
Orbix Enterprise Messaging Guide Java
V6.3.14

Table of Contents

5Preface

5Specification compliance

5Audience

6Organization of this Guide

6Document Conventions

8Messaging Service Technologies

8CORBA Messaging Technologies

8Event Service

10Notification Service

11Telecom Log Service

12Event Communication

15The Notification Service

15Developing Suppliers and Consumers

15Obtaining an Event Channel

19Implementing a Supplier

32Implementing a Consumer

42Notification Service Properties

42Property Types

44Property Inheritance

45Setting Properties

48Getting Properties

49Validating Properties

51Property Descriptions

60Event Filtering

60Forwarding Filters

67Mapping Filters

72Filter Constraint Language

79Multicast Consumers

79MIOP

Table of Contents

- 2/172 -

80IDL Interfaces

81Configuring Orbix for Multicast

82Implementing an Endpoint Group

87Connecting to an Event Channel

91Receiving Events

91Filtering and Event Subscription

92Disconnecting from an Event Channel

92Subscribing and Publishing

93Event Subscription

100Publishing Event Types

108Managing the Notification Service

108Configuring the Notification Service

109Running the Notification Service

109Using Direct Persistence

110Managing a Deployed Notification Service

111Example 1: Generating Trace Information

112Example 2: Failure Recovery

113The Telecom Log Service

113Telecom Log Service Basics

113Telecom Log Service Objects

114Telecom Log Service Features

115Developing Telecom Log Clients

115Creating a Log

121Logging Events

129Getting Log Records

130Deleting Records from the Log

131Ending a Logging Session

132Advanced Features

132Scheduling

136Log Generated Events

144Event Forwarding

Table of Contents

- 3/172 -

151Filtering

154Log Management

160Qualities of Service

161Managing the Telecom Log Service

161Configuring the Telecom Log Service

163Running the Telecom Log Service

165Managing a Deployed Telecom Log Service

166Glossary

170Notices

170Copyright

170Trademarks

170Examples

170License agreement

171Corporate information

171Contacting Technical Support

171Country and Toll-free telephone number

Table of Contents

- 4/172 -

Preface

Specification compliance
The Orbix Notification Service is a full implementation of the notification service as specified by the
Object Management Group.

The Orbix Telecom Log Service is a full implementation of the telecom log service a specified by the
Object Management Group.

All CORBA messaging services comply with the following specifications:

CORBA 2.6

GIOP 1.2 (default), 1.1, and 1.0

The Orbix Java Messaging Service implementation is a full implementation of Adobe’s Java
Messaging Service specification version 1.0.2b.

Audience
This guide is intended to help you become familiar with the notification service, and shows how to
develop applications with it. This guide assumes that you are familiar with CORBA concepts, and with
Java.

This guide does not discuss every interface and its operations in detail, but gives a general overview of
the capabilities of the notification service and how various components fit together. For detailed
information about individual operations, refer to the CORBA Programmer’s Reference.

• •

• •

Preface

- 5/172 -

Organization of this Guide
Read Messaging Service Technologies for an overview of the Orbix enterprise messaging services.
Subsequent parts describe various components of the messaging service in detail, and show how you
implement an application that uses its capabilities.

Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

Organization of this Guide

- 6/172 -

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS, Windows NT, Windows95, or Windows98
command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in {} (braces) in
format and syntax descriptions.

Document Conventions

- 7/172 -

Messaging Service Technologies

Orbix provides enterprise messaging technology through the CORBA notification service and the
CORBA telecom log service.

CORBA Messaging Technologies
The architecture of the CORBA event service provides the foundation for the CORBA messaging
technologies. In the event service, client suppliers generate messages which are forwarded to client
consumers through an event channel. The event channel provides a mechanism for publish / subscribe
messaging, but does not support point to point messaging.

The notification service provides enterprise level decoupled messaging facilities by extending the
functionality of the CORBA event service to include Qualities of Service, subscription mechanisms,
filtering, and structured messages.

The telecom log service encompasses the functionality of both the event service and the notification
service and extends their functionality by adding a durable and searchable log. The logs record the
events forwarded through the associated event or notification service.

The telecom log service also provides a log for non-messaging CORBA clients.

Event Service
An event originates at a client supplier and is forwarded through an event channel to any number of
client consumers. Suppliers and consumers are completely decoupled; a supplier has no knowledge of
the number of consumers or their identities, and consumers have no knowledge of which supplier
generated a given event.

Service Capabilities
An event channel provides the following capabilities for forwarding events:

Accepts incoming events from client suppliers.

Forwards supplier-generated events to all connected consumers.

Note

• •

• •

Messaging Service Technologies

- 8/172 -

Connections
Suppliers and consumers connect to an event channel and not directly to each other, as shown in Figure
1. From a supplier’s perspective, the event channel appears as a single consumer; from a consumer’s
perspective, the event channel appears as a single supplier. In this way, the event channel decouples
suppliers and consumers.

Figure 1: Suppliers and Consumers Communicating through an Event Channel

How Many Clients?
Any number of suppliers can issue events to any number of consumers using a single event channel.
There is no correlation between the number of suppliers and the number of consumers. New suppliers
and consumers can be easily added to or removed from the system.

Example
Many documents can be linked to a spreadsheet cell, and must be notified when the cell value changes.
However, the spreadsheet software does not need to know about the documents linked to its cell. When
the cell value changes, the spreadsheet software should be able to issue an event that is automatically
forwarded to each connected document.

Event Delivery
Figure 2 shows a sample implementation of event propagation in a CORBA system. In this example,
suppliers are implemented as CORBA clients; the event channel and consumers are implemented as
CORBA servers. An event occurs when a supplier invokes a clearly defined IDL operation on an object in
the event channel application. The event channel then propagates the event by invoking a similar
operation on objects in each of the consumer servers.

Figure 2: Event Propagation in a CORBA System

Event Service

- 9/172 -

Further Reading
For a full discussion of the event service and how to develop applications with it see the CORBA
Programmer’s Guide.

Notification Service

Extensions of Event-based Communication
The notification service extends the concept of event-based messaging with the following features:

Feature Description

Quality-of-service Properties such as event message priority and lifetime, can be set on
different levels within the event channel.

Persistence Quality-of-service parameters control the availability of events and
channels beyond the lifetime of the service process, supplier processes,
or consumer processes.

Event filtering and
subscription

Filters allow consumers to receive only the events they are interested in,
and to tell suppliers which events are in demand.

Event publication Suppliers can inform an event channel which events they can supply, so
consumers can subscribe to new event types as they become available.

Structured events Header information in structured events let you set properties and
filterable data on event messages.

Notification Service

- 10/172 -

The CORBA notification service is integrated with the other Orbix services. However, it is not
designed for use with the Object Transaction Service (OTS).

For more information on the CORBA notification service, see The Notification Service

Telecom Log Service
The telecom log service is modeled on the CORBA notification service and uses event-aware objects
and an event channel to manage the logging of events to a persistent store. This implementation
allows logs to generate events relating to the log and propagate them to their clients, filter events for
logging, and forward events from suppliers to consumers. It also allows notification channel-aware logs
to leverage the notification service’s Quality of Service (QoS) properties. The telecom log service also
provides interfaces that allow event-unaware clients to write directly to the log.

Figure 3 shows a basic telecom log service configuration.

Figure 3: Log service configuration

Features of the Telecom Log Service
The telecom log service offers the following extensions to the notification service:

Table 1: Features of the telecom log service

Feature Description

Multicast event
delivery

Groups of consumers can subscribe to events and receive them using
UDP multicast protocol, which keeps network traffic to a minimum.

Note

Telecom Log Service

- 11/172 -

For more information of the telecom log service, see The Telecom Log Service.

Event Communication
CORBA specifies two approaches to initiating the transfer of events between suppliers and consumers

push model: Suppliers initiate transfer of events by sending those events to the channel. The
channel then forwards them to any consumers connected to it.

pull model: Consumers initiate the transfer of events by requesting them from the channel. The
channel requests events from the suppliers connected to it.

Push Model
In the push model, suppliers generate events and actively pass them to an event channel. In this model,
consumers wait for events to arrive from the channel.

Feature Description

Log
generated
events

Log objects can keep their event aware clients informed of the telecom log
service’s state by generating events and forwarding the events onto their
clients.

Quality of
Service

The telecom log service specifies three levels of Quality of Service for logged
events.

Log size The size of the persistent store for each log object can be set individually.

Log full
behavior

The behavior of the log when it becomes full is configurable. The log can
either discard new log records until the old ones are deleted manually, or the
log can overwrite the oldest records in the store with new ones.

History The maximum lifetime of a log record can be controlled through property
settings.

Scheduling Record logging can be scheduled. When the log object is scheduled to log
events, it is fully functional. When it is not scheduled to receive events, the log
object will continue to provide read access to the logged events and perform
the functions of an event or notification channel.

Filtering In addition to delivery level filtering, NotifyLog objects support event
filtering at the logging level. They can apply filters to the events that are
recorded in the log’s persistent store.

• •

• •

Event Communication

- 12/172 -

Figure 4 illustrates a push model architecture in which push suppliers communicate with push
consumers through the event channel.

Figure 4: The Push Model of Event Transfer

Pull Model
In the pull model, a consumer actively requests events from the channel. The supplier waits for a pull
request to arrive from the channel. When a pull request arrives, event data is generated and returned to
the channel.

Figure 5 illustrates a pull model architecture in which pull consumers communicate with pull suppliers
through the event channel.

Figure 5: Pull Model Suppliers and Consumers Communicating through an Event Channel

Mixing Push and Pull Models
Because suppliers and consumers are completely decoupled by the event channel, push and pull
models can be mixed in a single system.

For example, suppliers can connect to an event channel using the push model, while consumers
connect using the pull model, as shown in Figure 6.

Figure 6: Push Suppliers and Pull Consumers Communicating through an Event Channel

Event Communication

- 13/172 -

In this case, both suppliers and consumers participate in initiating event transfer. A supplier invokes an
operation on an object in the event channel to transfer an event to the channel. A consumer then
invokes another operation on an event channel object to transfer the event data from the channel.

In the case where push consumers and pull suppliers are mixed, the event channel actively propagates
events by invoking IDL operations in objects in both suppliers and consumers. The pull supplier would
wait for the channel to invoke an event transfer before sending events. Similarly, the push consumer
would wait for the event channel to invoke event transfer before receiving events.

Event Communication

- 14/172 -

The Notification Service

Developing Suppliers and Consumers
Client suppliers and consumers connect to an event channel in order to share information with each other.

The CosNotifyComm module defines client supplier and consumer interfaces. The interfaces can be
categorized according to the following dependencies:

A client interface supports either the push or pull model.

For each push or pull model, an interface is defined to support one of the event message types:
untyped, structured, or sequence.

The interface that you implement determines how a client sends or receives event messages.

Obtaining an Event Channel
Client consumers and suppliers obtain an event channel object reference either by creating a channel,
or by finding an existing one.

Procedure
You obtain an event channel by completing the following steps:

Event Channel Factory Operations
You can call one of several operations on an event channel factory to create or find an event channel. By
providing both create and find operations, the notification service allows any client or supplier to create
an event channel, which other clients and suppliers can subsequently discover.

Orbix Notification supports two sets of event channel factory operations:

The OMG-defined CosNotifyChannelAdmin::EventChannelFactory interface relies on system-generated
IDs.

• •

• •

Step Action

1 Obtain an event channel factory by calling resolve_initial_references("
NotificationService") .

2 Use the event channel factory to create a channel or find an existing one.

• •

The Notification Service

- 15/172 -

Proprietary extensions in the IT_NotifyChannelAdmin:: EventChannelFactory interface allow user-
defined channel names.

OMG Operations
CosNotifyChannelAdmin::EventChannelFactory defines the following operations for obtaining an event
channel:

create_channel()

creates an event channel and returns an object reference.

get_all_channels()

returns a sequence IDs of all event channels.

get_event_channel()

returns an object reference to the ID-specified event channel.

