
Orbix Actional Integration Guide
V6.3.14

Table of Contents

6Preface

6What is covered in this book

6Who should read this book

6Organization of this book

7Related documentation

7Document Conventions

9Orbix–Actional Integration

9Introduction

9Orbix and Actional

10Actional SOA management

10Managed nodes

11Actional server

11Actional agent

12Actional intermediary

12Actional agent interceptor SDK

12Actional SOA management tools

13NGSO mapping

14Further information

14Orbix–Actional Integration Architecture

14Basic Actional architecture

16Actional interceptors

17Actional server manifest

17Orbix–Actional integration architecture

18Orbix interceptors

Table of Contents

- 2/65 -

18Further information

20Configuring Orbix for Actional Integration

20Configuring an Orbix Domain

20Configuring Orbix services for Actional integration

24Configuring Orbix Java Applications

24Update your Actional SDK

25Configuring the Orbix monitoring plug-in

27Running client and server applications

27Specifying endorsed directories

27Sample Orbix configuration

28Configuring Orbix C++ applications

28Setting your environment

29Configuring the Orbix monitoring plug-in

30Sample Orbix configuration

30Monitoring plug-in configuration variables

30plugins:orbmon

31use_msg_fields

32Configuring NGSO

33group

33service

33operation

33Running the enable_actional Script

34Script usage

34Script output

34Examples

35Troubleshooting Orbix

35Ensure the monitoring plug-in is loaded

37Configuring Actional for Orbix Integration

37Prerequisites

37Actional products

37Actional agents

Table of Contents

- 3/65 -

38Further information

38Configuring Actional

38Actional agent configuration

38Actional server configuration

39Creating a managed node

40Configuring a new node

41Provisioning a new node

42Further information

42Troubleshooting Actional

42Setting default polling

42Ensuring events are reported to the Actional Agent

45Further information

46Managing Orbix Applications in Actional

46Monitoring Orbix Applications

46Network view

47Path Explorer

48Statistics details

50Server manifest

51Further information

51Monitoring Orbix Domain Services

51Starting Orbix services

52Monitoring Orbix services

54Further information

54Auditing Orbix Applications

54Actional policy groups

54Viewing audit logs

57Further information

58Glossary

63Notices

63Copyright

63Trademarks

Table of Contents

- 4/65 -

63Examples

63License agreement

64Corporate information

64Contacting Technical Support

64Country and Toll-free telephone number

Table of Contents

- 5/65 -

Preface

What is covered in this book
Orbix supports integration with Aurea Actional® Application Performance Monitoring. This guide
explains how to enable Orbix applications and services to be monitored by Actional SOA management
tools. This guide applies to Orbix applications and services written in both Java and C++.

Who should read this book
This guide is aimed at Orbix system administrators using Actional to monitor SOA environments, Orbix
system architects, and Orbix application developers. System administrators do not require detailed
knowledge of the technology used to create distributed enterprise applications.

Organization of this book
This book contains the following chapter:

Orbix–Actional Integration describes the architecture of the Orbix integration with Actional.

Configuring Orbix for Actional Integration explains how to configure integration between Orbix
applications and services, and Actional.

Configuring Actional for Orbix Integration provides some basic Actional configuration guidelines.

Managing Orbix Applications in Actional shows examples of managing Orbix applications and
services in Actional SOA management tools.

• •

• •

• •

• •

Preface

- 6/65 -

Related documentation
The Orbix documentation also includes the following related guides:

Orbix Administrator’s Guide

Orbix Configuration Reference

Orbix Deployment Guide

Orbix Management User’s Guide

Orbix Management Programmer’s Guide

Document Conventions
This guide uses the following typographical conventions:

• •

• •

• •

• •

• •

Constant
width

Constant width font in normal text represents commands, portions of code
and literal names of items (such as classes, functions, and variables). For
example, constant width text might refer to the itadmin orbname create
command.

Constant width paragraphs represent information displayed on the screen or
code examples. For example the following paragraph displays output from the
itadmin orbname list command:

ifr naming production.test.testmgr production.server

Italic Italic words in normal text represent emphasis and new terms (for example,
location domains).

Code
italic

Italic words or characters in code and commands represent variable values
you must supply; for example, process names in your particular system:

itadmin process create process-name

Related documentation

- 7/65 -

The following keying conventions are observed:

Code bold Code bold font is used to represent values that you must enter at the
command line. This is often used in conjunction with constant width font to
distinguish between command line input and output. For example:

itadmin process list ifr naming my_app

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS or Windows command prompt.

... Horizontal ellipses in format and syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Italicized brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices. Individual items can be
enclosed in {} (braces) in format and syntax descriptions.

Document Conventions

- 8/65 -

Orbix–Actional Integration

Orbix provides support for integration with Actional SOA management products. This chapter explains the
main components and concepts used in this integration.

Introduction
Aurea Actional® Application Performance Monitoring is a SOA management product that provides
operational and business visibility, policy-based security, and control of services and business processes
in a heterogeneous runtime environment. This section explains the main concepts and components
used in the Orbix–Actional integration.

Integration with Actional is not supported by Orbix for Microsoft Windows VC11 or later editions
(neither 32-bit nor 64-bit). For more information on Orbix editions, see the Orbix Installation Guide.

Orbix and Actional
Integration between Orbix and Actional enables Orbix applications to be monitored by Actional SOA
management tools. For example, you can use Actional to perform discovery, monitoring, auditing, and
reporting on Orbix applications. You can also correlate and track all messages through your SOA
network to perform dependency mapping and root cause analysis.

The Orbix–Actional integration is deployed on Orbix systems to enable reporting of management data
back to the Actional server. The data reported back to Actional includes system administration metrics
such as response time, fault location, auditing, and alerts based on policies and rules. The Orbix–
Actional integration can be used with Orbix applications written in both Java and C++.

Note

Orbix–Actional Integration

- 9/65 -

Actional SOA management
The main components in the Actional SOA management system are the Actional server, Actional
agents, and Actional intermediaries.

The Actional server is the central engine that correlates data received from Actional agents and
distributes policies. The Actional agent collects data about service traffic from an application server and
applies policies. The Actional intermediary acts as a proxy that brokers interaction between Web service
applications and systems built on them.

All Actional components are Java applications. The Actional server uses the Jetty application server by
default, while its web console uses JSP and Adobe Flash.

Figure 1 shows a high-level overview of the main Actional components.

Figure 1 High-Level Actional Overview

Managed nodes
A node is defined as a system on the current network. A node with an Actional agent installed is
referred to as an instrumented node or a managed node.

The managed node uses Actional’s interceptor API to send monitoring data to the Actional agent. On
any managed node, one Actional agent and one or more interceptors must be running.

Actional SOA management

- 10/65 -

Actional server
The Actional server is a central management server that manages nodes containing an Actional agent.
The Actional server correlates the data it receives from each of its agents, and distributes policies to
those agents. It enables an administrator to analyze service network data and create system-wide
policies.

