
Orbix Internationalization Guide
V6.3.14

Table of Contents

5Preface

5Audience

5Related documentation

5Typographical conventions

6Keying conventions

7Orbix Internationalization

7Code Sets

7European languages

7Ideograms

8Unicode

8Charset names

9Locales

9Concept of locale

10ISO standards

10Operating system locales

11Java locales

12Language on the Internet

12Orbix Internationalization

12Feature list

13Enabling tools

14CORBA Internationalization

14Overview

14Wide characters

15Mixing wide and narrow data

15Code set negotiation

16Supported Code Sets

16Popular code sets

16Java CORBA

17C/C++ CORBA

Table of Contents

- 2/39 -

17Custom code set plugins

17Code Set Negotiation

17Native code set

17Conversion code set

18Transmission code set

18Negotiation algorithm

18Code set compatibility

19Configuring the Code Set Plugin

19Configuration variables

20Light weight code set plugin

20Choice of conversion code sets

21Example configurations

22Logging

22Default configuration

23Java Internationalization

23IDL-to-Java mapping

23Coding

24Native code set

25C/C++ Internationalization

25IDL-to-C++ mapping

25Coding

26Example

28Native code set

30Restrictions

30Translations

30Property Values

32Glossary

37Notices

37Copyright

37Trademarks

37Examples

Table of Contents

- 3/39 -

37License agreement

38Corporate information

38Contacting Technical Support

38Country and Toll-free telephone number

Table of Contents

- 4/39 -

Preface

Audience
This guide is intended for Orbix programmers who develop products that might be
internationalized.This guide also provides information to administrators of Orbix deployments where
internationalization is required.

Related documentation
The Orbix documentation set includes the following related documentation:

CORBA Programmer’s Guide (C++ and Java)

CORBA Programmer’s Reference (C++ and Java)

Orbix Administrator’s Guide

Typographical conventions
This guide uses the following typographical conventions:

• •

• •

• •

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Preface

- 5/39 -

Keying conventions
This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
Some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS, Windows NT, Windows 95, or Windows 98
command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in {} (braces) in
format and syntax descriptions.

Keying conventions

- 6/39 -

Orbix Internationalization

Orbix includes features that enable development and deployment of applications that manipulate user data
encoded in characters beyond the traditional ASCII and ISO 8859-1 (Latin 1) code sets.

Code Sets
A coded character set, or code set for short, is a mapping between integer values and characters they
represent. The best known code set is ASCII, which defines 94 graphic characters and 34 control
characters using the 7-bit integer range.

European languages
The 94 characters defined by the ASCII code set are sufficient for English, but they are not sufficient for
European languages, such as French, Spanish, and German.

To remedy the situation, an 8-bit code set, ISO 8859-1, also known as Latin-1, was invented. The lower 7-
bit portion is identical to ASCII. The extra characters in the upper 8-bit range cover those languages
used widely in the Western European region.

Many other code sets are defined under ISO 8859 framework. These cover languages in other regions
of Europe as well as Russian, Arabic and Hebrew. The most recent addition is ISO 8859-15, which is a
revision of ISO 8859-1 and it adds the Euro currency symbol and other letters while removing less used
characters. For further information about ISO-8859-x encoding, refer to the Web site The ISO 8859
Alphabet Soup.

Ideograms
Asian countries that use ideograms in their writing systems needed more characters than they fit in an
8-bit integer. Therefore, they invented a double-byte code set, where a character is represented by a bit
pattern of 2 bytes.

These languages also needed to mix the double-byte code set with ASCII in a single text file. So,
character encoding schema, or simply encodings, was invented as a way to mix characters of multiple
code sets.

Some of the popular encodings used in Japan include:

Orbix Internationalization

- 7/39 -

http://czyborra.com/charsets/iso8859.html
http://czyborra.com/charsets/iso8859.html

Shift JIS

Japanese EUC

Japanese ISO 2022

Unicode
Unicode is a new code set that is gaining popularity. It aims to assign a unique number, or code point,
to every character that exists (and even once existed) in all languages. To accomplish this, Unicode,
which began as a double-byte code set, has been expanded into a quadruple-byte code set.

Unicode, in pure form, can be difficult to use within existing computer architectures, because many APIs
are byte-oriented and assume that the byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or UTF-8, is frequently used. When
browsers list “Unicode” in its encoding selection menu, they usually mean UTF-8, rather than the pure
form of Unicode.

Visit Unicode Inc. for more information about Unicode and its variants.

Charset names
To address the need for computer networks to connect different types of computers that use different
encodings, the Internet Assigned Number Authority, or IANA, has a registry of encodings at http://
www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML, and XML.

Table 1 lists IANA names for some popular charsets.

Table 1: IANA Charset Names

• •

• •

• •

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of 4-byte Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in Unix

Unicode

- 8/39 -

http://www.unicode.org
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

IANA names are case insensitive. For example, US-ASCII can be spelled as us-ascii or US-ascii.