Orbix Extensions
Orbix Notification provides proprietary operations for obtaining named event channels, in
IT_NotifyChannelAdmin::EventChannelFactory :

• •

// IDL module CosNotifyChannelAdmin
interface EventChannelFactory {
EventChannel create_channel(
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannelID id)
raises(CosNotification::UnsupportedQoS, CosNotification::UnsupportedAdmin);
ChannelIDSeq get_all_channels();
EventChannel get_event_channel(in ChannelID id)
raises(ChannelNotFound);
};

Obtaining an Event Channel

- 16/172 -

create_named_channel()

creates a named event channel and returns an object reference.

find_channel()

returns an object reference to the named event channel.

find_channel_by_id()

returns an object reference to an event channel based on the channel’s ID.

list_channels()

// IDL module IT_NotifyChannelAdmin
struct EventChannelInfo
{
string name;
CosNotifyChannelAdmin::ChannelID id;
CosNotifyChannelAdmin::EventChannel reference;
};
typedef sequence<EventChannelInfo> EventChannelInfoList;
// ...
interface EventChannelFactory :
CosNotifyChannelAdmin::EventChannelFactory
{
// ...
CosNotifyChannelAdmin::EventChannel create_named_channel(
in string name,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out CosNotifyChannelAdmin::ChannelID id)
raises(ChannelAlreadyExists, CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);
CosNotifyChannelAdmin::EventChannel find_channel(
in string name,
out CosNotifyChannelAdmin::ChannelID id)
raises(CosNotifyChannelAdmin::ChannelNotFound);
CosNotifyChannelAdmin::EventChannel find_channel_by_id(
in CosNotifyChannelAdmin::ChannelID id,
out string name)
raises(CosNotifyChannelAdmin::ChannelNotFound);
// ...
EventChannelInfoList list_channels();
};

Obtaining an Event Channel

- 17/172 -

returns a list of event channels, which provides their names, IDs, and object references.

Example
The following code can be used by any supplier or consumer to obtain an event channel.

Example 1: Obtaining an Event Channel

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;

//Orbix specific classes
import com.iona.corba.IT_NotifyChannelAdmin.*;
EventChannel ec = null;
EventChannelFactory m_factory = null;
IntHolder id = new IntHolder();
Property[] init_qos = new Property[0];
Property[] init_admin = new Property[0];

[1](#example) Object obj =
orb.resolve_initial_references("NotificationService");
m_factory = EventChannelFactoryHelper.narrow(obj);

[2](#example) try ec = m_factory.create_named_channel("EventChannel",
init_qos, init_admin, id)

[3](#example) catch (ChannelAlreadyExists cae)
/* Channel already exists, so try to find it */

[4](#example) try
{
ec = m_factory.find_channel("EventChannel", id);
}
catch (ChannelNotFound cnf)
{
System.err.println("Could not create or find event
channel");
System.exit(1);
}

Obtaining an Event Channel

- 18/172 -

This code executes as follows:

Obtains the event channel factory.

Tries to create an event channel by calling create_named_channel() .

Catches the IT_NotifyChannelAdmin::ChannelAlreadyExists exception if a channel of the specified name
already exists.

Tries to obtain an existing channel of the same name by calling find_channel().

Implementing a Supplier

Actions
A client supplier program performs the following actions:

Instantiates suppliers using the appropriate interface in module CosNotifyComm .

Connects suppliers to the event channel.

Creates event messages.

Sends event messages to the event channel.

Disconnects from the event channel.

Instantiating the Supplier

Which Interface to Use?
Two dependencies determine which interface you should use to instantiate a supplier:

The model that the supplier supports: push or pull.

The type of event messages that the supplier generates: untyped, structured, or sequence of
structures.

catch (SystemException sys)
{
System.err.println("System exception occurred during
find_channel: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

• •

• •

Implementing a Supplier

- 19/172 -

The IDL module CosNotifyComm defines six interfaces that support different combinations of both
dependencies:

Example
You instantiate a supplier from the interface that supports the desired model and event message type.
Example 2 shows how a client application might instantiate a supplier of type StructuredPushSupplier .

Example 2: Instantiating a StructuredPushSupplier

Event type Push model Pull model

untyped PushSupplier PullSupplier

structured StructuredPushSupplier StructuredPullSupplier

sequence SequencePushSupplier SequencePullSupplier

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

class NotifyPushSupplier extends StructuredPushSupplierPOA
{
// Member variables not shown . . .

// The main entry point @param args command line args
public static void main (String args[])
{
// ORB and POA Activation not shown
// ...
NotifyPushSupplier supplier = new NotifyPushSupplier();
// ...
}

Implementing a Supplier

- 20/172 -

Connecting to a Channel
In order to pass messages to the event channel, a supplier must connect to it through a proxy
consumer that receives unfiltered events from the supplier. Each supplier must have its own proxy
consumer. The proxy consumer begins the filtering process and passes the events down the channel.

Procedure
A client supplier connects to the event channel in three steps:

Obtaining a Supplier Admin
On creation, an event channel instantiates a default SupplierAdmin object, which you obtain by calling
default_supplier_admin() on the event channel. For example:

The EventChannel interface also defines operations for creating and getting other supplier admin
objects:

new_for_suppliers()

returns a new supplier admin and its system-assigned AdminID identifier. When you create a supplier
admin, you also determine whether to AND or OR its filters with proxy consumer filters (see Traversing
Multiple Filters in a Channel).

get_supplieradmin()

takes an AdminID identifier and returns an existing supplier admin.

public void NotifyPushSupplier()
{
// Implementation not shown ...
}
}

Step Action

1 Obtain a SupplierAdmin object from the event channel.

2 Create a proxy consumer in the event channel, to receive the events that the
supplier generates.

3 Connect to the proxy consumer.

org.omg.CosNotifyChannelAdmin.SupplierAdmin sa =
channels.default_supplier_admin();

Implementing a Supplier

- 21/172 -

get_all_supplieradmins()

returns a sequence of AdminID identifiers.

Why Create Multiple Admin Objects?
You might want to create multiple supplier admin objects for one of the following reasons:

Groups of proxy consumers each require the same quality-of-service properties. All proxy
consumers inherit properties from their parent supplier admin. By creating different supplier
admin objects with the desired sets of properties, you can more easily manage the properties of
individual proxies.

For more information about quality-of-service properties, see Notification Service Properties.

Groups of proxy consumers have different filtering requirements. You can set different filters on
individual admin objects and group proxy consumers accordingly.

You need to distribute the load of event messages among different supplier admin objects. A
supplier admin’s workload is liable to increase for two reasons: using supplier-side forwarding
filters (see Forwarding Filters), and implementing pull-model suppliers. One or both factors might
require additional supplier admin objects to handle the extra work load that these entail.

Proxy Consumers
A proxy consumer is responsible for receiving event messages from its client supplier and inserting
them into the event channel, where they are forwarded to all interested consumers. You create one
proxy consumer for each client supplier.

As with client suppliers, you can create six types of proxy consumers, depending on the client supplier’s
model (push/pull) and event message type (untyped, structured, or sequence of structures). The type of
proxy consumer must match the type of its client supplier.

The CosNotifyChannelAdmin module defines interfaces that support the following proxy consumer objects:

Obtaining a Proxy Consumer
You obtain a proxy consumer by invoking one of the following operations on a supplier admin:

obtain_notification_push_consumer()

• •

• •

• •

ProxyPushConsumer
StructuredProxyPushConsumer
SequenceProxyPushConsumer
ProxyPullConsumer
StructuredProxyPullConsumer
SequenceProxyPullConsumer

Implementing a Supplier

- 22/172 -

returns a push-model proxy consumer.

obtain_notification_pull_consumer()

returns a pull-model proxy consumer.

Both methods take one of the following arguments, which determines the event message type that this
proxy consumer handles:

Both methods raise CosNotifyChannelAdmin::AdminLimitExceeded when the event channel’s
MaxSuppliers (see MaxSuppliers) limit is reached.

Example
The code in Example 3 obtains a StructuredProxyPushConsumer proxy consumer for a
StructuredPushSupplier supplier by calling obtain_notification_push_consumer() , and supplying an
argument of STRUCTURED_EVENT .

Example 3: Obtaining a Proxy Consumer

ANY_EVENT
STRUCTURED_EVENT
SEQUENCE_EVENT

Implementing a Supplier

- 23/172 -

Connecting a Supplier to a Proxy Consumer
After creating a proxy consumer, you can connect it to a compatible client supplier. This establishes the
client supplier’s connection to the event channel, so it can send messages.

Each proxy consumer interface supports a connect operation; the operation requires that the supplier
and its proxy support the same delivery model and event-message type. For example, the
StructuredProxyPushConsumer interface defines connect_structured_push_supplier() , which only accepts an
object reference to a StructuredPushSupplier as input.:

Example
Example 4 shows one method of implementing a StructuredPushSupplier client that connects itself to a
proxy consumer.

Example 4: Connecting a StructuredPushSupplier

// Java
import org.omg.CosNotifyChannelAdmin.*;
IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.STRUCTURED_EVENT;
try
{
ProxyConsumer obj =
sa.obtain_notification_push_consumer(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
// handle the exception
}
StructuredProxyPushConsumer ppc =
StructuredProxyPushConsumerHelper.narrow(obj);

// IDL
interface StructuredProxyPushConsumer :
ProxyConsumer, CosNotifyComm::StructuredPushConsumer
{
void connect_structured_push_supplier(
in CosNotifyComm::StructuredPushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);
};

Implementing a Supplier

- 24/172 -

Creating Event Messages

Types of Event Messages
The notification service supports three formats for sending events:

Untyped events are sent as CORBA::Any types. Clients can store an event message into any format
they choose, including a structure, then package the data into an Any .

Structured events provide a well-defined data structure that encapsulates an event’s type and
other information. Filters use this data to screen event messages.

// Java
import org.omg.CosEventChannelAdmin.*;
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
// ...

public static void main (String args[])
{
// ORB and POA creation not shown
// proxy ppc and PushSupplier supplier obtained previously
try
{
ppc.connect_structured_push_supplier(supplier);
}

catch (AlreadyConnected.value ac)
{
// Handle the exception
}

catch (SystemException sys)
{
System.err.println("Encountered system exception
during connect: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}
// ...
}
}

• •

• •

Implementing a Supplier

- 25/172 -

Sequences of structured events are simply batches of structured events gathered together and
sent at the same time.

Structured Event Messages
Structured event messages are defined in module CosNotification as follows:

Each structured event has three main components, as shown in Figure 7.

Figure 7: Structured Event Components

• •

struct Property {
PropertyName name;
PropertyValue value;
};
typedef sequence<Property> PropertySeq;
typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;
struct EventType {
string domain_name;
string type_name;
};
struct FixedEventHeader {
EventType event_type;
string event_name;
};
struct EventHeader {
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;
};
struct StructuredEvent {
EventHeader header;
FilterableEventBody filterable_data;
any remainder_of_body;
};

Implementing a Supplier

- 26/172 -

EventHeader

consists of two members:

A fixed header section that contains three string fields for specifying event-type data: domain_name ,
type_name , and event_name .

A list of zero or more optional header fields. Each field name is a string, and each value is a
CORBA::Any . These fields are typically used to set properties on an event message, such as its
lifetime and priority.

FilterableEventBody

consists of data fields that can be used to set user-defined properties. Filters typically use these to
screen event messages.

remainder_of_body

is a CORBA::Any , which can store any event-related data, such as the contents of a file.

Why Use Structured Event Messages?
A structured event message can provide filterable information, such as the event’s type and contents,
and assign quality-of-service properties to the event, such as its priority or lifetime. Later chapters in
this guide describe notification filters (Event Filtering) and quality-of-service properties (Notification
Service Properties).

• •

• •

Implementing a Supplier

- 27/172 -

Example
The code in Example 5 shows how a supplier creates a structured message that sets an event type’s
domain name and type name to SportsNews and BaseballResults , respectively, and sets its priority to 0.

Example 5: Creating a Structured Message

This code executes as follows:

Creates an event.