The Actional server hosts a database and pings Actional agents to obtain management data at
configured time intervals. It analyzes the management data and displays it in a console—for example,
the Actional Management Server Administration Console. This is a Web application deployed on
Apache Tomcat, which provides runtime management and agent configuration. In addition, any alerts
triggered at the Actional agent are sent immediately to the Actional server.

The default Actional server database is Apache Derby. Other supported databases include:

PostgreSQL

OpenEdge

MSDE

SQL Server

Oracle

DB2

By default, the Actional server uses port 4040 (for example, http://HostName:4040/lgserver/).

Actional agent
An Actional agent is run on each Orbix host that you wish to manage, and is used to provide
instrumentation data back to the Actional server. The Actional agent includes two main components: an
analyzer, and one or more interceptors. The analyser gathers and evaluates data such as records,
statistics, and alerts. The interceptors collect data about service traffic from an application server, and
apply policies to that traffic.

Actional agents are provisioned from the Actional server to establish initial contact and send
configuration to the Actional agent. There is one Actional agent per managed node. By default, the
Actional agent uses port 4041 (for example, http://HostName:4041/lgagent/).

• •

• •

• •

• •

• •

• •

Actional server

- 11/65 -

Actional intermediary
An Actional intermediary is an in-network service broker that includes an integrated Actional agent. It
serves as a proxy for Web service applications, providing features such as security, bridging, and
activity tracking. The Actional intermediary supports application servers such as WebLogic, WebSphere,
JBoss, and Oracle.

Actional agent interceptor SDK
The Actional Agent Interceptor Software Development Kit (SDK) is an Actional-specific API used to
create custom interceptors. These can be used to send management instrumentation data from an
application to the Actional agent.

Actional SOA management tools
In this guide, Actional is the general term used to describe the Actional SOA management system in
which all data is stored and viewed. This simplifies the architecture of Actional for the sake of this
discussion.

Figure 2 shows an example of the Actional Management Server Administration Console. Managed
nodes are displayed as blue boxes, and unmanaged nodes are displayed as gray boxes. The green
arrows indicate the message flow through various nodes. Clicking on each of the nodes shows more in-
depth information regarding the response time, alerts and warnings, and so on.

Figure 2 Actional Management Server Administration Console

Actional intermediary

- 12/65 -

NGSO mapping
When you click and drill down in the Actional Path Explorer view, the organization of the information
displayed is Node–Group–Service–Operation (NGSO). In Orbix, this translates to Host–Module–Interface–
Operation. Table 1 shows the mapping from Actional to Orbix.

Table 1: NGSO Mapping

NGSO mapping shown in the above table is the default mapping. You can change this default mapping
in the application configuration scope in your Orbix configuration. For details on setting the
configuration variables, see Monitoring plug-in configuration variables.

Actional Orbix

Node Host

Group Module

Service Interface

Operation Operation

NGSO mapping

- 13/65 -

Further information
For detailed information on all Actional features, see the Actional product documentation.

Orbix–Actional Integration Architecture
This section shows a basic Actional architecture, simplified for the purposes of this discussion. It
explains how Actional interceptors provide data to the Actional agent, and how the Actional server
manifest is used to correlate the origin and business flow of a request.

It then shows the Orbix–Actional integration architecture, and explains how Orbix plug-ins and Orbix
interceptors are used to configure integration with Actional.

Basic Actional architecture
Figure 3 shows a high-level overview of a basic Actional architecture from the perspective of a
consumer and service provider.

Figure 3 Basic Actional Architecture

Further information

- 14/65 -

In the interaction shown in Figure 3, the Actional interceptors sit in the flow between the application
logic and the consumers and providers of other services. They intercept all inbound and outbound calls,
and feed information about those calls to the Actional agent as asynchronous events.

The Actional agent is responsible for processing the event stream from the interceptors, computing and
storing aggregate statistics, executing policies, and communicating with the Actional server.

The Actional server manifest (LG_Header) is a token that is sent in the transport header of the message
to each participant in a call. This token identifies the origin and business flow of a request. For more
details, see Actional server manifest.

Basic Actional architecture

- 15/65 -

Actional interceptors
Actional interceptors sit in the flow at the edge of an application, intercepting all incoming and
outgoing messages. An Actional interceptor is designed as a lightweight component that imposes
minimal overhead on the application (typically less than 100 microseconds per call).

Figure 4 Actional Interceptors

The interceptor must perform the following tasks to gain the full functionality of the Actional server:

Extract an Actional server manifest (if any) from the incoming request document.

Insert an Actional server manifest into any outgoing request documents.

Transfer the interceptor context along the internal business flow, from the incoming interceptor, to
any related outgoing interceptors.

Send the Actional agent an event for each incoming or outgoing document.

1. 1.

2. 2.

3. 3.

4. 4.

Actional interceptors

- 16/65 -

Actional server manifest
The Actional server sends an Actional server manifest (LG_Header) with a request document to provide
information about the request’s origin and the business flow that the request belongs to.

The Actional server manifest is used by the Actional server to correlate information it receives, from
multiple agents, about interactions between different services. For this reason, the server manifest is
sometimes referred to as a correlation ID.

The consumer and provider of the service must have an agreed mechanism (transport or protocol) for
transferring the manifest. The following is an example LG_Header :

The main components in the server manifest are the Interaction , Locus , Flow , and UpstreamOpID . The
other components are optional.

Orbix–Actional integration architecture
The Orbix–Actional integration is built using the extensible Orbix plug-in architecture. This means that
Orbix–Actional integration can be enabled by adding a monitoring plug-in to your Orbix configuration.
No code changes are necessary for Orbix client and server applications.

Figure 5 shows an overview of the Orbix–Actional integration architecture from an Orbix client-server
perspective. This builds on the architecture shown in Figure 3, with the addition of Orbix monitoring
and GIOP plug-ins. In Figure 5, the CORBA GIOP message also includes the LG_Header in a GIOP service
context. A GIOP service context is a general mechanism for including out-of-band data in a GIOP
request or reply message. Service contexts in GIOP are analogous to headers in other protocols such as
HTTP.

Interaction=CgJkcB+YlN0ZyBABdysAAA==;
Locus=ApM1eYBGBAR4LFJ1VvHOdg==;
Flow=CgJkcB+YlN0ZyBABdSsAAA==;
UpstreamOpID=FtfEJXM1nqJ0C995IBMkEQ==;
Path=7Qg2aVWCdwmP8gGebyLWYA==;
name=E_10-2-100-112-e0c7c3-110c80b4df0--7fdd-INITIATED;
CPTime=1171591682345;
FlowFields=MF1:1254;MF2:1589;

Actional server manifest

- 17/65 -

Orbix interceptors
In the Orbix–Actional integration, Orbix interceptors for Actional must also be added to your Orbix
client and server binding lists. Orbix interceptors are objects that ORB services and transports
implement to process operation invocations. Orbix interceptors are arranged in a chain, with each
interceptor caching a reference to the next interceptor in the chain.

