TIE Class
	Outline of the Bank Implementation (TIE Approach)