Builds a new event header.

Builds a new fixed event header.

Builds a new property list in the variable header.

Adds the fixed header and the variable header to the event.

// Java
import org.omg.CosNotification.*;

[1]
(#example)

StructuredEvent event = new StructuredEvent();

[2]
(#example)

String domain_name = new String("SportsNews");
String type_name = new String("BaseballResults");
EventType event_type = new EventType(domain_name,
type_name);

[3]
(#example)

String event_name = new String("");
FixedEventHeader fixed_header = new
FixedEventHeader(event_type,
event_name);

[4]
(#example)

String property_name = new String(Priority.value)
Property[] variable_header = new Property[1];
variable_header[0] = new Property();
variable_header[0].name = property_name;
variable_header[0].value = orb.create_any();
variable_header[0].value.insert_long(0);

[5]
(#example)

event.header = new EventHeader(fixed_header,
variable_header);

[6]
(#example)

event.filterable_data = new Property [0];
event.remainder_of_body = ORB.create_any();

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Implementing a Supplier

- 28/172 -

Creates the remainder of the event body.

Sending Event Messages
A client supplier sends event messages in one of two ways:

A push supplier invokes the appropriate push operation on its proxy consumer and supplies the
event as an input argument.

A pull supplier implements the appropriate pull or try_pull operation. When the proxy
consumer invokes one of these operations, the supplier returns an event message, if one is
available.

Push Supplier
A push supplier invokes one of the following push operations on its proxy consumer, according to the
event messages that they support:

push() is invoked by a PushSupplier and accepts a CORBA::Any as input.

push_structured_event() is invoked by a StructuredPushSupplier and accepts a StructuredEvent as
input.

push_structured_events() is invoked by a SequencePushSupplier and accepts a sequence of event
structures as input.

Example
Example 6 pushes a structured event message.

Example 6: Pushing a Structured Event

6. 6.

• •

• •

• •

• •

• •

// Java
// proxy consumer and event message already obtained
try
{
proxy.push_structured_event(se);
}

catch (SystemException sys)
{
System.err.println("Unexpected system exception during push:"
+SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

Implementing a Supplier

- 29/172 -

Pull Supplier
A pull supplier sends event messages only on request. Depending on the setting of the configuration
variable dispatch_strategy , a pull supplier’s proxy consumer invokes a try_pull() or a pull() operation
on it’s supplier. Pull suppliers are responsible for implementing the appropriate variant of try_pull() or
pull() . Each pull supplier interface supports a try_pull() and pull() operation:

try_pull() and pull() are invoked on a PullSupplier and return a CORBA::Any .

try_pull_structured_event() and pull_structured_event() are invoked on a StructuredPullSupplier
and return a CosNotification::StructuredEvent .

try_pull_structured_events() and pull_structured_events() are invoked on a SequencePullSupplier
and return a sequence of event structures.

A try_pull operation is non-blocking and is called by the proxy when the notification service’s
dispatch_strategy is set to thread_pool . It returns immediately with an output parameter of type
boolean to indicate whether the return value actually contains an event. The proxy consumer
continues to invoke the pull operation on the supplier as many times as specified in the
MaxRetries property (see MaxRetries). The interval between retries is specified by the PullInterval
property (see PullInterval).

A pull operation is blocking and is called by the proxy when the notification service’s
dispatch_strategy is set to single_thread . It blocks until an event is ready to be forwarded to the
proxy.

Since the setting of the notification service’s dispatch_strategy cannot typically be determined at
development time, the safest approach to developing pull style suppliers is implement both
try_pull() and pull() .

catch (org.omg.CosEventComm.Disconnected dc)
{
System.err.println("Channel is disconnected.");
System.exit(1);
}

catch (Exception e)
{
System.err.println("Unknown exception occurred during push");
System.exit(1);
}

• •

• •

• •

Implementing a Supplier

- 30/172 -

Example
Example 7 implements try_pull_structured_event() by attempting to populate an event structure with
the latest baseball scores.

Example 7: Pulling Structured Events

// Java
import org.omg.CosNotification.*;
class NotifyPullSupplier extends StructuredPullSupplierPOA
{
// ...

public StructuredEvent try_pull_structured_event (BooleanHolder has_event)
{
StructuredEvent se = new StructuredEvent();
has_event.value = false;

// get scores
String scores;
boolean has_scores = get_scores(scores);

// If there are scores build the event
if (has_scores == true)
{
String domain_name = new String ("SportsNews");
String type_name = new String ("BaseballResults");
EventType event_type = new EventType(domain_name,
type_name);
String event_name = new String("");
FixedEventHeader fixed_header =
new FixedEventHeader(event_type, event_name);
Property[] variable_header = new Property[0];
se.header = new EventHeader(fixed_header,
variable_header);
se.filterable_data = new Property [0];
se.remainder_of_body = ORB.create_any();
se.remainder_of_body.insert_string(scores);
has_event.value = true;
}

Implementing a Supplier

- 31/172 -

Disconnecting From the Event Channel
A client supplier can disconnect from the event channel at any time by invoking the disconnect
operation on its proxy consumer. This operation terminates the connection between a supplier and its
target proxy consumer. The channel then releases all resources allocated to support its connection to
the supplier, including destruction of the target proxy consumer.

Each proxy consumer interface supports a disconnect operation. For example,
disconnect_structured_push_consumer() is defined in the interface StructuredProxyPushConsumer .

Implementing a Consumer

Actions
A client consumer program performs the following actions:

Instantiates consumers using the appropriate CosNotifyComm interface.

Connects consumers to the event channel.

Obtains event messages.

Disconnects from the event channel.

Instantiating a Consumer

Which Interface to Use?
Two dependencies determine which interface you use to instantiate a consumer:

The model that the consumer supports: push or pull.

The type of event messages that the consumer receives: untyped, structured, or sequence of
structures.

The IDL module CosNotifyComm defines six interfaces that support different combinations of both
dependencies:

return se;
}

1. 1.

2. 2.

3. 3.

4. 4.

• •

• •

Event type Push model Pull model

untyped PushConsumer PullConsumer

Implementing a Consumer

- 32/172 -

You instantiate a consumer from the interface that supports the desired model and event
message type.

Example
Example 8 shows how a client application might instantiate a structured push consumer.

Example 8: Instantiating a Consumer

Event type Push model Pull model

structured StructuredPushConsumer StructuredPullConsumer

sequence SequencePushConsumer SequencePullConsumer

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// member variables not shown...

// The main entry point @param args command line args
public static void main (String args[])
{
// ORB and POA initialization not shown ...
NotifyPushConsumer consumer = new NotifyPushConsumer();
// ...
}

Implementing a Consumer

- 33/172 -

Connecting to the Channel
Consumers receive messages from the event channel through a proxy supplier. Each consumer on the
channel has its own proxy supplier. Proxy suppliers use the same delivery method as their consumers
and send the appropriate message type.

Procedure
Consumers connect to the event channel in three steps:

Obtaining a Consumer Admin
On creation, an event channel instantiates a default ConsumerAdmin object, which you supply by calling
default_consumer_admin() on the event channel. For example:

The EventChannel interface also defines operations for creating and getting other consumer admin
objects:

new_for_consumers()

returns a new consumer admin and its system-assigned AdminID identifier. When you create a consumer
admin, you also determine whether to AND or OR its forwarding filters with proxy supplier filters (see
Traversing Multiple Filters in a Channel).

get_consumeradmin()

takes an AdminID identifier and returns an existing consumer admin.

void public NotifyPushConsumer()
{
}
// ...
}

Step Action

1 Obtain a ConsumerAdmin object from the event channel.

2 Create a proxy supplier in the event channel, to receive supplier-generated
event messages.

3 Connect to the proxy supplier.

org.omg.CosNotifyChannelAdmin.ConsumerAdmin ca =
channel.default_consumer_admin();

Implementing a Consumer

- 34/172 -

get_all_consumeradmins()

returns a sequence of AdminID identifiers.

Why Create Multiple Admin Objects?
You might want to create multiple consumer admin objects for one of the following reasons:

Groups of proxy suppliers each require the same quality-of-service properties. All proxy suppliers
inherit properties from their parent consumer admin. By creating different consumer admin
objects with the desired sets of properties, you can more easily manage the properties of
individual proxies.

For more information about quality-of-service properties, see Notification Service Properties.

Groups of proxy suppliers each have the same filtering requirements. Because all event messages
are initially filtered by the consumer admin, you can use admin filters to centralize filter
processing and administration, and minimize the associated overhead.

You need to distribute the load of event messages among different consumer admin objects. A
consumer admin’s work load is liable to increase for two reasons: using consumer-side filters, and
the number of message-forwarding proxies. One or both factors might require additional
consumer admin objects to handle the extra work load that these entail.

For more information about filters, see Event Filtering.

Proxy Suppliers
A proxy supplier is responsible for distributing event messages that have been sent by the event
channel to its consumer, subject to filtering and quality-of-service settings. You create one proxy
supplier for each client consumer.

As with client consumers, you can create six types of proxy suppliers, depending on the client
consumer’s model (push/pull) and event message type (untyped, structured, or sequence of structures).
The proxy supplier must be the same type as its client consumer.

The module CosNotifyChannelAdmin defines interfaces that support the following proxy supplier objects:

• •

• •

• •

Implementing a Consumer

- 35/172 -

Obtaining a Proxy Supplier
You obtain a proxy supplier by invoking one of the following methods on a consumer admin:

obtain_notification_push_supplier()

returns a push-model proxy supplier.

obtain_notification_pull_supplier()

returns a pull-model proxy supplier.

Both methods take one of the following arguments, which determines the event message type that this
proxy supplier handles:

Both methods raise CosNotifyChannelAdmin::AdminLimitExceeded when the event channel’s
MaxConsumers (see MaxConsumers) limit is reached.

Example
Example 9 obtains a proxy supplier for a StructuredPushConsumer supplier by calling
obtain_notification_push_supplier() .

Example 9: Obtaining a Proxy Supplier

ProxyPushSupplier
StructuredProxyPushSupplier
SequenceProxyPushSupplier
ProxyPullSupplier
StructuredProxyPullSupplier
SequenceProxyPullSupplier

ANY_EVENT
STRUCTURED_EVENT
SEQUENCE_EVENT

Implementing a Consumer

- 36/172 -

Connecting a Consumer to a Proxy Supplier
After creating a proxy supplier, you can connect it to a compatible client consumer. This establishes the
client’s connection to the event channel, so it can obtain messages from suppliers.

Each proxy supplier interface supports a connect operation; the operation requires that the client
supplier and its proxy support the same push or pull model and event-message type. For example, the
StructuredProxyPushSupplier interface defines connect_structured_push_consumer() , which only accepts an
object reference to a StructuredPushSupplier as input:

Example
Example 10 shows how you might implement a StructuredPushConsumer client that connects itself to a
proxy supplier.

// Java
import org.omg.CosNotifyChannelAdmin.*;
IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.STRUCTURED_EVENT;
try
{
ProxySupplier obj =
ca.obtain_notification_push_supplier(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
//handle exception
}
StructuredProxyPushSupplier pps =
StructuredProxyPushSupplierHelper.narrow(obj);

// IDL
interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm::StructuredPushSupplier
{
void connect_structured_push_consumer
(in CosNotifyComm::StructuredPushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);
};

Implementing a Consumer

- 37/172 -

Example 10: Connecting to a Proxy Supplier

Obtaining Event Messages
A client consumer obtains event messages in one of two ways:

A push consumer implements the appropriate push operation. As events become available, the
proxy supplier pushes them to its client consumer in the appropriate format.

A pull consumer invokes the appropriate pull or try_pull operation on its proxy supplier; the
proxy supplier returns with the next available event.