The Orbix monitoring plug-in is implemented as a request-level interceptor. This receives a request in the
form of a request object from the preceding interceptor in the chain. This enables high-level request
processing to be performed. In CORBA, a binding is a set of interceptors used to process requests.

Further information
For detailed information on Actional architecture and components, see the Actional product
documentation.

For details on how to configure the Orbix plug-in and interceptors for Orbix–Actional integration, see
Configuring Actional for Orbix Integration.

For detailed information on Orbix interceptors, see:

Orbix Configuration Reference

Orbix C++ Programmer’s Guide

Orbix Java Programmer’s Guide

Figure 5 Orbix–Actional Integration Architecture

• •

• •

• •

Orbix interceptors

- 18/65 -

Further information

- 19/65 -

Configuring Orbix for Actional Integration

This chapter explains the steps required to configure Orbix for integration with Actional SOA management
products.

Configuring an Orbix Domain
This section explains how to use the Orbix Configuration tool to enable an Orbix configuration domain
for Actional integration. It shows how to configure and deploy your Orbix domain services with the
Orbix configuration settings required for monitoring by Actional. For example, Orbix domain services
include the locator daemon, configuration repository, naming service and so on.

Configuring Orbix services for Actional integration
To configure Orbix domain services for Actional integration, perform the following steps:

Start the Orbix Configuration tool using the following command:

Figure 6 Creating a Domain in Expert Mode

1. 1.

OrbixInstallDir\asp\6.3\bin\itconfigure

Configuring Orbix for Actional Integration

- 20/65 -

Click Cancel or press the Esc key to close the Orbix Configuration Welcome dialog box.

Select File>New>Expert to create a domain in Expert Mode (shown in Figure 6).

Specify the Domain Details (for example, whether it is configuration file-based or configuration
repository-based).

Click Next to specify any custom storage locations.

Click Next to specify the required Orbix domain services.

Select the services you require and click the Settings button at the bottom of the screen (shown in
Figure 7)

Figure 7 Selecting Services

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Configuring Orbix services for Actional integration

- 21/65 -

In the Domain Defaults screen, in the Monitoring panel, select the Instrumented check box (shown
in Figure 8). This will add the required Orbix configuration settings to the Orbix services that you
selected.

Figure 8 Specifying Actional Monitoring

8. 8.

Configuring Orbix services for Actional integration

- 22/65 -

If your Actional Uplink.cfg configuration file is not located in its default path, specify its directory
path in the Uplink Dir text box. The path specified must match that specified for your Actional agent.
The default values are:

Click Apply.

Click Close.

Click Next to view your selections.

Click Next to deploy your domain.

9. 9.

UNIX /var/opt/actional/LG.Interceptor

Windows %systemroot%\system32\LG.Interceptor

10. 10.

11. 11.

12. 12.

13. 13.

Configuring Orbix services for Actional integration

- 23/65 -

Click Finish.

Using the command line
You can also use the enable_actional.tcl script to automatically add the configuration necessary for
Actional integration to the configuration scope of any Orbix service. For more details, see Running the
enable_actional Script.

Further information
For more detailed information on using the Orbix Configuration tool, see the Orbix Deployment Guide.

Configuring Orbix Java Applications
This section explains how to configure Orbix Java applications for integration with Actional. It shows
some examples from the Orbix Actional integration demo:

Update your Actional SDK
You must first update your Actional SDK JAR file as follows:

In the Actional Agent Administration Console, select Getting Started>Interceptor SDK (see Figure
9), and download the Windows (.zip) or UNIX (.tar) file. This includes the actional-sdk.jar ,
documentation, and samples.

Replace the existing actional-sdk.jar in the following location with the version that you downloaded:

Figure 9 Actional Agent Administration Console

14. 14.

OrbixInstallDir/asp/6.3/demos/corba/orb/actional_demo

1. 1.

2. 2.

OrbixInstallDir/lib/platform/orbmon/1.3

Configuring Orbix Java Applications

- 24/65 -

http://communities.progress.com/pcom/docs/DOC-105215

Configuring the Orbix monitoring plug-in
You can configure the monitoring plug-in by editing the settings in your application configuration
scope in your Orbix configuration file. This includes the following steps:

Specify the monitoring plug-in

Add monitoring handlers to the interceptor chain

Specify the monitoring log filter

Alternatively, you can use the enable_actional.tcl script to add all the configuration necessary for
Actional integration to an Orbix configuration scope (see Running the enable_actional Script).

Specifying the plug-in name

To set the monitoring plug-in name, add the following settings:

• •

• •

• •

Note

Configuring the Orbix monitoring plug-in

- 25/65 -

Adding handlers to the interceptor chain

You must also specify monitoring handlers to the Orbix interceptor binding lists, on both the client side
and server side. For example:

For more details on configuring Orbix binding lists and interceptors, see the .

Specifying the monitoring filter

You can specify the monitoring log filter as follows:

For more details, see Troubleshooting Orbix.

When you run the Orbix Configuration GUI tool (itconfigure command), all the configuration
necessary for the actional_demo is added to your configuration file by default. If you select the
Expert option, you must select the Demos component.

Specify the monitoring class name.
plugins:orbmon:ClassName = "com.iona.corba.plugin.monitoring.MRIPlugIn";
Load the monitoring plug-in:
orb_plugins = ["local_log_stream", "orbmon", "iiop_profile", "giop", "iiop"];

Add the client-side handlers to the interceptors chain.
binding:client_binding_list = ["POA_Coloc", "ORBMON+GIOP+IIOP", "GIOP+IIOP"];
Add the server-side handlers to the interceptors chain.
binding:server_binding_list = ["ORBMON", ""];

event_log:filters = ["IT_MONITORING=*"];

Note

Configuring the Orbix monitoring plug-in

- 26/65 -

Running client and server applications
No changes are necessary when running your Orbix Java client and server applications if the Actional
Uplink.cfg configuration file is located in its default path:

The Uplink.cfg file is responsible for communication between the Actional interceptors and the
analyzer in the Actional agent.

If the Uplink.cfg is not located in its default path, the -Dcom.actional.lg.interceptor.config system
property must be to be added the Java commands for both the client and the server. For example:

Specifying endorsed directories
If you are using JDK 1.4.x, you must also specify -Djava.endorsed.dirs system property on the Java
command line as follows:

Sample Orbix configuration
The following sample configuration shows the settings required for Java integration with Actional in an
example application configuration scope:

UNIX /var/opt/actional/LG.Interceptor

Windows %systemroot%\system32\LG.Interceptor

java -Dcom.actional.lg.interceptor.config=Path ...