CORBA Names

In CORBA, code sets are identified by numerical values registered with the Open Group’s registry, OSF
Code Set Registry.

Java Names

Java has its own names for charsets. For example, ISO-8859-1 is named ISO8859_1 , Shift_JIS is named
SJIS , and UTF-8 is named UTF8 .

Java is transitioning to IANA charset names, to be aligned with MIME. JDK 1.3 and above recognize both
names.

This guide uses IANA charset names even for CORBA code sets.

Locales

Concept of locale
Most of modern operating systems are multilingual. Users can choose their language, and the
operating system behaves according to the linguistic convention of the chosen language. For example,
the user the number 1234.56 can be displayed as 1,234.56 to the English users and 1.234,56 to the
German users.

However, language alone is not enough to determine a behavior, especially for languages that are used
in many countries. For example, French speakers in Canada expect to see 1,234.56 while European
French speakers expect to see 1.234,56 .

The concept of locale addresses these issues. A locale combines charsets and display behavior for
specific regions.

IANA Name Description

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding scheme

Note

Note

Locales

- 9/39 -

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

ISO standards
The International Standard Organization, ISO, defines two standards to specify locale. In general, ISO
639 specifies the language code and ISO 3166 specifies the country code.

These standards can be down loaded from the ISO web site.

Operating system locales
Windows

On Windows, the Regional and Language Option control panel is used to select a locale. Locales are
listed by language. For languages that are spoken in multiple countries, such as English, you must
choose the setting for your region. Regions are listed next to the language in parenthesis. For example
a Spanish speaker in Mexico would select Spanish (Mexico).

UNIX

On Solaris and other POSIX conformant platforms, a set of environment variables, LANG and LC_xxxx ,
are used to select a language. Usually, only LANG is used to set locale behavior to the specified locale.

Typical locale values on Solaris are en (English, generic), en_GB (British English), or en_GB.ISO8859-15
(British English using ISO-8859-15 encoding). The two-letter code, en , means English, and is taken from
the language code standard from ISO, and GB means Great Britain and is taken from another ISO
standard on the country code. As the last example indicates, an OS locale name can also include an
encoding name (ISO8859-15).

The name of the encoding does not follow IANA charset registry.

When no encoding name appears as a component of the locale name, a default encoding is implied. For
example, the locale ja on Solaris implies use of EUC-JP encoding, eucJP in the Solaris naming
convention. Therefore, ja and ja_JP.eucJP are synonymous on Solaris.

All Unix-derived operating systems share similar locale semantics although the naming conventions
vary widely.

Note

ISO standards

- 10/39 -

http://www.iso.org

Java locales
Java has its own locale mechanism. Its notational convention is similar to Solaris, except that there is no
encoding specifier as Java's internal encoding is always UTF-16. Typical locales include:

en_US

fr_FR

de_DE

zh_CN

zh_TW

ja_JP

ko_KR

Java’s default locale is automatically inherited from the JVM’s current operating system locale.
Example 1 shows how to use the Java Locale class to determine the locale and file encoding
settings for your system.

Example 1: Printing the Java locale and file encoding setting

For more information, see the JDK API document for the Locale class.

• •

• •

• •

• •

• •

• •

• •

// Java
import java.util.Locale;
public class printLocale
{
public static void main(String [])
{
Locale default_locale = Locale.getDefault();
System.out.println("Default locale: " + default_locale.toString());

String file_encoding = System.getProperty("file.encoding");
System.out.println("File encoding: " + file_encoding);
}
}

Java locales

- 11/39 -

Language on the Internet
The Hyper Text Transfer Protocol, HTTP, has two headers, Accept-Language and Content-Language, that
relate to locale. These two headers take a language value (or list of values) which has the form
language[-subtag] .

According the HTTP specification, language and subtag can be any string value. In practice, the ISO two-
letter language code and country code are used. Therefore, the values in these two fields are almost
same as the Java locales.

Orbix Internationalization

Feature list
The following internationalization features are available in Orbix:

CORBA Internationalization Features

This includes IDL wchar and wstring datatypes, code set negotiation, and extended code set
support.

Java 2 Enterprise Edition (J2EE) 1.3

This includes the servlet response.setContentType() and request.setCharacterEncoding() methods
and JSP pageEncoding and contentType attributes in the page directive.

Locale-to-encoding mapping enhancement to J2EE

An encoding can be associated with a locale via configuration. When a JSP or Servlet specifies a
locale attribute for a response using the response.setLocale() method, the encoding associated
with the locale is used in the charset component of the Content-Type header of the response.

Configurable fall-back encoding of servlet for J2EE

A fall-back encoding for requests on a servlet or JSP can be configured using the URL mapping for
the servlet. If the servlet does not associate an encoding with a request programmatically (for
example, using request.setContentType()) then the fall-back encoding is used, if configured.