// Java
import org.omg.CosNotifyChannelAdmin.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// ...

public static void main (String args[])
{
// ...
// Proxy pps and PushConsumer consumer obtained previously
try
{
pps.connect_structured_push_consumer(consumer);
}

catch (AlreadyConnected.value ac)
{
System.err.println("Already connecting to channel.");
System.exit (1);
}

catch (SystemException sys)
{
System.err.println("Encountered system exception during
connect: " + SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}
//...
}
}

• •

• •

Implementing a Consumer

- 38/172 -

Event Message Conversion
If necessary, the event channel converts event messages to the type expected by its consumers. For
example, if a PushSupplier pushes an untyped event message to an event channel that has
StructuredPushConsumer clients, the channel delivers the event to those clients as a structured event
message. The event data is stored in the message’s remainder_of_body member. Similarly, PushConsumer
clients receive an event originally sent in structured format as a CORBA::Any .

Push Consumer
A push consumer implements one of the following push operations:

push() is implemented by a PushConsumer , and receives an event message of the CORBA::Any type.

push_structured_event() is implemented by a StructuredPushConsumer and receives an event
message of CosNotification::StructuredEvent .

push_structured_events() is implemented by a SequencePushConsumer and receives a sequence of
structured event messages CosNotification::EventBatch .

Example
Example 11 implements push_structured_event() to receive a structured event that contains sports
scores.

Example 11: Receiving Events Using Push

• •

• •

• •

// Java
import org.omg.CosNotification.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// ...

public void push_structured_event(StructuredEvent event)
{
String news_type = new
String(event.header.fixed_header.event_type.domain_name);
String sports_type = new
String(event.header.fixed_header.event_type.type_name);

Implementing a Consumer

- 39/172 -

Pull Consumer
A pull client consumer invokes the appropriate pull or try_pull operation on its proxy supplier to
solicit event messages; the proxy supplier returns with the next available event.

Each proxy supplier interface supports a variant of the pull and the try_pull operations:

pull() and try_pull() are invoked on a PullSupplier proxy and return a CORBA::Any argument.

pull_structured_event() and try_pull_structured_event() are invoked on a StructuredPullSupplier
proxy and return a CosNotification::StructuredEvent .

pull_structured_events() and try_pull_structured_events() are invoked on a SequencePullSupplier
proxy and return a sequence of event structures.

The pull and try_pull operations differ only in their blocking mode:

A pull operation blocks until an event is available.

A try_pull operation is non-blocking—it returns immediately with a boolean output parameter to
indicate whether the return value actually contains an event. The proxy consumer continues to
invoke the pull operation on the supplier as many times as specified in the MaxProxyConsumerRetries
property (see MaxRetries). The interval between retries is specified by the PullInterval property
(see PullInterval).

Example
Example 12 shows how one might use try_pull to receive data from a StructuredProxyPullSupplier .

Example 12: Pulling Events

if(news_type.equals("SportsNews"))
{
String scores =
event.remainder_of_body.extract_string();
System.out.println("Current " + sports_type + "scores:
" + scores);
}
}
//...
}

• •

• •

• •

• •

• •

Implementing a Consumer

- 40/172 -

Disconnecting From the Event Channel
A client consumer can disconnect from the event channel at any time by invoking the disconnect
operation on its proxy supplier. This operation terminates the connection between the consumer and its
target proxy supplier. The event channel then releases all resources allocated to support its connection
to the consumer, including destruction of the target proxy supplier.

Each proxy supplier interface supports a disconnect operation. For example,
disconnect_structured_push_supplier() is defined in . StructuredProxyPushSupplier

// Java
BooleanHolder has_data = new BooleanHolder();
try
{
event = proxy.try_pull_structured_event(has_data);
}

catch (org.omg.CosEventComm.Disconnected dsc)
{
System.err.println("Disconnected exception occured during
pull");
System.exit (1);
}

catch (SystemException sys)
{
System.err.println("System exception occured during pull");
System.exit (1);
}

if (has_data.value)
{
n = event2.remainder_of_body.extract_ulong ();
System.out.println("Received event number " + n + " using
try pull");
}

Implementing a Consumer

- 41/172 -

Notification Service Properties
You can set and modify a number of properties on notification service components.

Notification service properties control the delivery of event messages—for example, their priority and
reliability. You can use either the API or the Notification Console to set these properties on a channel, an
administration object, a proxy object, or an event message.

The Notification Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site,
which is part of the Rocket Software Support Portal. Among other benefits, this site provides access to
product license keys and install-kits, including the relevant GUI components.

For more information on the SLD, please see our Support Portal overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Property Types

Administration Properties
Administration properties control the behavior of event channels and cannot be set on other objects.
They are supported by the AdminPropertiesAdmin interface, which provides the accessor operations
get_admin() and set_admin() .

The notification service supports the following administration properties:

Note

Notification Service Properties

- 42/172 -

https://support.microfocus.com/help/support-portal-overview.pdf

Quality-of-Service Properties
Quality-of-service properties control the behavior of all notification service components and can be set
on any notification service object, including messages. They are supported by the QoSAdmin interface,
which provides accessor operations get_qos() and set_qos() .

Table 2 lists the quality-of-service properties and the component types on which they can be set. Some
properties have more specific restrictions; these are discussed in the property descriptions (see
Property Descriptions).

Table 2: Component Support for Quality-of-Service Properties

MaxConsumers
MaxSuppliers
MaxQueueLength
RejectNewEvents

Property Message Proxy Admin Channel

EventReliability Y Y

ConnectionReliability Y Y Y

Priority Y Y Y Y

OrderPolicy Y Y Y

StopTime Y

StopTimeSupported Y Y Y

Timeout Y Y Y Y

StartTime Y

StartTimeSupported Y Y Y

MaxEventsPerConsumer Y Y Y

DiscardPolicy Y Y Y

MaximumBatchSize Y Y Y

PacingInterval Y Y Y

MaxRetries Y Y Y

Property Types

- 43/172 -

Property Inheritance

Order of Inheritance
On creation, an event channel, admin, or proxy initially inherits its quality-of-service properties from the
following components, in ascending order of precedence:

The notification service’s default property settings.

Component ancestors, in order of creation.

For example, when you create a consumer proxy, the notification service:

Obtains its own default properties

Merges these properties with notification channel properties.

Merges the aggregate of all higher-level properties with the parent supplier admin’s properties

Sets the merged list of properties on the consumer proxy.

At each merge stage, the current object’s properties override corresponding properties of all
higher-level components.

If you change a component’s properties, the changes are inherited only by child components
that are created afterwards; existing child components are unaffected by changes in their
parents.

Property Message Proxy Admin Channel

RetryTimeout Y Y Y

MaxRetryTimeout Y Y Y

RequestTimeout Y Y Y

PullInterval Y Y Y

RetryMultiplier Y Y Y

• •

• •

a. 1.

b. 2.

c. 3.

d. 4.

Warning

Property Inheritance

- 44/172 -

Setting Properties
Properties can be set on the following notification service components, in ascending order of
precedence:

Event channel

Admins

Proxies

Structured event messages

Properties can be set programmatically or through the Notification Console. Properties can also
be set for individual structured events through their optional header fields.

Consistency
Because properties can be set individually on the different components that handle event message
delivery, it is important to ensure consistent settings across the entire delivery path. Unless all of the
components in the delivery path agree on a consistent set of policies, message delivery can be
unpredictable.

Setting Properties Programmatically

Methods for Setting Properties
The notification service provides two methods for setting an object’s properties:

set_admin() sets administration properties on an event channel. It cannot be used to set
properties on other notification service objects.

set_qos() sets quality-of-service properties on all notification service objects.

set_admin()
set_admin() is called on an event channel to set one of the following administration properties:

You can use set_admin() to change existing properties on an event channel or set new ones. Any
property that is not specified remains unchanged.

• •

• •

• •

• •

• •

• •

MaxConsumers
MaxSuppliers

Setting Properties

- 45/172 -

set_admin() takes a single argument of type CosNotification::AdminProperties , which is defined as a
sequence of String/Any name-value pairs specifying the properties to be changed and their new
settings.

set_admin() throws an exception of UnsupportedAdmin if the property is unsupported for the target
component. This exception returns a sequence of structures containing the name of the invalid
property, an error code identifying the error, and a cstruct specifing the valid range of settings for the
property.

Table 3 lists the possible error codes returned because of an UnsupportedAdmin exception.

set_qos()
set_qos() can be called on all notification service components to set their quality-of-service properties.

You can use set_qos() to change existing properties on any notification service component or to set
new ones. Any property that is not specified remains unchanged.

set_qos() takes a single argument of type CosNotification::QoSProperties which is defined as a
sequence of String/Any name-value pairs specifying the properties to be changed and their new
settings.

set_qos() can throw UnsupportedQoS , if the property is unsupported for the target component. This
exception returns a sequence of structures containing the name of the invalid property, an error code
identifying the error, and a cstruct specifing the valid range of settings for the property.

Table 3 lists the possible error codes returned because of an UnsupportedQoS exception.

Table 3: Error Codes returned with the UnsupportedQoS and UnsupportedAdmin Exceptions

Error code Meaning

UNSUPPORTED_P
ROPERTY

Orbix does not support the property for this type of object.

UNAVAILABLE_P
ROPERTY

This property cannot be combined with existing quality-of-service
properties.

UNSUPPORTED_V
ALUE

The value specified for this property is invalid for the target object. A
range of valid values is returned.

UNAVAILABLE_V
ALUE

The value requested for this property is invalid in the context of other
quality-of-service properties currently in force. A range of valid values is
returned.

BAD_PROPERTY The property name is unknown.

Setting Properties

- 46/172 -

Example
Example 13 shows one way to set an event channel’s OrderPolicy to FifoOrder.

Example 13: Setting Qos Properties

Setting a Structured Event’s QoS Properties
You can set quality-of-service properties in a structured event message’s header. These settings override
the corresponding properties specified for the consumer and supplier proxies; however, they apply only
to that event.

BAD_QOS Exception
If the requested property is invalid, the notification service raises system exception BAD_QOS . This
exception is thrown during transmission of a structured event from a supplier to the channel when the
channel determines that it cannot accept the event header properties.

Error code Meaning

BAD_TYPE The type supplied for the value of this property is incorrect.

BAD_VALUE The value supplied for this property is illegal. A range of valid values is
returned.

\\ Java
\\ Event channel chan obtained earlier
import org.omg.CosNotification;

try
{
Property[] NewQoS = Property[1];
NewQoS[0] = new Property();
NewQoS[0].name = OrderPolicy.value;
NewQos[0].value = ORB.init().create_any();
NewQos[0].value.insert_short(FifoOrder.value);
chan.set_qos(qos);
}

catch (org.omg.CosNotification.UnsupportedQoS uqos)
{
System.exit(1);
System.err.println("UnsupportedQoS Exception");
}

Setting Properties

- 47/172 -

The BAD_QOS exception provides no details about why it was thrown. By calling validate_event_qos() in
advance, a client can verify whether it can safely set a property in an event message header. For more
on this operation see page 45.

Example
Example 14 sets a structured event’s Priority property to 0.

Example 14: Setting QoS Properties in an Event Header

Getting Properties

Methods
The notification service provides methods for looking at a notification service object’s properties.
Depending on a property’s type (see Property Types), you can call either get_admin() or get_qos() on a
notification service object to retrieve its properties.

get_admin()
get_admin() takes no input parameters, and returns a sequence of CosNotification::AdminProperties
which contains name-value pairs encapsulating the current administrative settings for the target
channel.

// Java
import org.omg.CosNotification;
StructuredEvent event = new StructuredEvent();
event.header = new EventHeader();
event.header.fixed_header = new FixedEventHeader();
event.header.fixed_header.event_type = new
EventType("SportNews", "BaseballResults");
event.header.fixed_header.event_name = new String("");
event.header.variable_header = new Property[1];
event.header.variable_header.name = Priority;
event.header.variable_header.value = ORB.create_any();
event.header.variable_header.value.insert_short(0);
event.filterable_data = new Property [0];

Getting Properties

- 48/172 -

get_qos()
get_qos() retrieves the effective quality-of-service properties for a channel, admin, or proxy. It returns
the list of properties, and their values, that are set on the target object, including those properties
inherited from higher levels, in a sequence of name-value pairs of type CosNotification::QoSProperties.