Windows -Djava.endorsed.dirs="IT_PRODUCT_DIR\\lib\\art\\omg\\5"

UNIX -Djava.endorsed.dirs=IT_PRODUCT_DIR/lib/art/omg/5

Running client and server applications

- 27/65 -

Configuring Orbix C++ applications
This section explains how to configure Orbix C++ application for integration with Actional. It shows
some examples from the Orbix Actional integration demo:

Setting your environment
No changes are necessary if the Actional Uplink.cfg configuration file is located in its default path:

The Uplink.cfg file is responsible for communication between the Actional interceptors and the
analyzer in the Actional agent.

If the Uplink.cfg is not located in its default path, you must specify the path to this file as follows:

my_app
{
plugins:orbmon:ClassName = "com.iona.corba.plugin.monitoring.MRIPlugIn";
orb_plugins = ["local_log_stream", "orbmon", "iiop_profile", "giop", "iiop"];
binding:client_binding_list = ["POA_Coloc", "ORBMON+GIOP+IIOP", "GIOP+IIOP"];
binding:server_binding_list = ["ORBMON", ""];
event_log:filters = ["IT_MONITORING=*"];
};

OrbixInstallDir/asp/6.3/demos/corba/orb/actional_demo

UNIX /var/opt/actional/LG.Interceptor

Windows %systemroot%\system32\LG.Interceptor

Configuring Orbix C++ applications

- 28/65 -

Configuring the Orbix monitoring plug-in
You can configure the monitoring plug-in by editing the settings in your application configuration
scope in your Orbix configuration file. This includes the following steps:

Specify the monitoring plug-in

Add the monitoring handlers to the interceptor chain

Specify the monitoring log filter

Alternatively, you can use the enable_actional.tcl script to add all the configuration necessary for
Actional integration to an Orbix configuration scope (see Running the enable_actional Script).

Specifying the plug-in name

To set the monitoring plug-in name, add the following settings:

Adding handlers to the interceptor chain

You must also specify monitoring handlers to the Orbix interceptor binding lists, on both the client side
and server side. For example:

For more details on configuring Orbix binding lists and interceptors, see the Orbix Configuration
Reference.

UNIX export LG_INTERCEPTORCONFIG=PathToFile

Windows set LG_INTERCEPTORCONFIG=PathToFile

• •

• •

• •

Note

Specify the monitoring library.
plugins:orbmon:shlib_name = "it_orb_monitoring";
Load the monitoring plug-in.
orb_plugins = ["local_log_stream", "orbmon", "iiop_profile", "giop", "iiop"];

Add the client-side handlers to the interceptors chain.
binding:client_binding_list = ["POA_Coloc", "ORBMON+GIOP+IIOP", "GIOP+IIOP"];
Add the server-side handlers to the interceptors chain.
binding:server_binding_list = ["ORBMON", ""];

Configuring the Orbix monitoring plug-in

- 29/65 -

Specifying the monitoring filter

You can specify the monitoring log filter as follows:

For more details, see Troubleshooting Orbix.

When you run the Orbix Configuration GUI tool (itconfigure command), all the configuration
necessary for the actional_demo is added to your configuration file by default. If you select the
Expert option, you must select the Demos component.

Sample Orbix configuration
The following sample configuration shows some example settings in a my_app configuration scope:

Monitoring plug-in configuration variables

plugins:orbmon
The plugins:orbmon namespace contains the following variables that you can set for C++ and Java
applications:

use_msg_fields

group

service

event_log:filters = ["IT_MONITORING=*"];

Note

my_app {
plugins:orbmon:shlib_name = "it_orb_monitoring";
orb_plugins = ["local_log_stream", "orbmon", "iiop_profile", "giop", "iiop"];
binding:client_binding_list = ["POA_Coloc", "ORBMON+GIOP+IIOP", "GIOP+IIOP"];
binding:server_binding_list = ["ORBMON", ""];
event_log:filters = ["IT_MONITORING=*"];
};

• •

• •

• •

Sample Orbix configuration

- 30/65 -

operation

use_msg_fields accepts boolean value and group , service , and operation accept string value.

use_msg_fields
use_msg_fields specifies whether message field names with their corresponding values are reported to
the Actional agent.

You can view these message fields in the Actional Management Server when they are added or selected
at "Audit Message Fields in a Request or Reply" in a policy rule.The message fields along with their
values should appear in the audit log details.

In the Orbix configuration, enabling message fields for reporting ,by default, is set to false:

When this variable is set to true, the following message fields and their corresponding values are
reported:

Table 2: MSG Fields reporting

• •

plugins:orbmon:use_msg_fields = "true"

MSG Field Server side Client side Java C++

ORBID ü ü ü ü

ORBNAME ü ü ü ü

SERVERPORT ü ü ü ü

CLIENTPORT ü ü ü

SERVERTID ü ü ü

SERVERPID ü ü

CLIENTPID ü ü

use_msg_fields

- 31/65 -

Configuring NGSO
You can change the default NGSO mapping by setting variables for group, service, and operation
individually to override the default NGSO mappings. See NGSO mapping.

The following are the configuration variables that you need to set to change the default NGSO
mappings for the particular field of the GSO:

plugins:orbmon:group

plugins:orbmon:service

plugins:orbmon:operation

If no value is set for the configuration variable, the NGSO mapping defaults back to the original
mapping.

The following is the list of substitutes that you can use within the variable's string and these substitutes
are replaced with their corresponding values on the fly during an interceptor invocation:

Table 3: Substitutes used in the variable strings

MSG Field Server side Client side Java C++

CLIENTTID ü ü ü

• •

• •

• •

Note

Substitute Definition

%MODULE% The module defined in IDL

%INTERFACE% The interface defined in IDL

%OPERATION% The operation name defined in IDL

%ORBNAME% The unique name that identifies the ORB.

%ORBID% The unique ID of the ORB

%SERVERPORT% The IP port on which the server is connected to the client.

Configuring NGSO

- 32/65 -

The resulting string is used for group, service or operation. The variable's string can contain any
characters except "%" as the character is used as delimiter.

group
group specifies the value displayed for Group in the NGSO mapping. For example,

service
service specifies the value displayed for Services in the NGSO mapping. For example,

operation
operation specifies the value displayed for Operation in the NGSO mapping. For example,

Running the enable_actional Script
This section explains how to use the enable_actional.tcl script to automatically add the configuration
for Actional integration to an Orbix configuration scope. This script can be used to instrument an Orbix
C++ or Java application, or an Orbix domain service (for example, locator daemon, naming service, and
so on).

Substitute Definition

%CLIENTPORT% The IP port on which the client is connected to the server.

plugins:orbmon:group = "%MODULE% - %ORBNAME%";

plugins:orbmon:service = "%INTERFACE% - %ORBID%";

plugins:orbmon:operation = "%SERVERPORT%, %CLIENTPORT% ->IDL:%MODULE%/
%INTERFACE%:1.0";

group

- 33/65 -

Script usage
The enable_actional.tcl script is located in the following directory:

This script has the following syntax:

You must supply the Orbix configuration scope to be instrumented. This script does not apply to nested
configuration scopes.