IANA-charset-name to Java-converter-name mapping for J2EE

In a small number of cases it is necessary to decode HTTP request body data using a Java
converter with a different name from the name of the IANA charset used in the request header.
ASP provides a mechanism to map IANA charset names to Java converter names via configuration.

Character encoding support in WSDL Test Client

WSDL Test Client has a menu to specify the encoding

• •

• •

• •

• •

• •

• •

Language on the Internet

- 12/39 -

Large number of code sets/character encoding supported.

163 built-in code sets are supported for CORBA. All character encodings (code sets) supported by
the underlying JDK can be used by J2EE programs.

Enabling tools
With Orbix, you can enable applications from different locales or using different code sets to
interoperate. However, Orbix does not provide tools to help you applications capable of working with
multiple locales or code sets.

• •

Enabling tools

- 13/39 -

CORBA Internationalization

Orbix lets you run applications in numerous locales.

Overview

Wide characters
CORBA 2.1 introduced the datatypes wchar (wide character) and wstring (wide string). Wide characters
allow a character to be stored in a fixed length datatype whether it is a one byte character, a double-
byte character, or a quad-byte character. This makes programming for multiple languages easier.

The actual size of a wide character varies by operating system. Typical sizes are two bytes or four
bytes.

Example 2 shows an IDL definition that uses wide datatypes.

Example 2: Sample IDL using wide datatypes

Note

CORBA Internationalization

- 14/39 -

Mixing wide and narrow data
The traditional string datatype, sometimes called a narrow string, can also represent a multibyte
character string. A character in this form has a varying byte length, usually 1 to 3 bytes. The number of
bytes depends on the code set in use.

The char datatype, however, cannot store a multibyte character because its size is limited to one byte.
Example 3 shows an IDL definition of an interface that mixes narrow and wide strings.

Example 3: Mixing narrow and wide strings

Code set negotiation
Because CORBA is designed to work in a heterogeneous networking environment, the server’s native
code set might differ from the client’s native code set. CORBA defines a mechanism for ensuring that
both client and server can exchange meaningful data efficiently. This process is called code set
negotiation.

// IDL
interface WideEcho
{
wstring echo(in wstring ws);
wstring echoSingleWChar(in wchar wc);
};

// IDL
interface WideEcho
{
wstring echo(in wstring ws);
wstring echoSingleWChar(in wchar wc);
wstring echoNarrowString(in string ns);
};

Mixing wide and narrow data

- 15/39 -

Supported Code Sets

Popular code sets
Table 2 shows some of the code sets that Orbix supports.

Table 2: Popular code sets supported by Orbix

Java CORBA
For Java CORBA, Orbix supports 163 code sets. It uses the Java native encoding converters listed for JDK
1.6 (http://docs.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html) and for JDK 1.7
(http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html).

Because Java does not use OSF code set IDs to name the encodings, an OSF code set ID must first be
mapped to a Java encoding name.

Because the mapping between OSF code set IDs and IANA and Java naming schema is not one-to-one,
Orbix maps the most popular code set among the code sets that are almost identical. For example,
Orbix supports code set id 0x05000011 (OSF Japanese SJIS-1) but not 0x05020002 (JVC_SJIS). Please make
sure to use the code set that Orbix supports.

The mapping is subject to change without notice in future releases.

One of the most popular code sets used in Japan, ISO-2022-JP , is missing from OSF registry therefore
Orbix does not support it. ISO-2022-JP is mainly used in e-mail, and it is rarely used in inter-process
communication or in storage.

OSF code set name OSF code set id IANA charset Java encoding

ISO 8859-1:1987 0x00010001 ISO-8859-1 ISO8859_1

UCS-2, Level 1 0x00010100 UCS-2 UTF-16

UCS-4, Level 1 0x00010104 UCS-4 UCS-4

X/Open UTF-8 0x05010001 UTF-8 UTF8

JIS eucJP 0x00030010 EUC-JP EUC_JP

OSF Japanese SJIS-1 0x05000011 Shift_JIS SJIS

Warning

Supported Code Sets

- 16/39 -

http://docs.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

C/C++ CORBA
For C and C++ CORBA, Orbix supports 112 code sets. It uses the code set converters from ICU (http://
www-01.ibm.com/software/globalization/icu/), an open-source project supported by IBM.

Custom code set plugins
The Java encoders and the ICU encoders built in to Orbix do not support all code sets in use today. For
situations where conversion is needed for an unsupported code set, Orbix has a plugable code set
converter architecture which makes it possible to write and add a custom code set converter plugin.

Code Set Negotiation
Code set negotiation is the process by which two CORBA processes which use different native code sets
determine which code set to use as a transmission code set. Occasionally, the process requires the
selection of a conversion code set to transmit data between the two processes. The algorithm is defined
in section 13.10.2.6 of the CORBA specification (http://www.omg.org/spec/CORBA/2.6/PDF/).