Example
Example 15 gets the quality-of-service properties that are set for channel chan .

Example 15: Getting QoS Properties

Validating Properties

Methods
The notification service supports two methods that lets a supplier check whether a given object
supports one or more quality-of-service properties:

validate_qos() can be called on all notification service objects.

validate_event_qos() can only be called on consumer proxies to determines which quality-of-
service properties are valid for an event message.

Parameters
Both methods take an input and output parameter:

required_qos:

A sequence of quality-of-service property name-value pairs of type CosNotification::QoSProperties that
specify a set of quality-of-service settings.

available_qos:

An output parameter that contains a sequence of CosNotification::PropertyRange data structures. Each
element in this sequence includes the name of an additional quality-of-service property supported by
the target object that could have been included on the input list and resulted in a successful return
from the operation, along with the range of values that would have been acceptable for each such
property.

// Java
org.omg.CosNotification.Property[] current_qos;
current_qos = chan.get_qos();

• •

• •

Validating Properties

- 49/172 -

available_qos only returns properties that have no interdependencies. If two properties are
interdependent—for example, EventReliability and ConnectionReliability —then neither is returned.

UnsupportedQoS Exception
If any of the properties listed in required_qos are invalid for the target object, the call throws an
UnsupportedQoS exception, which shows which properties are invalid and why. For more information on
return codes, see Table 3 on page 42.

Example
In Example 16, a supplier calls validate_event_qos() on the proxy consumer ppc to determine whether it
can accept a structured event whose EventReliability property is set to Persistent .

Example 16: PropertiesValidating Event

// Java
// consumer proxy ppc obtianed earlier
import org.omg.CosNotification;

Property[] QoS = new Property[1];
QoS[0] = new Property();
QoS[0].name = new String(EventReliability.value);
Qos[0].value = ORB.create_any();
Qos[0].value.insert_short(Persistent.value);

try
{
ppc.validate_event_qos(QoS);
}

catch(UnsupportedQoS unsupported)
{
System.err.prntln("Event persistence not allowed. Error:
unsupported.");
}

Validating Properties

- 50/172 -

Property Descriptions
The following topics are discussed in this section:

Reliability Properties

Event Priority

Event Queue Order

Lifetime Properties

Start Time Properties

Undelivered Event Properties

Discard Policy

Sequenced Events Properties

Proxy Push Supplier Properties

Proxy Pull Consumer Properties

RequestTimeout

Channel Administration Properties

Reliability Properties

Property Names
The notification service defines two reliability properties that determine how it handles service fail over:

EventReliability

ConnectionReliability

catch(org.omg.CORBA.SystemException se)
{
System.err.prntln("System exception occurred during
validate_event_qos call.");
}

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Property Descriptions

- 51/172 -

EventReliability
EventReliability specifies level of assurance that an event will be delivered over multiple restarts of the
process hosting its event channel. This property can be set on an event channel and on individual
events. By default, an event’s reliability is set to match the event channel.

You can set this property to BestEffort or Persistent :

BestEffort:

(default) A queued event remains viable only during the event channel’s hosting process’ lifetime. If the
event channel’s hosting process fails, delivery cannot be guaranteed for any buffered best-effort events;
and consumers might receive the same event more than once.

Persistent:

A queued event is persistent. If the event channel’s hosting process fails, all persistent events that
remain within their expiry limits are restored when the channel’s hosting process is restarted.

EventReliability on a per event basis is only effective when the channel’s EventReliability is set to
Persistent . Otherwise, all events will be delivered with BestEffort .

ConnectionReliability
ConnectionReliability specifies whether a channel maintains information about connected suppliers
and consumers beyond its hosting processes current lifetime. This property can be set only on a
channel.

You can set this property to BestEffort or Persistent :

BestEffort:

(default) Supplier and consumer connections are valid only during the event channel’s hosting process’
current lifetime. If the event channel’s hosting process fails, all references to that event channel become
invalid and should be explicitly disconnected by the consumers and suppliers. Upon restart of the
channel’s hosting process, all suppliers and consumers must reconnect to the channel using new
references.

Persistent:

All supplier and consumer connections remain viable beyond the event channel’s hosting process’
current lifetime. Upon restart from a failure, the event channel automatically re-establishes connections
to all clients that were connected to it at the time of failure.

Note

Property Descriptions

- 52/172 -

Valid Combinations
The following matrix shows which combinations for EventReliability and ConnectionReliability are
valid:

Event Queue Order

OrderPolicy
The OrderPolicy property tells a proxy in what order to queue events for delivery. This property can be
set on a channel, and on individual admin or proxy objects; it is typically set by a consumer on its
consumer admin, supplier proxy, or both.

Values
You set this policy with one of the following constants:

AnyOrder:

Queue events in any order. In practice, this has the same effect as specifying FifoOrder .

FifoOrder:

Queue events in the order they are received by the event channel.

PriorityOrder:

(default) Queue events according to their Priority property setting, so higher priority events are
delivered before lower priority events.

DeadlineOrder:

Queue events in order of expiry deadlines, so events that are destined to expire earliest are delivered
first.

EventReliability ConnectionReliability

BestEffort Persistent

BestEffort

Y Y

Persistent

N Y

Property Descriptions

- 53/172 -

Event Priority

Priority
The Priority property determines the order in which events are delivered to a consumer. This property
can be set on all component types; however, it is typically set on individual event messages.

Interaction with OrderPolicy
Priority settings are effective only if the delivery points for prioritized messages have their OrderPolicy
property set to PriorityOrder (see Event Queue Order); otherwise, the Priority property is ignored.
Thus, in order to guarantee that all supplier-assigned priorities are respected in a given channel,
OrderPolicy must be set to PriorityOrder for all proxy suppliers within that channel.

Values
The Priority property can be set to any short value between -32,767 (lowest priority) and 32,767
(highest priority), inclusive. By default, all events have a Priority setting of 0 .

A consumer can modify a message’s priority with mapping filters (see Mapping Filters).

Lifetime Properties

Property Names
Lifetime properties specify the time span in which an event remains viable; if the event is not delivered
within that time span, it is discarded. By default, events do not have fixed expiry times. The notification
service defines three lifetime properties:

StopTime

StopTimeSupported

Timeout

StopTime
StopTime sets an absolute expiry time (for example, September 1, 2001), after which the event is no
longer deliverable and must be discarded. StopTime can only be set in the header of structured event
messages.

This property is set with a TimeBase::UtcT datatype.

Note

• •

• •

• •

Property Descriptions

- 54/172 -

StopTimeSupported
StopTimeSupported can be set on a channel, admin, or proxy objects; its boolean setting specifies
whether the component supports the StopTime property. It has a defualt setting of TRUE and the
notification service does not currently support a setting of FALSE .

Timeout
Timeout specifies, in units of 10-7 seconds, how long an event remains viable after the channel receives
it. After the Timeout value expires, the event is no longer deliverable and must be discarded.

You can set this property on a structured event message, channel, admin, or proxy. A consumer can
override this property with mapping filters (see Mapping Filters).

This property is set with a TimeBase::TimeT datatype; the default value is 0.

Start Time Properties

Property Names
Start time properties specify when an event becomes deliverable. By default, all events are deliverable
as soon as they are received by the channel. The notification service defines two start time properties:

StartTime

StartTimeSupported

StartTime
StartTime specifies that the event is to be delivered only after the specified time, which is set with a
TimeBase::UtcT datatype. This property can only be set on structured event messages.

StartTimeSupported
StartTimeSupported can be set on a channel, admin, or proxy objects, its boolean setting specifies
whether the component supports the StartTime property. It has a defualt setting of TRUE and the
notification service does not currently support a setting of FALSE .

Undelivered Event Properties

Property Names
Two properties control the behavior of undelivered events in a channel:

MaxEventsPerConsumer

DiscardPolicy

• •

• •

• •

• •

Property Descriptions

- 55/172 -

MaxEventsPerConsumer
MaxEventsPerConsumer limits the number of undelivered events that a channel queues for a consumer at
any given time.

Overflow events are discarded in the order specified by DiscardPolicy .

You can set MaxEventsPerConsumer on:

Individual consumers, by setting it on their supplier proxies.

A group of consumers, by setting it on their common consumer admin.

All consumers connected to a given channel, by setting this property on the channel itself.

This property is set with a long datatype; the default value is 0 (unlimited).

Discard Policy
DiscardPolicy specifies the order in which events are discarded. You can set DiscardPolicy with one of
the following constants:

AnyOrder:

(default) Discard any events.

FifoOrder:

Discard events from the head of the queue.

PriorityOrder:

Discard events according to their priority, so lower priority events are discarded before higher priority
events.

DeadlineOrder:

Discard events in order of shortest expiry deadline first.

LifoOrder:

Discard events from the tail of the queue.

Events are discarded only for a consumer whose number of queued events exceeds its
MaxEventsPerConsumer setting. The event remains queued for any consumers whose maximum is not
exceeded.

• •

• •

• •

Note

Property Descriptions

- 56/172 -

RequestTimeout
RequestTimeout specifies, in units of 10-7 seconds, how much time is allowed a channel object to perform
an operation on a client. If the operation does not return within the specified limit, it throws a
CORBA::TRANSIENT system exception.

This property is set with a TimeBase::TimeT datatype; the default is 5 seconds. The maximum value is 600
seconds.

Sequenced Events Properties

Property Names
Consumers that are registered to receive sequences of structured events can control the inflow of
events through two properties:

MaximumBatchSize

PacingInterval

Both properties can be set only for supplier proxies of types SequenceProxyPushSupplier and
SequenceProxyPullSupplier . You can set these properties on individual proxies, on consumer admin
objects, and on the event channel.

MaximumBatchSize
MaximumBatchSize specifies the maximum number of structured events that are sent in a sequence to
consumers. This property is set with a long datatype; the default value is 1.

PacingInterval
PacingInterval specifies, in units of 10-7 seconds, the maximum amount of time that a channel is given
to assemble structured events into a sequence, before delivering the sequence to consumers. This
property is set with a TimeBase::TimeT datatype; the default value is 0.

The default values for MaximumBatchSize and PacingInterval configure a SequenceProxy to behave
similarly to a StrucuredProxy .

Setting Both Properties
With both properties set, a supplier proxy must deliver a sequence of structured events to its
consumers when one of the following events occurs:

The number of events is equal to MaximumBatchSize .

• •

• •

Note

• •

Property Descriptions

- 57/172 -

The PacingInterval time limit expires.

Proxy Push Supplier Properties

Property Names
Four quality-of-service properties control interaction between a ProxyPushSupplier and its consumer:

MaxRetries

RetryTimeout

RetryMultiplier

MaxRetryTimeout

You can set these properties on a ProxyPushSupplier on consumer administration objects, and on
an event channel.

MaxRetries
MaxRetries specifies the maximum number of times that a proxy push supplier calls push() on its
consumer before it gives up. This property is set with a CORBA::Ulong datatype; the default value is 0,
which effectively means an infinite number of retries.

RetryTimeout
RetryTimeout specifies, in units of 10-7 seconds, how much time elapses between attempts by a proxy
push supplier to call push() on its consumer. This property is set with a TimeBase::TimeT datatype; the
default value is 1 second (1x107).

RetryMultiplier
RetryMultiplier specifies the number by which the current value of RetryTimeout is multiplied to
determine the next RetryTimout value. RetryMultiplier is applied until either the push() is successful or
MaxRetryTimeout is reached. This property is set with a CORBA::double datatype between 1.0 and 2.0; the
default value is 1.0.

MaxRetryTimeout
MaxRetryTimeout sets the ceiling, in units of 10-7 seconds, for RetryTimeout . This property applies to
RetryTimeout values directly assigned by developers as well as RetryTimeout values reached by the
multiplication of RetryMultiplier and RetryTimeout . This property is set with a TimeBase::TimeT datatype;
the default value is 60 seconds (60x107).