Script output
When you run the enable_actional.tcl script, it adds the monitoring plug-in (orbmon) to the following
configuration variables in the specified scope:

orb_plugins

binding:server_binding_list

binding:client_binding_list

It also adds the necessary C++ and Java libraries to the global scope, if not present:

plugins:orbmon:shlib_name

plugins:orbmon:ClassName

Examples
The following are some example commands

itadmin enable_actional.tcl my_c++_app

itadmin enable_actional.tcl my_java_app

itadmin enable_actional.tcl iona_services.locator.MyHost

itadmin enable_actional.tcl iona_services.node_daemon . MyHost

The following is an example of the configuration settings that are added when the script is run:

OrbixInstallDir\asp\6.3\bin\enable_actional.tcl

itadmin enable_actional.tcl *ScopeToBeInstumented*

• •

• •

• •

• •

• •

• •

• •

• •

• •

Script usage

- 34/65 -

Troubleshooting Orbix
This section provides some tips to help troubleshoot your Orbix integration with Actional.

Ensure the monitoring plug-in is loaded
To verify that the Orbix monitoring plug-in is loaded and participating in the Orbix interceptor chain,
you can enable logging by adding IT_MONITORING filter to the event log. For example:

When logging has been enabled for the monitoring plug-in, logging statements for IT_MONITORING
should appear in your log files or on screen. This verifies that the monitoring plug-in is correctly loaded,
and that and calls are going through the Orbix interceptors.

Java example

The following are some example logging statements for Orbix Java client and server applications:

In addition, when the actional-sdk.jar is used, it prints the following logging statement to stderr :

...
plugins:orbmon:shlib_name = "it_orb_monitoring";
plugins:orbmon:ClassName = "com.iona.corba.plugin.monitoring.MRIPlugIn";
...
my_app {
orb_plugins = ["orbmon", "local_log_stream", "iiop_profile", "giop", "iiop"];
binding:server_binding_list = ["ORBMON", "OTS", ""];
binding:client_binding_list = ["ORBMON+GIOP+IIOP", "POA_Coloc", "GIOP+IIOP"];
} ;

event_log:filters = ["IT_MONITORING=*"];

13:30:43 11/05/2009 [_it_orb_id_1@zajonzd690/10.2.4.13] (IT_MONITORING:203) I
- Client Interaction begin
13:30:43 11/05/2009 [_it_orb_id_1@zajonzd690/10.2.4.13] (IT_MONITORING:203) I
- Server Interaction begin

Troubleshooting Orbix

- 35/65 -

C++ example

The following are some example logging statements for Orbix C++ client and server applications:

2009-11-05 13:30:43.070+0000 Actional logging to System.err

Thu, 05 Nov 2009 13:38:32.0000000 [ZAJONZD690:4584] (IT_MONITORING:4) I -
ServerInteraction url: Simple/SimpleObject opname: call_me self: 10.2.4.13
peer: 10.2.4.13
Thu, 05 Nov 2009 13:38:32.0000000 [ZAJONZD690:5688] (IT_MONITORING:4) I -
ClientInteraction url: Simple/SimpleObject opname: call_me peer: 10.2.4.13

Ensure the monitoring plug-in is loaded

- 36/65 -

Configuring Actional for Orbix Integration

This chapter gives some basic guidelines on setting up Actional to run the Orbix Actional integration demo.

Prerequisites
This section describes prerequisites for integration between Actional SOA management products and
Orbix.

Actional products
The following Actional products should be installed:

Actional Management Server 8.0 (Actional server)

Actional Flex Point 8.0 (Actional agent/intermediary)

Alternatively, the following Actional products can be installed separately:

Actional Point of Operational Visibility 8.0 (Actional agent)

Actional Client Security Enforcement 8.0 (Actional intermediary)

Actional agents
You must ensure that Actional agents have been set up on each Orbix host node that you wish to
manage. The provisioning of Actional agents is performed using the Actional server. For some basic
details, see Configuring Actional for Orbix Integration.

For full details on how to set up Actional agents on managed nodes, see the Actional product
documentation.

• •

• •

• •

• •

Configuring Actional for Orbix Integration

- 37/65 -

Further information
For information on installing Actional products, and the full range of platform and database versions
supported by Actional, see the Actional product documentation.

This Orbix integration with Actional supports the full range of operating systems and compilers
supported by Orbix. For more details, see the Orbix Installation Guide.

Configuring Actional
This section provides some basic configuration guidelines on Actional agent and server configuration.
For full details, see the Actional product documentation.

This basic configuration helps to set up the Orbix actional_demo. For information on how to run this
demo, see the README text files in the following directory:

Actional agent configuration
No specific Actional agent configuration settings are required for integration with Orbix. For example,
for the purposes of the Orbix–Actional integration demos, the Actional agent can be started with the
default configuration settings.

Actional server configuration
The following sample configuration steps describe how to set up the Actional server to run an simple
Orbix–Actional demo:

Install the Actional server with typical installation options, and select the Apache Derby database.

The Apache Derby database is provided for demo purposes only, and is not recommended for a
production environment.

Specify the following URL in your browser:

http://localhost:4040/lgserver

OrbixInstallDir/asp/6.3/demos/corba/orb/actional_demo

1. 1.

Note

2. 2.

Further information

- 38/65 -

http://communities.progress.com/pcom/docs/DOC-105215

If this is a new installation click Start, and follow the new Actional server setup steps.

Otherwise, if the Actional server is already installed, perform the following steps:

i. In the Actional console Web interface, select the Configure radio button in the top left of the
screen.

ii. Select the Platform tab. This displays the general configuration settings, as shown in Figure 10.

Figure 10 Actional Server Configuration Settings

Creating a managed node
To create a managed node for a simple Orbix demo, perform the following steps:

In the Actional Configure view menu bar, open the Network tab. This displays the Network Nodes.

Select Add. This displays Node Creation / Managing Agents.

Click Managed Node.

3. 3.

1. 1.

2. 2.

3. 3.

Creating a managed node

- 39/65 -

Configuring a new node
To configure a managed node for the demo, perform the following steps in the wizard:

Step 1: New Node - Identification

Specify the Name as agent1 .

Specify the Display icon as Auto Discover .

Click Next.

Step 2: New Node - Management

Specify the Transport as HTTP/S .

Supply your Actional agent user name and password.

Ensure that Override Agent Database is checked.

Click Next.

Step 3: New Node - Agents

Specify the following URL:

http://HostName:4041/lgagent

You can specify a host name or an IP address in this URL.

Click Add. The agent URL is added.

Click Next.

Step 4: New Node - Endpoints

For Endpoints, add the hostname, fully qualified hostname, or IP address.

Click Next.

Step 5: New Node - Filters

Do not specify any filters for the demo.

Click Next.

Step 6: New Node - Trust Zone

Do not specify a trust zone for the demo.