For CORBA programing in Java, you can specify a codeset other than the true native codeset.

Native code set
A native code set (NCS) is a code set that a CORBA program speaks natively. For Java, this is UTF-8
(0x05010001) for char and String , and UTF-16(0x00010109) for wchar and wstring . For C and C++, this is
the encoding that is set by setlocale() , which in turn depends on the LANG and LC_xxxx environment
variables.

Conversion code set
A conversion code set (CCS) is an alternative code set that the application registers with the ORB. More
than one CCS can be registered for each of the narrow and wide interfaces. CCS should be chosen so
that the expected input data can be converted to and from the native code set without data loss. For
example, Windows code page 1252 (0x100204e4) can be a conversion code set for ISO-8859-1
(0x00010001), assuming only the common characters between the two code sets are used in the data.

Note

C/C++ CORBA

- 17/39 -

http://www-01.ibm.com/software/globalization/icu/
http://www-01.ibm.com/software/globalization/icu/
http://www.omg.org/spec/CORBA/2.6/PDF/

Each application has its own native code set and a set of conversion code sets for char and string . Each
application also has a separate native code set and conversion code sets for wchar and wstring . The CCS
for wchar and wstring can be same as or different from those for char and string .

Transmission code set
A transmission code set (TCS) is the code set agreed upon after the code set negotiation. The data on
the wire uses this code set. It will be either the native code set, one of the conversion code sets, or
UTF-8 for the narrow interface and UTF-16 for the wide interface.

Negotiation algorithm
Code set negotiation uses the following algorithm to determine which code set to use in transferring
data between client and server:

If the client and server are using the same native code set, no translation is required.

If the client has a converter to the server’s code set, the server’s native code set is used as the
transmission code set.

If the client does not have an appropriate converter and the server does have a converter to the
client’s code set, the client’s native code set is used as the transmission code set.

If neither the client nor the server has an appropriate converter, the server ORB tries to find a
conversion code set that both server and client can convert to and from without loss of data. The
selected conversion code set is used as the transmission code set.

If no conversion code set can be found, the server ORB determines if using UTF-8 (narrow characters)
or UTF-16 (wide characters) will allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission code set. If not, a
CODESET_INCOMPATIBLE exception is raised.

Code set compatibility
The last steps involves a compatibility test, but the CORBA specification does not define when a code
set is compatible with another. The compatibility test algorithm employed in Orbix is:

ISO 8859 Latin- n code sets are compatible.

UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x are compatible.

All other code sets are not compatible with any other code sets.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

1. 1.

2. 2.

3. 3.

Transmission code set

- 18/39 -

This compatibility algorithm is subject to change without notice in future releases. Therefore, it is best
to configure the code set variables as explicitly as possible in order to reduce dependency on the
compatibility algorithm.

Configuring the Code Set Plugin

Configuration variables
In order for an ORB to transmit character data in a code set other than ISO 8859-1, the ORB must be
configured properly. Four configuration variables control the code set plugin:

plugins:codeset:char:ncs

specifies the native code sets used to represent narrow characters.

plugins:codeset:char:ccs

specifies the list of conversion code sets supported for narrow characters.

plugins:codeset:wchar:ncs

specifies the native code sets used to represent wide characters.

plugins:codeset:wchar:ccs

specifies the list of conversion code sets supported for wide characters.

For more information on these variables, see the Orbix Configuration Reference.

For CORBA programing in Java, you can specify a codeset other than the true native codeset. See
Native code set.

Note

Configuring the Code Set Plugin

- 19/39 -

Light weight code set plugin
The standard code set plugin for C/C++ requires 8MB of memory. If memory is limited or if you are
planning to use only the code sets listed in Table 3, a light weight replacement, it_basic_codeset , is
available.

Table 3: Code sets supported by the light weight plugin

To use this plugin instead of the standard one, modify the configuration with this setting

Changing the code set plugin in this way has no effect on Java.

Choice of conversion code sets
When choosing code sets to use as conversion code sets, three points should be considered:

Data compatibility

Conversion code sets should be chosen to minimize the of loss or corruption of data. At minimum,
the code sets chosen must cover all the characters that need to be handled by the application.
Shift_JIS and EUC-JP are based on the same base character sets, except that EUC-JP includes an
extra code set that is in rare use. If the application does not expect to handle the extra code set,
these code sets can be treated as compatible. Usually, Shift_JIS and ISO-8859-1 are not considered
compatible because many of the letters with diacritics in ISO-8859-1 do not exist in Shift_JIS.
However, if the application is not expected to handle data that includes these incompatible
characters, you can consider them compatible. Ultimately, it is up to the application designer to
decide whether a code set is compatible with another.