• •

• •

• •

• •

• •

Property Descriptions

- 58/172 -

Proxy Pull Consumer Properties

Property Names
Two quality-of-service properties control interaction between a ProxyPullConsumer and its supplier:

MaxRetries

PullInterval

You can set these properties on a ProxyPullConsumer ; on supplier admin objects; and on an event
channel.

MaxRetries
MaxRetries specifies the maximum number of times that a proxy pull consumer calls pull() or
try_pull() on its supplier before it gives up. This property is set with a CORBA::Ulong datatype. The
default value is 3.

PullInterval
PullInterval specifies, in units of 10-7 seconds, how much time elapses between attempts by a proxy
pull consumer to call pull() or try_pull() on its supplier. This property is set with a long datatype; the
default value is 1 second (1x107).

Channel Administration Properties
MaxConsumers , MaxSuppliers , MaxQueueLength , and RejectNewEvents apply only to event channel
administration, and can be set only on an event channel. These properties are accessible through
set_admin() and get_admin() .

MaxConsumers
MaxConsumers specifies the maximum number of consumers that can be connected to the channel at any
given time. This property is set with a long datatype; the default value is 0 (unlimited).

MaxSuppliers
MaxSuppliers specifies the maximum number of suppliers that can be connected to the channel at any
given time. This property is set with a long datatype; the default value is 0 (unlimited).

MaxQueueLength
MaxQueueLength specifies the maximum number of events that will be queued by the channel before the
channel begins discarding events or rejecting new events if RejectNewEvents is set to TRUE ; the default
value is 0 (unlimited).

• •

• •

Property Descriptions

- 59/172 -

RejectNewEvents
RejectNewEvents specifies whether or not the channel continues accepting new events after the number
of events has reached MaxQueueLength . Rocket Software’s implementation only supports a value of TRUE
for this property.

When the total number of undelivered events within the channel is equal to MaxQueueLength , each pull-
style proxy consumer will stop attempting to perform pull invocations on its supplier until the total
number of undelivered events within the channel is decreased. Attempts to push new events to the
channel by push-style suppliers will result in the IMPL_LIMIT system exception being raised.

Event Filtering
Filter objects screen events as they pass through the channel, and process those that meet the filter
constraints.

The notification service defines two types of filters:

Forwarding filters are set in a channel by clients that wish to restrict event delivery to those events
that meet certain constraints. These filters implement interface CosNotifyFilter::Filter .

Mapping filters are set by consumers to adjust the priority or lifetime settings of those messages
that meet filter constraints. These filters implement interface CosNotifyFilter::MappingFilter .

Forwarding Filters
Consumers can use forwarding filters to receive only those events that interest them. For example, a
consumer within a company’s accounting department might use filters to ensure that it receives from
government agencies only those events that pertain to tax code changes.

Forwarding filters can be set on individual proxies, both consumer and supplier types, and on groups of
proxies through their common admin objects. Because forwarding filters can be set on any delivery
point within an event channel, you can build a filtering system that satisfies the individual and collective
needs of widely different consumers.

An object that has no filters associated with it forwards all events that it receives to the next delivery
point.

• •

• •

Note

Event Filtering

- 60/172 -

Implementing a Forwarding Filter

Procedure
Implementing a forwarding filter is a four-step process:

Obtaining a Filter Object
To create filter objects, an application first obtains a filter factory, which is based on interface
CosNotifyFilter::FilterFactory :

Orbix Notification provides a default filter factory instance that is associated with each event channel.
After obtaining a filter factory, the consumer or supplier client calls create_filter() on the filter factory
object; the call supplies the argument EXTENDED_TCL , which specifies the default constraint grammar.

Example
The code in Example 17 obtains a filter object.

Example 17: Obtaining a Filter Object

Step Action

1 Obtain a filter object.

2 Set up filter constraints.

3 Add constraints to the filter object.

4 Attach the filter to a proxy or admin object.

// IDL in CosNotifyFilter
interface FilterFactory {
Filter create_filter (
in string constraint_grammar)
raises (InvalidGrammar);
// ...
};

Forwarding Filters

- 61/172 -

Setting Up Filter Constraints
After creating a filter object, you can set up its constraints. Filter objects encapsulate one or more
constraints through a sequence of CosNotifyFilter::ConstraintExp data structures.

Each ConstraintExp has two members:

EventTypeSeq

specifies a sequence of EventType data structures, each containing two fields that combine to specify an
event type:

constraint_expr

specifies a boolean string expression whose syntax conforms to the default filter constraint language
(see Filter Constraint Language).

Example
Example 18 sets up a filter constraint with a single constraint expression, which specifies to forward
only even-numbered events:

// Java
// event channel obtianed earlier
org.omg.CosNotifyFilter.FilterFactory dff =
channel->default_filter_factory();
org.omg.CosNotifyFilter.Filter filter =
dff->create_filter("EXTENDED_TCL");

// IDL
struct ConstraintExp {
CosNotification::EventTypeSeq event_types;
string constraint_expr;
};
typedef sequence<ConstraintExp> ConstraintExpSeq;

// IDL in module CosNotification
struct EventType {
string domain_name;
string domain_type;
};
typedef sequence<EventType>EventTypeSeq;

Forwarding Filters

- 62/172 -

Example 18: Setting up a Filter Constraint

The filter constraint is set up as follows:

A single EventType is initialized, where the domain_name member is set to Orbix Demos ; and the
type_name member is set to Structured Notification Push Demo Event .

A ConstraintExpSeq is defined with a single ConstraintExp member.

constraint_expr is set to a boolean string expression, which evaluates to true if an event’s
$EventNumber is an even integer; false if it is odd.

Adding Constraints to a Filter
After you set up filter constraints, you add them to a filter by calling add_constraints() , as in the
following example:

The operation checks whether the constraint is syntactically correct; if not, it throws exception
InvalidConstraint .

Attaching Filters
All proxy and admin objects inherit CosNotifyFilter::FilterAdmin , which provides operations for adding
and removing filters:

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;
EventType[] event_types = new EventType(1);

[1](#example) event_types[0].domain_name = new String("Orbix Demos");
event_types[0].type_name =
new String("Structured Notification Push Demo Event");

[2](#example) ConstraintExp[] constraints = ConstraintExp(1);
constraints[0].event_types = event_types;

[3](#example) constraints[0].constraint_expr =
new String("($EventNumber / 2) == (($EventNumber + 1) /
2)");

1. 1.

2. 2.

3. 3.

org.omg.CosNotifyfilter.ConstraintInfo[] info =
filter.add_contraints(constraints);

Forwarding Filters

- 63/172 -

You can add one or more filter objects to any proxy or admin object in an event channel, providing
multiple filtering layers in a channel.

Example
Example 19 attaches the filter object created earlier to a structured proxy push supplier.

Example 19: Attach a Filter Object

In this example, the filter is attached to a supplier proxy, so it applies to all events that are targeted at
that proxy’s consumer. Filters that are attached to an admin object apply to all the admin’s proxies. If a
set of proxies can use the same filters, it is more efficient to set these on a common admin, so filter
processing on a given event takes place only once for all proxies.

If filters are set on an admin and one of its proxies, events can be evaluated against both sets of filters,
depending on whether the admin object was created with AND or OR semantics (see Traversing Multiple
Filters in a Channel).

\\ IDL
interface FilterAdmin {
FilterID add_filter(in Filter new_filter);
void remove_filter(in FilterID filter)
raises (FilterNotFound);
Filter get_filter(in FilterID filter)
raises (FilterNotFound);
FilterIDSeq get_all_filters();
void remove_all_filters();
};

// Java
import org.omg.CosNotifyChannelAdmin.*;
// event channel ca and filter filter obtained earlier
// create a structured push supplier
ProxySupplier obj =
ca.obtain_notification_push_supplier
(ClientType.STRUCTURED_EVENT, proxy_id);
StructuredProxyPushSupplier pps =
StructuredProxyPushSupplierHelper.narrow(obj);
// add filter to proxy
IntHolder fid = new IntHolder();
fid = pps.add_filter(filter);

Forwarding Filters

- 64/172 -

Filter Evaluation
A filter evaluates an event against its set of constraints until one evaluates to true. A constraint
evaluates to true when both of the following conditions are true:

A member of the constraint’s EventTypeSeq matches the message’s event type.

The constraint expression evaluates to true.

The first filter in which the event message evaluates to true forwards the event to the next
delivery point in the channel. If the event message fails to pass any forwarding filters, the event
may not be forwarded. For full details on filter processing, see Processing Events with Forwarding
Filters.

Processing Events with Forwarding Filters
When an event message enters an event channel, it can encounter filters at one or more delivery points.
The filters at each delivery point evaluate the event message, then either forward the event message to
the next delivery point, or drop the event.

Event Message Evaluation
When an object receives an event, it invokes the appropriate match operation— match_structured() on
structured events, match() on untyped events—on its filters. The match operation accepts as input the
contents of the event, evaluates it against the filter constraints, and returns a Boolean result:

true: The event satisfies one of the filter constraints and is forwarded immediately to the next
delivery point. Other filters for that object are ignored.

false: The event satisfies none of the filter constraints. If the object has multiple filters, the event
is passed on to the next filter and the match operation is invoked on it. If all match invocations
return false, the event message may be removed from the event channel, depending on the
status of its progress in the channel delivery path.

Traversing Multiple Filters in a Channel
Forwarding filters can be attached to admin and proxy objects on both supplier and consumer sides of
an event channel. As Figure 8 shows, an event message can potentially traverse four sets of forwarding
filters, set on the following objects:

Consumer proxy

Supplier admin object

Consumer’s admin object

Supplier proxy

Figure 8: Forwarding Filters Can Intercept an Event Message at Multiple Delivery Points

• •

• •

• •

• •

• •

• •

• •

• •

Forwarding Filters

- 65/172 -

If filters are set on an admin and one of its proxies, events can be evaluated against both sets of
filters, depending on whether the admin object was created with AND or OR semantics:

AND semantics require events to pass both admin and proxy filters.

OR semantics only require an event to pass an admin or proxy filter.

An event message traverses channel filters as follows:

The consumer proxy filters each forwarded event with one of the following results:

¨ If the supplier admin has OR semantics, an event that passes any proxy filter is forwarded
directly to the consumer admin.

¨ If the supplier admin has AND semantics, an event that passes any proxy filter is forwarded
to the supplier admin for further filtering.

¨ If the admin has AND semantics, an event that fails all proxy filters is not forwarded.

The supplier admin filters each event with one of the following results:

¨ The event passes one of the filters and is forwarded to the consumer admin.

¨ The event fails all filters and is not forwarded.

The consumer admin filters each forwarded event with one of the following results:

¨ If the admin has OR semantics, an event that passes any filter is forwarded directly to the
consumer.

¨ If the admin has AND semantics, an event that passes any filter is forwarded to the supplier
proxy for further filtering.

¨ If the admin has AND semantics, an event that fails all filters is not forwarded.

The supplier proxy filters each forwarded event with one of the following results:

¨ The event passes one of the filters and is forwarded to the consumer.

• •

• •

a. 1.

• •

• •

• •

b. 2.

• •

• •

c. 3.

• •

• •

• •

d. 4.

• •

Forwarding Filters

- 66/172 -

¨ The event fails all filters and is not forwarded to the consumer.

Mapping Filters
An event’s lifetime and priority can be set at several levels—in the event message itself, and at the
channel, admin, or proxy levels. While suppliers can set an event’s priority or lifetime—typically, in the
header of a structured event message—they cannot always anticipate the importance that individual
consumers might assign to events of certain types. For example, a consumer might wish to raise the
priority of all messages where event_type field is set to sport and sport_type field is set to baseball .
Mapping filters allow consumers to increase or diminish the importance of certain events by enabling
their supplier proxies to override their Priority and Timeout properties.

You can apply mapping filters to supplier proxies and consumer admin objects. Each object can have up
to two mapping filters:

A priority filter that determines an event’s priority.

A lifetime filter that determines how long an event remains deliverable.