Click Finish

1. 1.

2. 2.

3. 3.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

1. 1.

2. 2.

1. 1.

2. 2.

1. 1.

2. 2.

Configuring a new node

- 40/65 -

The newly created managed node now needs to be provisioned.

Provisioning a new node
To provision the new node to bring it under management, perform the following steps:

Select the Configure radio button at the top left of the screen.

Select the Deployment tab from the Configure menu bar.

The Provisioning page is displayed, and agent1 is listed as not provisioned.

Select the agent1 check box.

Click Provision. This displays a message when complete: Successfully provisioned .

Click the Manage radio button at the top left of the screen. You should see agent1 added to the
Network view as shown in Figure 11.

Figure 11 Actional Server Provisioned Node

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Provisioning a new node

- 41/65 -

Further information
For more details on setting up and running Actional SOA management tools, see the Actional product
documentation.

Troubleshooting Actional
This section provides some tips to help troubleshoot your Actional integration with Orbix.

Setting default polling
For demonstration purposes, to update the display in your Actional server console more frequently,
you can set the default polling to a shorter time span as follows:

Select the Configure radio button at the top left of the screen.

Select the Platform tab from the Configure menu bar.

In Statistics Gathering on the right, select EDIT.

Set the Server Collection Interval to 1 minute by using the drop down list.

Set the Policy Evaluation Interval to 15 seconds.

These settings are for demonstration purposes only, and may not be suitable for a production
environment.

Ensuring events are reported to the Actional Agent
To ensure that Orbix monitoring events are being reported to your Actional agent, perform the
following steps:

Ensure your Actional agent is running, and added as a managed node in your Actional server.

Verify that the agent generated the Uplink.cfg file in the directory specified during installation. If this
file was not specified during the installation, it should be in the following default path (which should
have write permission):

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Note

1. 1.

2. 2.

Further information

- 42/65 -

Open your Actional agent console and login:

http://AgentHostName:Port/lgagent/

Specify the following URL to display the Options page shown in Figure 12:

http://AgentHostName:Port/lgagent/admin/options.js

For Audit agent events, Click On.

Click Apply.

Figure 12 Actional Agent Options

These settings are not persistent, and are reset when the Actional agent is restarted.

Viewing agent events

UNIX /var/opt/actional/LG.Interceptor

Windows %systemroot%\system32\LG.Interceptor

3. 3.

4. 4.

5. 5.

6. 6.

Note

Ensuring events are reported to the Actional Agent

- 43/65 -

When Audit agent events is turned on, all external events coming from the Orbix monitoring plug-in
can be reviewed in the Actional agent Event Logs, shown in Figure 13.

Figure 13 Actional Agent Event Logs

Figure 13 shows INCOMING , OUTGOING , REQUEST , and REPLY events reported from the monitoring plug-in. If
these events are not reported, the path for the uplink.cfg may be incorrect, and the monitoring plug-in
can not find the agent.

C++ applications

For C++ applications, verify that the LG_INTERCEPTORCONFIG environment variable is set correctly, and
points to the directory where the agent has written the uplink.cfg file.

Java applications

For Java applications, verify that the com.actional.lg.interceptor.config property is passed on to the
application correctly, and points to the directory where the agent has written the uplink.cfg file. For
example:

When incoming monitoring events are arriving at the agent, and the agent is configured correctly, you
should see the calls displayed in the Actional server console Network view, as shown in Managing
Orbix Applications in Actional.

java -Dcom.actional.lg.interceptor.config=%SystemRoot%
\system32\LG.Interceptor -classpath .\java\classes;"%CLASSPATH%"
actional_demo.Server -ORBname demos.actional_demo

Ensuring events are reported to the Actional Agent

- 44/65 -

Further information
For any problems with Actional agent configuration, please refer to the Actional product
documentation.

Further information

- 45/65 -

Managing Orbix Applications in Actional

This chapter shows examples of managing a simple Orbix application and Orbix domain services in Actional
SOA management tools.

Monitoring Orbix Applications
When your Orbix applications have been configured for integration with Actional, they can be
monitored using the Actional SOA management tools. No code changes are required for monitoring of
Orbix applications.

For example, when you run the simple Orbix actional_demo , the Actional Management Server
Administration Console displays the managed node that the demo is running on. Invocations are
displayed as arrows flowing to and from managed components.

The Orbix actional_demo illustrates the simple use of the ORB monitoring plug-in to report calls made
between Orbix clients and servers to Actional. This demo is similar to demos/corba/orb/simple , and shows
how to configure visibility of your application in Actional. For details on how to run this demo, see the
README text files in the following directory:

Network view
The Actional network view displays the traffic between various components in your network
environment. These include nodes, packages, services and operations.

Figure 14 shows the running Orbix actional_demo displayed in the Network tab of the Actional
Management Server Administration Console. In this simple demo, the Network tab displays the
Actional agent on the Orbix managed node that the demo is running on. This agent reports the
monitoring data back to the Actional server. The single invocation is displayed as a green arrow flowing
from the node and back to itself. In more complex examples with multiple nodes, the arrows flow
between nodes.

Figure 14 Actional Server Network View

OrbixInstallDir/asp/6.3/demos/corba/orb/actional_demo

Managing Orbix Applications in Actional

- 46/65 -

By default, the Network view shows traffic between nodes. There is only one node in this case. You can
also select to show traffic between packages in the top left of the screen. Figure 15 shows the traffic
between the Orbix client and server packages.

Figure 15 Traffic Between Packages

Path Explorer
Figure 16 shows the Orbix actional_demo displayed in the Path Explorer view of the Actional
Management Server Administration Console.

To view this screen, double click on the managed node shown in Figure 14. Alternatively, click the
Display Path Explorer button at the top right of the Network view.

Figure 16 Actional Server Path Explorer

Path Explorer

- 47/65 -

The Path Explorer view displays the relationships between different components in more detail. For
example, you can view the call chain between services and consumers. Summary statistics are also
displayed for the selected component.

Statistics details
The Statistics Details pane on the right displays statistics gathered by the selected component. These
include the number of incoming and outgoing calls, call time, call size, and so on. Alerts, faults and
violations are also displayed.

For example, Figure 17 shows the Statistics Details displayed on the right when the call_me()
operation is selected in the Path Explorer.

Figure 17 Actional Server Statistics Details

Statistics details

- 48/65 -

Double clicking on a particular statistic in this view (for example, Call Size) displays a summary chart.
For example, Figure 18 shows a Call Time summary chart for the consumer.

Figure 18 Actional Server Statistics Chart

Statistics details

- 49/65 -

Server manifest
The Actional server manifest (LG_Header) is a unique ID used by the Actional server to correlate
information it receives from agents about interactions between different applications. For example,
when you run theclient application in the Orbix actional_demo, the following LG_Header is output on the
command line:

For more details, see Actional server manifest.