UCS-2

UTF-4

UTF-16

ISO-8859-1

EBCDIC

initial_references:IT_CodeSet_Registry:plugin= "basic_codeset";

Note

• •

Light weight code set plugin

- 20/39 -

Performance

The choice of the transmission code set greatly affects the performance. In general, fixed-length
code sets such as ISO-8859-x, EBCDIC, UCS-2 and UCS-4 can achieve better performance than the
variable-length code sets such as UTF-8, EUC-JP and Shift_JIS.

Although UTF-16 is a variable length code set, Orbix implements it as fixed-width code set
because the characters beyond Basic Multilingual Plain (BMP) are not supported.

Compatibility with legacy CORBA services

It is often the case that an application uses multiple CORBA servers. Some servers might not
support code sets other than ISO-8859-1, which is the only code set that is mandated to be
supported by CORBA. Some servers might also not support wchar or wstring . In fact, most of the
IONA services such as naming, locator, etc. belong to this category. For this reason, ISO-8859-1
should be included in plugins:codeset:char:ccs .

Example configurations
Example 4 shows a basic configuration that works in a mixed Java/C++ environment. This configuration
works in Latin-1 based locales.

Example 4: Basic code set configuration

Example 5 shows a configuration for a heterogeneous system environment where some servers are
written in Java and not configured to accept ISO-8859-1 , and some servers are hosted on a mainframe.
Because EBCDIC (IBM code page 037) does not include characters needed for European languages, this
configuration can only be used for English.

Example 5: Mixed environment configuration

• •

Note

• •

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:char:ccs = ["0x00010001"]; # ISO-8859-1;
plugins:codeset:wchar:ncs = "0x00010109"; # UTF-16
plugins:codeset:wchar:ccs = [];

Example configurations

- 21/39 -

For the language such as Japanese, where multiple code sets are used in a heterogeneous system
environment, all of the used code sets should be put in the conversion code set list. Example 6 shows a
configuration for a Japanese system with servers running on both Windows and Solaris systems.

Example 6: Japanese mixed environment configuration

Logging
The code set plugin outputs informational event messages using the event subsystem IT_CODESET . To
view these events make sure the configuration variable event_log:filters includes the entry
"IT_CODESET=*" or "IT_CODESET=INFO" .

Default configuration
If any code set configuration variables are missing from the configuration, the default values shown in
the Orbix Configuration Reference are used.

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:char:ccs = ["0x05010001", "0x10020025"]; # UTF-8,
EBCDIC(IBM-037)
plugins:codeset:wchar:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:wchar:ccs = ["0x00010109";]; # UTF-16

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:char:ccs = ["0x00030010", "0x05000011", "0x00010001"]; # JIS
eucJP, OSF SJIS, ISO-8859-1
plugins:codeset:wchar:ncs = "0x00010109"; # UTF-16
plugins:codeset:wchar:ccs = ["0x00030010", "0x05000011", "0x00010104",
"0x00010100"]; # JIS eucJP, OSF SJIS, UCS-4 Level 1, UCS-2 Level 1

Logging

- 22/39 -

Java Internationalization

IDL-to-Java mapping
As specified by the OMG’s IDL-to-Java mapping specification, the string and wstring IDL datatypes are
mapped to the Java String class, and the char and wchar IDL datatypes are mapped to the Java char
datatype.

Although a Java char is two-bytes wide, any attempt to transmit a Java char that is bigger than 0xff
through the IDL char interface will throw the exception of org.omg.CORBA.DATA_CONVERSION .

The latest version of the CORBA IDL-to-Java Language Mapping Specification can be obtained at http://
www.omg.org/cgi-bin/doc?formal/02-08-05.pdf.

Coding
Because Java treats both narrow and wide IDL datatypes alike, there is little that a CORBA developer
using Java needs to consider when thinking about internationalization.

To use WideEcho.idl , shown in Example 3 on page 11, apply idlgen using the following command:

To implement the server, WideEchoImpl.java needs to have its operation defined. Each operation in the
WideEcho class simply echoes the string that is passed into it. Example 7 shows the implementation of
the WideEcho operations.

Example 7: WideEcho Java server

Note

idlgen java_poa_genie.tcl -jP WideEchoDemo -all WideEcho.idl

// Java
public java.lang.String echo(java.lang.String ws)
throws org.omg.CORBA.SystemException
{
return ws;
}

Java Internationalization

- 23/39 -

http://www.omg.org/cgi-bin/doc?formal/02-08-05.pdf
http://www.omg.org/cgi-bin/doc?formal/02-08-05.pdf

The Java implementation of the IDL operation wstring echo(wstring) is identical to the Java
implementation of the IDL operation wstring echoNarrowString(string) . This is because Java makes no
distinction between an IDL string and IDL wstring .