Implementing a Mapping Filter Object

Procedure
Implementing a mapping filter is a four-step process:

Obtaining a Mapping Filter Object
To create mapping filter objects, an application first obtains a filter factory, which is based on interface
CosNotifyFilter::FilterFactory :

• •

• •

• •

Step Action

1 Obtain a filter object.

2 Set up constraints and associated values.

3 Add constraints to the filter object.

4 Associate the mapping filter with a supplier proxy or consumer admin.

Mapping Filters

- 67/172 -

The consumer client calls create_mapping_filter() on the filter factory object and supplies two
arguments:

The argument EXTENDED_TCL , which specifies the default constraint grammar.

An any that specifies the mapping filter’s default value. This value is used only when an event
message fails to match any filter constraints, and the target property is not set anywhere for the
event (see Processing Events with Mapping Filters). This value must be consistent with the
mapping filter’s target property.

Example
Example 20 creates a mapping filter object and sets its default value to 2.

Example 20: Creating a Mapping Filter

Setting Up Filter Constraints
After creating a mapping filter object, you can set up its constraints. Mapping filter objects encapsulate
one or more constraints through a sequence of CosNotifyFilter::MappingConstraintPair data structures:

\\ IDL in module CosNotifyFilter
interface FilterFactory {
// ...
MappingFilter create_mapping_filter (
in string constraint_grammar,
in any default_value)
raises(InvalidGrammar);
};

• •

• •

// Java
// channel obtained earlier
import org.omg.CORBA.*;
import org.omg.CosNotifiyFilter.*;
// channel obtained earlier
FilterFactory_var dff = channel.default_filter_factory();
// set filters default priority to two
Any default_value = ORB.create_any();
default_value.insert_short(2);
//Create filter
MappingFilter Mapfilter =
dff.create_mapping_filter("EXTENDED_TCL", default_value);

Mapping Filters

- 68/172 -

Each MappingConstraintPair contains:

A constraint that is defined through a ConstraintExp data structure (see Event Type Filtering).

The property override value associated with the constraint. The override value must be consistent
with the target property: short for a priority filter; TimeBase::TimeT for a lifetime filter.

Example
Example 21 sets up a mapping filter constraint with two MappingConstraintPair data structures, which
evaluates all events whose event type domain field is set to SportsNews :

If the event type is set to BaseballResults , and the event’s priority is less than 100, reset the
priority to 100.

If the event type is set to FootballResults and the event’s priority is greater than 0, reset the
priority to 0.

Example 21: Adding Mapping Filter Constraints

// IDL in module CosNotifyFilter
// ...
struct ConstraintExp {
CosNotification::EventTypeSeq event_types;
string constraint_expr;
};
struct MappingConstraintPair{
ConstraintExp constraint_expression;
any result_to_set;
};

• •

• •

• •

• •

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;
MappingConstraintPair[] mapex = new MappingContsraintPair(2);

Mapping Filters

- 69/172 -

Adding Constraints to a Mapping Filter
After you set up filter constraints, you add them to the mapping filter by calling
add_mapping_constraints() , as in the following example:

The operation checks whether the constraint is syntactically correct; if not, it throws exception
InvalidConstraint.

Attaching Mapping Filters
Any supplier proxy and consumer admin can have up to two mapping filters; one that pertains to an
event’s Priority property, the other to its Timeout property. The following objects provide a method for
setting each filter type:

// Create first constraint
mapex[0].constriant_expression = new ConstraintExpr(1);
mapex[0].constraint_expression[0].event_types =
new EventType(1);
mapex[0].contraint_expression[0].event_types[0].domain_name =
new String("SportsNews");
mapex[0].constraint_expression[0].event_types[0].type_name =
new String("BaseballResults");
mapex[0].contraint_expression[0].constraint_expr =
new String("($Priority < 100)");
mapex[0].result_to_set = ORB.create_any();
mapex[0].result_to_set.insert_short(100);

// Create second constraint
mapex[1].constriant_expression = new ConstraintExpr(1);
mapex[1].constraint_expression[0].event_types =
new EventType(1);
mapex[1].contraint_expression[0].event_types[0].domain_name =
new String("SportsNews");
mapex[1].constraint_expression[0].event_types[0].type_name =
new String("FootballResults");
mapex[1].contraint_expression[0].constraint_expr =
new String("($Priority > 0)");
mapex[1].result_to_set = ORB.create_any();
mapex[1].result_to_set.insert_short(0);

org.omg.CosNotifyFilter.MappingConstraintInfo[] mcis1 =
Mapfilter.add_mapping_constraints(mapexp);

Mapping Filters

- 70/172 -

priority_filter() attaches a mapping filter that can override an event’s Priority setting.

lifetime_filter() attaches a mapping filter that can override an event’s Timeout setting.

For example, the following code attaches a priority mapping filter to a supplier proxy:

Processing Events with Mapping Filters
When an event message enters an event channel, it can encounter mapping filters at one or more
delivery points. The mapping filters at each delivery point evaluate the event message, and either
override the messages quality-of-service settings, set the messages default quality-of-service settings,
or do nothing.

Event Evaluation
When a consumer admin or supplier proxy object receives an event, it invokes the appropriate match
operation on its mapping filters— match_structured() on structured events, match() on any-type events:

The match operation accepts as input the contents of the event, and evaluates it against the filter
constraints. Filter constraints are traversed in descending order of override values—longest-to-shortest
lifetime for a lifetime filter, and largest-to-smallest integer for a priority filter.

The match operation returns from each filter with a Boolean result:

true: The event satisfies one of the mapping filter constraints and applies that constraint’s
override value to the event. The match operation’s output parameter returns with the override
value.

false: The event satisfies none of the filter constraints. In this case, the event retains its current
property setting, if this is explicitly set elsewhere in the channel—for example, by the event
channel itself, or in the current proxy. If the target property is not set anywhere, the mapping
filter’s default value is applied.

• •

• •

// add the filter to the structured push supplier proxy
pps.priority_filter(Mapfilter);

// IDL in interface CosNotifyFilter::MappingFilter
boolean match (in any filterable_data, out any result_to_set)
raises (UnsupportedFilterableData);
boolean match_structured (
in CosNotification::StructuredEvent filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

• •

• •

Mapping Filters

- 71/172 -

While mapping filters effectively change an event’s lifetime and priority, they have no effect on
event message content. Because they do not depend on finding property settings in the message
itself, you can apply mapping filters to any-type and structured event messages alike.

Traversing Multiple Mapping Filters in a Channel
Mapping filters can be attached to a consumer admin and its supplier proxies. If set on both, a supplier
proxy’s mapping filters take precedence.

Filter Constraint Language
The default filter constraint language is based on the standard OMG Trader Constraint Language with
some modifications that make it more suitable for use as a filter constraint language.

Constraint Expression Data Structure

Constraint Sequence
Filter objects encapsulate one or more constraints through a sequence of CosNotifyFilter::ConstraintExp
data structures:

Each ConstraintExp has two members:

EventTypeSeq

constraint_expr

EventTypeSeq
A sequence of EventType data structures which contains two fields that specify an event type:

\\ IDL in module CosNotifyFilter
struct ConstraintExp{
CosNotification::EventTypeSeq event_types;
string constraint_expr;
};
typedef sequence<ConstraintExp> ConstraintExpSeq;

• •

• •

Filter Constraint Language

- 72/172 -

constraint_expr
A boolean string expression whose syntax conforms to the default filter constraint language (see
Examples of Notification Service Constraints). The constraint expression is applied to events whose
event type matches one of the event types defined in the constraint’s EventTypeSeq .

For full details on the filter constraint language, see the OMG’s Notification Service Specification.

Event Type Filtering
The ConstraintExp portion of a constraint is a sequence of EventType data structures identifying which
event types are to be filtered. Any event type not specified in a filter’s ConstraintExp will be evaluated to
false by the filter.

Filtering for a Single Event Type
Example 22 sets up a constraint expression that evaluates to true for all sports news events reporting
on baseball results and whose priority is set to less than 100.

Example 22: Using the Filter Constraint Language

Applying a Constraint to All Events
A constraint can set its EventTypeSeq to indicate that the constraint expression applies to all events, in
several ways:

\\ IDL
struct EventType {
string domain_name;
string domain_type;};
typedef sequence<EventType>EventTypeSeq;

// Java
import org.CosNotification.*;
import org.omg.CosNotifyFilter.*;
ConstraintExpr[] constriant_expression = new ConstraintExpr(1);
constraint_expression[0].event_types = new EventType(1);
contraint_expression[0].event_types[0].domain_name =
new String("SportsNews");
constraint_expression[0].event_types[0].type_name =
new String("BaseballResults");
contraint_expression[0].constraint_expr =
new String("($Priority < 100)");

Filter Constraint Language

- 73/172 -

Declare an empty EventTypeSeq :

Initialize a single-element EventTypeSeq to empty strings:

Initialize a single-element EventTypeSeq with wildcard characters, * :

Using Wildcards
The default constraint grammar supports wildcard characters in EventType fields. For example, the
following setting applies to all news events, such as SportsNews or FinancialNews :

Referencing Filtered Data
You can identify any data component in a structured event message by specifying its full path within a
CosNotification::StructuredEvent:

For example, you can reference an event type’s domain name as follows:

• •

org.omg.CosNotification.EventType[] event_types =
new org.omg.CosNotification.EventType(0);

• •

org.omg.CosNotification.EventType[] event_types =
new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("");
event_types[0].type_name = new String("");

• •

org.omg.CosNotification.EventType[] event_types =
new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("*");
event_types[0].type_name = new String("*");

org.omg.CosNotification.EventType[] event_types =
new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("*News");
event_types[0].type_name = new String("*");

$.EventHeader[.intermediate-component[...]].component-name

Filter Constraint Language

- 74/172 -

Name-Value Pair Notation
Structured event messages are set up to allow extensive use of name-value pairs sequences. The full
syntax for referencing these is as follows:

Given this syntax, you can construct a constraint expression that evaluates as follows:

While this syntax lets you loop through all optional header and filterable data field members, it is also
cumbersome. Therefore, the notification service also supports two abbreviated formats for referencing
name-value pairs in a structured event message.

Optional header fields

can be represented as follows:

For example, the constraint expression shown earlier might be rewritten as follows:

Filterable data fields

can be represented as follows:

$.EventHeader.FixedEventHeader.event_type.domain_name

$.EventHeader.FixedEventHeader.OptionalHeaderFields[i].name
$.EventHeader.FixedEventHeader.OptionalHeaderFields[i].value
$.FilterableEventBody[i].name
$.FilterableEventBody[i].value

($.EventHeader.FixedEventHeader.OptionalHeaderFields[i].name ==
’Priority’) and
($.EventHeader.FixedEventHeader.OptionalHeaderFields[i].value >
10)

$.EventHeader.variable_header(prop-name)

$.EventHeader.variable_header(Priority) > 10

Filter Constraint Language

- 75/172 -

For example, the following notation refers to filterable data field StockSymbol :

Shorthand Notation
The notification service supports a shorthand notation that lets you reference filterable data
components in both structured and unstructured events:

This notation is valid for referencing the following structured event components:

For example, the following constraint:

can be rewritten as follows:

The notification service uses the following algorithm to resolve runtime variable $variable :

If the variable name is reserved—for example, $curtime —this usage takes precedence.

The first matching translation is chosen from:

¨ A member of $.EventHeader.FixedEventHeader

$.filterable_data(field-name)

$.filterable_data(StockSymbol)

$component-name

$.EventHeader.FixedEventHeader.event_type.domain_name
$.EventHeader.FixedEventHeader.event_type.type_name
$.EventHeader.FixedEventHeader.event_name
$.EventHeader.variable_header.(prop-name)
$.filterable_data.(field-name)

($.EventHeader.FixedEventHeader.event_type.type_name ==
’StockAlert’) and
($.EventHeader.variable_header(pct_change) > 5.0)

($type_name == ’StockAlert’) and ($pct_change > 5.0)

1. 1.

2. 2.

• •

Filter Constraint Language

- 76/172 -

¨ A property in $.EventHeader.variable_header

¨ A field name in $.filterable_data

If no match is found, the translation defaults to $.variable .