Interaction=CgIEAUD6LU2sLiQBBwAAAA==;
Locus=4/LcwgqvldfxotEoegsSGg==;
Flow=CgIEAUD6LU2sLiQBBgAAAA==;
UpstreamOpID=xPnAfuwlTEV7QGYoGRBgYA==;
CallerAddress=10.2.4.1;

Server manifest

- 50/65 -

Further information
For detailed information on using Actional SOA management tools, see the Actional product
documentation.

Monitoring Orbix Domain Services
Orbix configuration domain services can be integrated with Actional automatically using the Orbix
Configuration tool. These include services such as the Orbix configuration repository, locator daemon,
node daemon, and so on. No manual configuration updates are required. For more details, see
Configuring an Orbix Domain

This section shows examples of monitoring Orbix domain services in Actional SOA management tools.

Starting Orbix services
To start your Orbix configuration domain services, perform the following steps:

Set your Orbix domain environment, for example:

You must have configured your domain to be monitored by Actional (see Configuring an Orbix
Domain).

Start your domain services, for example:

1. 1.

c:\orbix\etc\bin>actional-cfr-domain_env.bat
Setting environment for domain actional-cfr-domain

2. 2.

Further information

- 51/65 -

Monitoring Orbix services
Figure 19 shows the traffic between packages for the Orbix configuration domain services. The services
displayed are the node daemon, configuration repository, and locator daemon.

Figure 19 Traffic Between Domain Services Packages

Figure 20 shows the running Orbix domain services displayed in the Path Explorer view.

Figure 20 Domain Services in Path Explorer

c:\orbix\etc\bin>start_actional-cfr-domain_services.bat
Orbix services logging to: C:\orbix\var\actional-cfr-domain\logs
Starting iona_services.config_rep.Hostname
Starting iona_services.locator.Hostname
Starting iona_services.node_daemon.Hostname
Finished.

Monitoring Orbix services

- 52/65 -

Figure 21 shows the call displayed for the node daemon ping_with_name() operation:

Figure 21 Node Daemon Operation

Monitoring Orbix services

- 53/65 -

Further information
For detailed information on using Actional SOA management tools, see the Actional product
documentation.

Auditing Orbix Applications
This section shows some simple examples of auditing the Orbix actional_demo and Orbix domain
services.

Actional policy groups
Policy groups are used by Actional server to apply a set of policies and rules to managed items on your
network. Policies and rules can be used to raise alerts on certain failure reasons. For example, when an
Orbix operation takes too long to return, or when a specified IDL exception or fault is raised.

Figure 22 shows some example policy groups that have be defined in the Policies view.

Figure 22 Actional Policy Groups

Viewing audit logs
When you have defined policies for your network, you can use them to audit and monitor alerts on
certain failure reasons (for example, when a specified IDL exception or fault is raised).

Figure 23 shows some example audit logs for the Orbix actional_demo in the Logs view.

Figure 23 Actional Demo Audit Logs

Further information

- 54/65 -

Figure 24 shows an example audit log record displayed when clicking an entry for the Orbix
actional_demo in Figure 23.

Figure 24 Actional Demo Audit Log Record

The Interaction ID displayed at the top of the screen is used by the Actional server to correlate
information it receives, from multiple agents, about interactions between different services. For more
details, see Actional server manifest.

Viewing audit logs

- 55/65 -

Figure 25 shows some example audit logs for Orbix configuration domain services in the Logs view. The
Orbix service displayed in this example is the Orbix node daemon.

Figure 25 Domain Services Audit Logs

Figure 26 shows an example audit log record displayed on clicking an entry for the Orbix node daemon
in Figure 25.

Figure 26 Node Daemon Log Record

Viewing audit logs

- 56/65 -

Further information
For detailed information on using Actional SOA management tools, see the Actional product
documentation.

Further information

- 57/65 -

Glossary

A

Actional agent

Run on each host that you wish to manage, and used to provide instrumentation data back to the Actional server. It includes two
main components: an analyzer, and one or more interceptors. The analyser gathers and evaluates data such as records, statistics,
and alerts. The interceptors collect data about service traffic from an application server, and apply policies to that traffic.

Actional server

A central management server that manages nodes containing an Actional agent. The Actional server correlates the data it receives
from each of its agents, and distributes policies to those agents. It enables an administrator to analyze service network data and
create system-wide policies.

Actional server manifest

A token sent by the Actional server sends with a request document to provide information about the request’s origin and the
business flow that the request belongs to. The Actional server manifest (LG_Header) is used by the Actional server to correlate
information it receives, from multiple agents, about interactions between different services. For this reason, the server manifest is
sometimes referred to as a correlation ID.

administration

All aspects of installing, configuring, deploying, monitoring, and managing a system.

ART

Adaptive Runtime Technology. A modular, distributed object architecture that supports dynamic deployment and configuration of
services and application code. ART provides the foundation for Orbix and Artix software products.

C

CFR

See configuration repository.

client

An application (process) that typically runs on a desktop and requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a program that requests services from CORBA objects.

configuration

A specific arrangement of system elements and settings.

configuration domain

Contains all the configuration information that Orbix ORBs, services and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior. This information consists of configuration variables and their
values. Configuration domain data can be implemented and maintained in a centralized Orbix configuration repository or as a set of
files distributed among domain hosts. Configuration domains enable you to organize ORBs into manageable groups, bringing
scalability and ease-of-use to large environments. See also configuration file and configuration repository.

Glossary

- 58/65 -

configuration file

A file that contains configuration information for Orbix components within a specific configuration domain. See also configuration
domain.

configuration repository

A centralized store of configuration information for all Orbix components within a specific configuration domain. See also
configuration domain.

configuration scope

Orbix configuration is divided into scopes. These are typically organized into a root scope and a hierarchy of nested scopes, the fully-
qualified names of which map directly to ORB names. By organizing configuration properties into various scopes, different settings
can be provided for individual ORBs, or common settings for groups of ORB. Orbix services, such as the naming service, have their
own configuration scopes.

CORBA

Common Object Request Broker Architecture. An open standard that enables objects to communicate with one another regardless of
what programming language they are written in, or what operating system they run on. The CORBA specification is produced and
maintained by the OMG. See also OMG.

CORBA naming service

An implementation of the OMG Naming Service Specification. Describes how applications can map object references to names.
Servers can register object references by name with a naming service repository, and can advertise those names to clients. Clients, in
turn, can resolve the desired objects in the naming service by supplying the appropriate name. The Orbix naming service is an
example.

CORBA objects

Self-contained software entities that consist of both data and the procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and Java.

CORBA transaction service

An implementation of the OMG Transaction Service Specification. Provides interfaces to manage the demarcation of transactions
and the propagation of transaction contexts. Orbix OTS is such as service.

correlation ID

See Actional server manifest.

D

deployment

The process of distributing a configuration or system element into an environment.