The Java implementation of the IDL operation wstring echoSingleWChar(char) is more complicated than
the others only because it needs to convert a Java char to a Java String .

On the client side, the code is similar to a traditional Java CORBA program. IDL wchar and IDL char are
both represented as Java char . IDL wstring and IDL string are represented as Java String .

Native code set
For Java-written CORBA programs, the real native code set is always UTF-16, as mandated by the Java
language specification. However, you can declare any code set as the native code set for the purpose of
CORBA, as long as the code set supports the language you need to support.

One limitation applies: only byte-oriented code sets. code sets that do not include null , can be set to
plugins:codeset:char:ncs and plugins:codeset:char:ccs . For plugins:codeset:wchar:ncs and
plugins:codeset:wchar:ccs , any code set can be used, whether it is byte-oriented or not.

public java.lang.String echoSingleWChar(char wc)
throws org.omg.CORBA.SystemException
{
// Returns a String consisting of just one char.
char [] x = new char[1];
x[0] = wc;
return new String(x);
}

public java.lang.String echoNarrowString(java.lang.String ns)
throws org.omg.CORBA.SystemException
{
return ns;
}

Native code set

- 24/39 -

C/C++ Internationalization

IDL-to-C++ mapping
Although both C and C++ have different IDL mapping specifications, most CORBA platforms using C
map wchar and wsring with the C++ mappings. Table 4 shows IDL to C++ mappings for both narrow and
wide character data.

Table 4: IDL to C++ character mappings

The latest version of the CORBA C Language Mapping Specification can be obtained at http://
www.omg.org/cgi-bin/doc?formal/99-07-35.pdf.

The latest version of the CORBA C++ Language Mapping Specification can be obtained at http://
www.omg.org/cgi-bin/doc?formal/99-07-41.pdf.

Coding
Because C++ maps wide character data to special datatypes, coding internationalizable applications
requires a few modifications:

C and C++ programs must include the file locale.h . This file contains the definitions and headers
used to support code sets and locale functionality.

setlocale(LC_ALL, "") must be called in the application’s main() routine. This operation
determines the system’s locale settings and initializes the appropriate code sets. The encoding of
the char[] and wchar_t is determined by setlocale() .

The stream output operator << does not take wchar_t (IDL wchar) or wchar_t * (IDL wstring)
properly when applied to cout . In order to print these datatypes, use the wide-oriented stream
object wcout .

idlgen generates a class named IT_GeniePrint which has two methods that appear to print wide
data, print_wstring() and print_wchar() . However, these methods print all characters in the hex

IDL C++

char char

string char *

wchar wchar_t (CORBA::WChar)

wstring wchar_t * (CORBA::WChar *)

• •

• •

• •

• •

C/C++ Internationalization

- 25/39 -

http://www.omg.org/cgi-bin/doc?formal/99-07-35.pdf
http://www.omg.org/cgi-bin/doc?formal/99-07-35.pdf
http://www.omg.org/cgi-bin/doc?formal/99-07-41.pdf
http://www.omg.org/cgi-bin/doc?formal/99-07-41.pdf

form \xNNNN and can only be used when a hex dump is needed during debug. All wide data must
be converted before being printed.

Example
To implement the WideEcho.idl example, Example 3 on page 11, run idlgen as follows:

This generates a makefile for the Visual C++ nmake utility. To run the IDL compiler on Unix systems, run
nmake .

On the server side, the operations echo() , echoSingleWchar() and echoNarrowString() must be
implemented in WideEchoImpl.cxx . Example 8 shows an implementation of the operations.

Example 8: C++ server implementation of WideEcho.idl

idlgen cpp_poa_genie.tcl -all WideEcho.idl

// C++
#include <locale.h>

CORBA::WChar* WideEchoImpl::echo(const CORBA::WChar* ws)
IT_THROW_DECL((CORBA::SystemException))
{
return CORBA::wstring_dup(ws);
}

CORBA::WChar* WideEchoImpl::echoSingleWChar(CORBA::WChar wc)
IT_THROW_DECL((CORBA::SystemException))
{
wchar_t x[2];
x[0] = wc;
x[1] = (wchar_t) 0;
return CORBA::wstring_dup(x);
}

Example

- 26/39 -

CORBA::WChar is equivalent to wchar_t . idlgen generates code using CORBA::WChar .

Because C++ maps string and wstring to different datatypes, the implementation of echoNarrowString()
must explicitly convert ns from char * into wchar_t * using the ANSI C standard function mbstowcs() .

On the client side, in client.cxx , the calling convention is no different from the traditional CORBA
convention. Example 9 shows a client implementation.