G

GIOP

General Inter-ORB Protocol. The general CORBA standard messaging protocol, defined by the OMG, for communications between
ORBs and distributed applications. The implementation of GIOP for TCP/IP is IIOP. See IIOP.

H

Glossary

- 59/65 -

HTTP

HyperText Transfer Protocol. The underlying protocol used by the World Wide Web. It defines how files (text, graphic images, video,
and other multimedia files) are formatted and transmitted. Also defines what actions Web servers and browsers should take in
response to various commands. HTTP runs on top of TCP/IP.

I

IDL

Interface Definition Language. The CORBA standard declarative language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose in a server application. Clients use these interfaces to access
server objects across a network. IDL interfaces are independent of operating systems and programming languages.

IFR

See interface repository.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined by the OMG, for communications between ORBs and
distributed applications. IIOP is defined as a protocol layer above the transport layer, TCP/IP.

implementation repository

A database of available servers, it dynamically maps persistent objects to their server’s actual address. Keeps track of the servers
available in a system and the hosts they run on. Also provides a central forwarding point for client requests. See also location
domain and locator daemon.

IMR

See implementation repository.

instrumentation

Code instructions that monitor specific components in a system (for example, instructions that output logging information on
screen). When an application contains instrumentation code, it can be managed using a management tool such as Actional.

installation

The placement of software on a computer. Installation does not include configuration unless a default configuration is supplied.

Interface Definition Language

See IDL.

interceptor

An Actional interceptor collects data about service traffic from an application server, and applies policies to that traffic. It sits in the
flow between the application logic and the consumers and providers of other services. It intercepts all inbound and outbound calls,
and feeds information about those calls to an Actional agent.

An Orbix interceptor is an object that ORB services and transports implement to process operation
invocations. Orbix interceptors are arranged in a chain, with each interceptor caching a reference to the
next interceptor in the chain.

Glossary

- 60/65 -

interface repository

Provides centralized persistent storage of IDL interfaces. An Orbix client can query this repository at runtime to determine
information about an object’s interface, and then use the Dynamic Invocation Interface (DII) to make calls to the object. Enables
Orbix clients to call operations on IDL interfaces that are unknown at compile time.

invocation

A request issued on an already active software component.

IOR

Interoperable Object Reference. See object reference.

L

LG_Header

See Actional server manifest.

location domain

A collection of servers under the control of a single locator daemon. Can span any number of hosts across a network, and can be
dynamically extended with new hosts. See also locator daemon and node daemon.

locator daemon

A server host facility that manages an implementation repository and acts as a control center for a location domain. Orbix clients
use the locator daemon, often in conjunction with a naming service, to locate the objects they seek. Together with the
implementation repository, it also stores server process data for activating servers and objects. When a client invokes on an object,
the client ORB sends this invocation to the locator daemon, and the locator daemon searches the implementation repository for the
address of the server object. In addition, enables servers to be moved from one host to another without disrupting client request
processing. Redirects requests to the new location and transparently reconnects clients to the new server instance. See also location
domain, node daemon, and implementation repository.

N

naming service

See CORBA naming service.

node

An Actional node is defined as a system on the current network. A node with an Actional agent installed is referred to as an
instrumented node or a managed node.

node daemon

An Orbix node daemon starts, monitors, and manages Orbix servers on a host machine. Every machine that runs an Orbix server
must run a node daemon.

O

object reference

Uniquely identifies a local or remote object instance. Can be stored in a CORBA naming service, in a file or in a URL. The contact
details that a client application uses to communicate with a CORBA object. Also known as interoperable object reference (IOR) or
proxy.

Glossary

- 61/65 -

OMG

Object Management Group. An open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including CORBA. See www.omg.org.

ORB

Object Request Broker. Manages the interaction between clients and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a distributed computer environment. Key component in CORBA.

OTS

See CORBA transaction service.

P

POA

Portable Object Adapter. Maps object references to their concrete implementations in a server. Creates and manages object
references to all objects used by an application, manages object state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB products. Can be transient or persistent.

protocol

Format for the layout of messages sent over a network.

S

server

An application that provides services to clients. CORBA servers act as containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

service context

A GIOP service context is a general mechanism for including out-of-band data in a GIOP request or reply message. Service contexts
in GIOP are analogous to headers in other protocols such as HTTP.

SSL

Secure Sockets Layer protocol. Provides transport layer security—authenticity, integrity, and confidentiality—for authenticated and
encrypted communications between clients and servers. Runs above TCP/IP and below application protocols such as HTTP and IIOP.

T

TCP/IP

Transmission Control Protocol/Internet Protocol. The basic suite of protocols used to connect hosts to the Internet, intranets, and
extranets.

TLS

Transport Layer Security. An IETF open standard that is based on, and is the successor to, SSL. Provides transport-layer security for
secure communications. See also SSL.

Glossary

- 62/65 -

http://www.omg.org

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 63/65 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 64/65 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 65/65 -

	Orbix Actional Integration Guide
	V6.3.14

	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	Related documentation
	Document Conventions

	Orbix–Actional Integration
	Introduction
	Orbix and Actional
	Actional SOA management
	Managed nodes
	Actional server
	Actional agent
	Actional intermediary
	Actional agent interceptor SDK
	Actional SOA management tools
	NGSO mapping
	Further information

	Orbix–Actional Integration Architecture
	Basic Actional architecture
	Actional interceptors
	Actional server manifest
	Orbix–Actional integration architecture
	Orbix interceptors
	Further information

	Configuring Orbix for Actional Integration
	Configuring an Orbix Domain
	Configuring Orbix services for Actional integration
	Using the command line
	Further information

	Configuring Orbix Java Applications
	Update your Actional SDK
	Configuring the Orbix monitoring plug-in
	Running client and server applications
	Specifying endorsed directories
	Sample Orbix configuration

	Configuring Orbix C++ applications
	Setting your environment
	Configuring the Orbix monitoring plug-in
	Sample Orbix configuration

	Monitoring plug-in configuration variables
	plugins:orbmon
	use_msg_fields
	Configuring NGSO
	group
	service
	operation

	Running the enable_actional Script
	Script usage
	Script output
	Examples

	Troubleshooting Orbix
	Ensure the monitoring plug-in is loaded

	Configuring Actional for Orbix Integration
	Prerequisites
	Actional products
	Actional agents
	Further information

	Configuring Actional
	Actional agent configuration
	Actional server configuration
	Creating a managed node
	Configuring a new node
	Provisioning a new node
	Further information

	Troubleshooting Actional
	Setting default polling
	Ensuring events are reported to the Actional Agent
	Further information

	Managing Orbix Applications in Actional
	Monitoring Orbix Applications
	Network view
	Path Explorer
	Statistics details
	Server manifest
	Further information

	Monitoring Orbix Domain Services
	Starting Orbix services
	Monitoring Orbix services
	Further information

	Auditing Orbix Applications
	Actional policy groups
	Viewing audit logs
	Further information

	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