Example 9: C++ client implementation for WideEcho.idl

CORBA::WChar* WideEchoImpl::echoNarrowString(const char* ns)
IT_THROW_DECL((CORBA::SystemException))
{
CORBA::WChar* _result;
int xlen = strlen(ns)+1; // Max len of buf needed.
wchar_t *x = new wchar_t[xlen]; // Temp buffer
mbstowcs(x, ns, xlen);
_result = CORBA::wstring_dup(x);
delete [] x; // Clean up temp buffer
return _result;
}

Note

// C++
#include <locale.h>

Example

- 27/39 -

Native code set
The native code set of C and C++ applications is determined by the platform’s locale setting. You must
set the Orbix native code set to plugins:codeset:char:ncs and plugins:codeset:wchar:ncs .

On Windows in Western European locales, the native code set for the narrow char/string (NCS-C) is
Windows Code Page 1252 which is ISO 8859-15. Since the OSF registry lacks Window Code Page 1252 or
ISO 8859-15, you can use ISO 8859-1 as the best approximation and set the configuration variable as
follows:

On Windows in a Japanese locale, the NCS-C is Window Code Page 932, an extension of Shift_JIS.
Because the OSF registry also lacks Window Code Page 932, you can use OSF SJIS as the closest
approximation and set the configuration variable as follows:

On Windows, the native code set for the wchar / wstring (NCS-W) is always UCS-2 regardless of locale. Set
the configuration variable as follows:

main(int argv, char[] argc))
{
CORBA::Object_var obj;
setlocale(LC_ALL, "") // set the locale
...
obj = read_reference("WideEcho.ref");
WideEcho_var WideEcho1 = WideEcho::_narrow(obj);
...
// Replace Hello with your language equivalent
wcout << WideEcho1->echo(L"Hello in wstring") << endl
wcout << WideEcho1->echoSingleWChar(L"H") << endl
wcout << WideEcho1->echoNarrowString("Hello in string") << endl;
}

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1

plugins:codeset:char:ncs = "0x05000011"; # OSF SJIS

Native code set

- 28/39 -

On Solaris, both NCS-C and NCS-W are determined by the current locale. For the ISO 8859-1 based
locales such as C , en , fr , de , es , it and pt , both NCS-C and NCS-W should be set to ISO-8859-1 . So,
the configuration variables are set as follows:

For Solaris in the Japanese ja locale, both NCS-C and NCS-W should be set to the OSF code set
equivalent of EUC-JP as follows:

For Solaris in UTF-8 based locales such as en_US.UTF-8 , ja_JP.UTF-8 , ko_KR.UTF-8 , zh_CN.UTF-8 and
zh_TW.UTF-8 , NCS-C is UTF-8 and NCS-W is UCS-4. Set the configuration variables as follows:

plugins:codeset:wchar:ncs = “0x00010100”; # UCS-2 Level 1

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:wchar:ncs = "0x00010001"; # ISO-8859-1

plugins:codeset:char:ncs = "0x00030010"; # JIS eucJP
plugins:codeset:wchar:ncs = "0x00030010"; # JIS eucJP

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:wchar:ncs = "0x00010104"; # UCS-4 Level 1

Native code set

- 29/39 -

Restrictions

Orbix has some limitations in its internationalization support.

Translations
Orbix is internationalized, but it is not localized. All the GUI applications and messages remain in
English.

There are some exceptions. Some GUI elements and messages that originate from the underlying
operating system or Java run-time environment are localized automatically. For example, the OK button
is translated in some dialog boxes.

Similarly, some messages from the operating systems are in the language of the locale.

Property Values
Generally speaking, various properties that Orbix uses are restricted to the traditional ASCII range.

For example, the following properties must be in ASCII in order to guarantee their proper behavior:

File path

User ID

Password

URL

Repository name

Channel name

Configuration domain name

Configuration variable name

Configuration variable value

Scope name

Cluster name

(J2EE) Application name

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Restrictions

- 30/39 -

The only Orbix property that can have non-ASCII characters is the role names if Orbix is
configured to use an LDAP server that supports non-ASCII.

Property Values

- 31/39 -

Glossary

A

administration:

All aspects of installing, configuring, deploying, monitoring, and managing a system.

ART:

Adaptive Runtime Technology. IONA’s modular, distributed object architecture, which supports
dynamic deployment and configuration of services and application code. ART provides the
foundation for IONA software products.

C

CFR:

See configuration repository.

client:

An application (process) that typically runs on a desktop and requests services from other
applications that often run on different machines (known as server processes). In CORBA, a client is
a program that requests services from CORBA objects.

codeset:

A coded character set, or code set for short, is a mapping between integer values and characters they
represent. The best known code set is ASCII, which defines 94 graphic characters and 34 control
characters using the 7-bit integer range.

codeset negotiation:

Code set negotiation is the process by which two CORBA processes that use different native code
sets determine which code set to use as a transmission code set. Occasionally, the process requires
the selection of a conversion code set to transmit data between the two processes.

configuration:

A specific arrangement of system elements and settings.

configuration domain:

Glossary

- 32/39 -

Contains all the configuration information that Orbix ORBs, services and applications use. Defines a
set of common configuration settings that specify available services and control ORB behavior. This
information consists of configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you organize ORBs into manageable
groups, thereby bringing scalability and ease of use to the largest environments. See also
configuration file and configuration repository.

configuration file:

A file that contains configuration information for Orbix components within a specific configuration
domain. See also configuration domain.

configuration repository:

A centralized store of configuration information for all Orbix components within a specific
configuration domain. See also configuration domain.

configuration scope:

Orbix configuration is divided into scopes. These are typically organized into a root scope and a
hierarchy of nested scopes, the fully-qualified names of which map directly to ORB names. By
organizing configuration properties into various scopes, different settings can be provided for
individual ORBs, or common settings for groups of ORB. Orbix services, such as the naming service,
have their own configuration scopes.

CORBA:

Common Object Request Broker Architecture. An open standard that enables objects to
communicate with one another regardless of what programming language they are written in, or
what operating system they run on. The CORBA specification is produced and maintained by the
OMG. See also OMG.

CORBA objects:

Self-contained software entities that consist of both data and the procedures to manipulate that
data. Can be implemented in any programming language that CORBA supports, such as C++ and
Java.

D

deployment:

The process of distributing a configuration or system element into an environment.

Glossary

- 33/39 -

H

HTTP:

HyperText Transfer Protocol. The underlying protocol used by the World Wide Web. It defines how
files (text, graphic images, video, and other multimedia files) are formatted and transmitted. Also
defines what actions Web servers and browsers should take in response to various commands.
HTTP runs on top of TCP/IP.

I

IDL:

Interface Definition Language. The CORBA standard declarative language that allows a
programmer to define interfaces to CORBA objects. An IDL file defines the public API that CORBA
objects expose in a server application. Clients use these interfaces to access server objects across a
network. IDL interfaces are independent of operating systems and programming languages.

IIOP:

Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined by the OMG, for
communications between ORBs and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

installation:

The placement of software on a computer. Installation does not include configuration unless a
default configuration is supplied.

Interface Definition Language:

See IDL.

invocation:

A request issued on an already active software component.

IOR:

Interoperable Object Reference. See object reference.

L

locale:

Glossary

- 34/39 -

A locale combines charsets and display behavior for specific regions. Language alone is not enough
to determine a behavior, especially for languages that are used in many countries. For example,
French speakers in Canada expect to see 1,234.56 while European French speakers expect to see
1.234,56. The concept of locale addresses these issues.

O

object reference:

Uniquely identifies a local or remote object instance. Can be stored in a CORBA naming service, in a
file or in a URL. The contact details that a client application uses to communicate with a CORBA
object. Also known as interoperable object reference (IOR) or proxy.

OMG:

Object Management Group. An open membership, not-for-profit consortium that produces and
maintains computer industry specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB:

Object Request Broker. Manages the interaction between clients and servers, using the Internet
Inter-ORB Protocol (IIOP). Enables clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.

P

POA:

Portable Object Adapter. Maps object references to their concrete implementations in a server.
Creates and manages object references to all objects used by an application, manages object state,
and provides the infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or persistent.

protocol:

Format for the layout of messages sent over a network.

S

server:

A program that provides services to clients. CORBA servers act as containers for CORBA objects,
allowing clients to access those objects using IDL interfaces.

T

TCP/IP:

Glossary

- 35/39 -

http://www.omg.com

Transmission Control Protocol/Internet Protocol. The basic suite of protocols used to connect hosts
to the Internet, intranets, and extranets.

Glossary

- 36/39 -

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 37/39 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 38/39 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 39/39 -

	Orbix Internationalization Guide
	V6.3.14

	Preface
	Audience
	Related documentation
	Typographical conventions
	Keying conventions

	Orbix Internationalization
	Code Sets
	European languages
	Ideograms
	Unicode
	Charset names

	Locales
	Concept of locale
	ISO standards
	Operating system locales
	Java locales
	Language on the Internet

	Orbix Internationalization
	Feature list
	Enabling tools

	CORBA Internationalization
	Overview
	Wide characters
	Mixing wide and narrow data
	Code set negotiation

	Supported Code Sets
	Popular code sets
	Java CORBA
	C/C++ CORBA
	Custom code set plugins

	Code Set Negotiation
	Native code set
	Conversion code set
	Transmission code set
	Negotiation algorithm
	Code set compatibility

	Configuring the Code Set Plugin
	Configuration variables
	Light weight code set plugin
	Choice of conversion code sets
	Example configurations
	Logging
	Default configuration

	Java Internationalization
	IDL-to-Java mapping
	Coding
	Native code set

	C/C++ Internationalization
	IDL-to-C++ mapping
	Coding
	Example
	Native code set

	Restrictions
	Translations
	Property Values

	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