Thus, a generic constraint can use $Priority to reference an unstructured event’s $.priority
member, and a structured event’s $.EventHeader.variable_header(priority) member.

Operand Handling
When you add a constraint to a filter, the notification service only checks whether it is syntactically
correct. When a filter processes an event, the match operation is responsible for ensuring that
operands have valid data types. When the match operation encounters invalid operands, or nonexistent
identifiers, it returns false.

Examples
The following constraint expression evaluates three event message fields, a, b, and c:

The following examples show how the match operation handles constraint operands as it evaluates the
contents of different events.

Event 1:

<$a, ’Hawaii’>, <$c, 5.0>

The first expression resolves to (Hawaii’ + 1 > 32) . Because it is not possible to add an integer to a
string data type, the constraint is invalid and the match operation returns false.

Event 2:

<$a, 5>, <$c, 5.0>

The first expression evaluates to false. Because the event lacks a $b member, an error occurs and the
match operation returns false. The constraint expression can be modified to handle the missing $b
member as follows:

Event 3:

<$a, 5>, <$b, 5.0>

• •

• •

3. 3.

($a + 1 > 32) or ($b == 5) or ($c > 3)

($a + 1 > 32) or (exist $b and $b == 5) or ($c > 3)

Filter Constraint Language

- 77/172 -

The second expression evaluates to true, although $b is set to a floating point. Following arithmetic
conversion rules, the constraint expression’s constant 5 is also cast to floating point. Because the
second expression evaluates to true, the match operation never detects the omission of member $c .

Examples of Notification Service Constraints
The following examples show different constraint expressions that use the default constraint language:

Accept all CommunicationsAlarm events but no lost_packet messages:

Accept CommunicationsAlarm events with priorities ranging from 1 to 5:

Select MOVIE events featuring at least three of the Marx Brothers:

Accept only recent events:

Accept students that took all three tests and had an average score of at least 80%:

Select processes that exceed a certain usage threshold:

$event_type == ’CommunicationsAlarm’ and
not ($event_name == ’lost_packet’)

($event_type == ’CommunicationsAlarm’) and
($priority >= 1) and ($priority <= 5)

($event_type == ’MOVIE’) and (((’groucho’ in $.starlist) +
(’chico’ in $.starlist) + (’harpo’ in $.starlist) +
(’zeppo’ in $.starlist) + (’gummo’ in $.starlist)) > 2)

$origination_timestamp.high + *2* < $curtime.high

($.test._length == 3) and ((($.test[1].score + $.test[2].score +
$.test[3].score) / 3) >= 80)

Filter Constraint Language

- 78/172 -

Multicast Consumers
A group of consumers that subscribe to the same events can connect to the notification service by using a
UDP/IP Multicast based protocol, thereby reducing network overhead.

A notification service with many clients will generate a large amount of network traffic. The Orbix
notification service provides a multicast based protocol to reduce the network overhead.

MIOP

Definition
Multicast Inter-ORB Protocol (MIOP) provides one-way communication between the notification service
and groups of similar event consumers, using the UDP IP/Multicast protocol. This protocol helps lower
network overhead when a large number of push-style consumers are receiving the same events.

Endpoint Groups
With MIOP, any number of push-style consumers interested in receiving identical events can join an
endpoint group. While TCP/IP based IIOP requires the service to send one message per individual client,
IP/Multicast based MIOP only requires one message per endpoint group. The endpoint group members
attach to the same proxy supplier, and share the same filters and quality-of-service properties.

Limitations
MIOP cannot verify receipt of events by individual consumers. This raises the possibility that interested
consumers using MIOP may miss events due to being unreachable when the channel sends them.

The OMG provides no specifications for MIOP. Therefore, notification services from other vendors
might be incompatible with Orbix IP/Multicast consumers.

$memsize / 5.5 + $cputime * 1275.0 + $filesize * 1.25 > 500000.0h

Note

Multicast Consumers

- 79/172 -

IDL Interfaces

Interfaces for Endpoint Groups
The module IT_NotifyComm extends CosNotifyComm and provides interfaces for IP/Multicast endpoint
groups. These interfaces support push-style delivery of untyped, structured, and sequence events to
endpoint groups, via a UDP IP/Multicast based protocol.

The interfaces that support endpoint groups are defined as follows:

Oneway Communication
The interfaces for multicast consumers only support oneway invocation. MIOP only provides
communication from the notification channel to the consumers. Consumers cannot report back to the
notification service regarding the success or failure of a given transmission.

// IDL
module IT_NotifyComm
{
 interface GroupNotifyPublish
{
oneway void offer_change(
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed);
}; // GroupNotifyPublish
 interface GroupPushConsumer : GroupNotifyPublish
{
oneway void push(in any data);
oneway void disconnect_push_consumer();
}; // GroupPushConsumer
 interface GroupStructuredPushConsumer : GroupNotifyPublish
{
oneway void push_structured_event(
in CosNotification::StructuredEvent notification);
oneway void disconnect_structured_push_consumer();
}; // GroupStructuredPushConsumer
 interface GroupSequencePushConsumer : GroupNotifyPublish
{
oneway void push_structured_events(
in CosNotification::EventBatch notifications);
oneway void disconnect_sequence_push_consumer();
}; // GroupSequencePushConsumer
}; // IT_NotifyComm

IDL Interfaces

- 80/172 -

Consumers communicate with the notification service via standard IIOP.

Configuring Orbix for Multicast

Configuration Scope
In order to use MIOP, the runtime ORB must load the egmiop plug-in. A named configuration scope
must be created that establishes the proper settings.

Settings
In order to configure the ORB to load the correct plug-ins for multicast, follow these steps:

Include "egmiop" in the orb_plugins list.

Include "GIOP+EGMIOP" in the binding:client_binding_list .

Label the well known addressing id and set <label>:egmiop:addr_list property to a valid multicast
endpoint address.

When each multicast client starts up, it finds the proper configuration scope by initializing the ORB
with a name that corresponds to a multicast configuration scope. Each client must also set its well-
known addressing ID to the correct label.

Example
The following configuration excerpt creates a configuration scope for the ORB egmiop_test . It includes
the plug-in and the bindings required to use multicast. It labels the well-known address "miop_test" .

1. 1.

2. 2.

3. 3.

Configuring Orbix for Multicast

- 81/172 -

Implementing an Endpoint Group
To use MIOP effectively, create an endpoint group of push-style consumers who share identical event
subscriptions and quality-of-service properties.

Instantiating an IP/Multicast Consumer

Determining the Interface
Consumers that use IP/Multicast are instantiated from the IT_NotifyComm group interface that
corresponds to the type of events the group will receive— any , structured , or sequence (see Interfaces
for Endpoint Groups).

ORB Initialization
The consumer must also initialize an ORB whose configuration scope establishes the correct
environment for MIOP (see Configuring Orbix for Multicast).

Example
Example 23 shows how a client application might instantiate a consumer of type GroupPushConsumer and
initialize an ORB whose configuration scope loads the correct plug-ins for MIOP.

Example 23: Instantiating a Consumer for Multicast

egmiop_test
{
orb_plugins = ["iiop_profile", "giop", "iiop", "egmiop"];
binding:client_binding_list = ["GIOP+EGMIOP", "POA_Coloc",
"OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP"];
miop_test:egmiop:addr_list = ["228.0.0.0:500"];
}

Implementing an Endpoint Group

- 82/172 -

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

// Orbix imports
import com.iona.corba.IT_Notifucation.*;
import com.iona.corba.IT_NotifyChannelAdmin.*;
import com.iona.corba.IT_NotifyComm.*;

class NotifyPushConsumer extends GroupPushConsumerPOA
{
public static ORB orb;
// member variables not shown...

// The main entry point @param args command line args
public static void main (String args[])
{
// Add -ORBname to end of argument list to ensure the proper configuration
scope
String[] orb_name_args = new String[args.length + 2];
System.arraycopy(args, 0, orb_name_args, 0, args.length);
orb_name_args[orb_name_args.length - 2] = "-ORBname";
orb_name_args[orb_name_args.length - 1] = "egmiop_test";
orb = ORB.init(orb_name_args, null);
//POA initialization not shown ...
NotifyPushConsumer consumer = new NotifyPushConsumer();
// ...
}

void public NotifyPushConsumer()
{
}

void public ~NotifyPushConsumer()
{
}

Implementing an Endpoint Group

- 83/172 -

Required Methods
You must provide implementations for push() , offer_change() , and disconnect_push_consumer() for
consumers. IT_NotifyComm also specifies the methods disconnect_structured_push_consumer() and
disconnect_sequence_push_consumer() for clients that support those event types.

Creating a POA for an Endpoint Group

Required Policies
To create an endpoint group, all of the endpoint group members must create POAs with the following
policies:

In addition, every endpoint group member must also use an agreed upon POA name.

If a consumer’s POA name is not identical to the POA names of the endpoint group members, it will
not become a member of the endpoint group.

Example
The code in Example 24 creates a POA with the correct policies. It must be run by every consumer
wishing to join the endpoint group.

Example 24: Creating a POA for an Endpoint Group

// ...
}

POA Policy Setting

PERSISTENCE_MODE_POL
ICY_ID

DIRECT_PERSISTENCE

LIFESPAN_POLICY PERSISTENT

ID_ASSIGNMENT_POLICY USER_ID

WELL_KNOWN_ADDRESSIN
G_POLICY_ID

An agreed upon label as specified in the configuration scope for
the ORB (see Configuring Orbix for Multicast).

Note

Implementing an Endpoint Group

- 84/172 -

Registering an Endpoint Group Object Reference

Object Name
After each endpoint group member creates a POA with the correct policies and name, it must register
an object reference. Each endpoint group member registers with the same object reference. All
endpoint group members must use the same object name to generate an object reference. Because
this group object reference is created with a POA configured to support MIOP, it contains the multicast
information needed to reach the endpoint group members.

// Java
import org.omg.CORBA*.;
import org.omg.PortableServer*.;
// ...

Object obj = orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(obj);
POAManager poa_manager = root_poa.the_POAManager();

Policy[] policies = new Policy[4];
Any addressing_id = orb.create_any();
addressing_id.insert_string("miop");
policies[0] =
orb.create_policy(WELL_KNOWN_ADDRESSING_POLICY_ID.value,
addressing_id);
policies[1] =
root_poa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);

Any persistent_mode = orb.create_any();
PersistenceModePolicyValueHelper.insert(persistent_mode,
PersistenceModePolicyValue.DIRECT_PESISTENCE);
policies[2] =
orb.create_policy(PERSISTENCE_MODE_POLICY_ID.Value,
persistent_mode);
policies[3] =
root_poa.create_id_assignment_policy(IdAssignmentPolicyValue.USER_ID);

POA multicast_poa =
root_poa.create_POA("miop_poa", poa_manager, policies);

Implementing an Endpoint Group

- 85/172 -

The consumer’s object name must be identical to the other endpoint group member’s object names.
Otherwise, it will not join the endpoint group.

Example
Example 25 shows how an endpoint group member might register with a group object reference.

Example 25: Registering with a Group Object Reference

The code executes as follows:

Gets an object ID for the consumer using the name agreed on by all members of the group.

Registers the consumer’s object reference by activating it.

Activates the multicast POA to receive messages.

Repeat this sequence for each endpoint group member.

Note

// Java
import org.omg.PortableServer.*;
// ...

[1](#example) ObjectId oid =
multicast_poa.string_to_ObectId("miopConsumer");

[2](#example) multicast_poa.activate_object_with_id(oid, consumer);
POAManager multicast_poa_manager =
multicast_poa.the_POAManager();

[3](#example) poa_manager.activate();
multicast_poa_manager.activate();

1. 1.

2. 2.

3. 3.

Implementing an Endpoint Group

- 86/172 -

Connecting to an Event Channel
All endpoint group members share the same proxy supplier. Therefore, only one endpoint group
member connects to the channel. After this endpoint group member connects, the group can begin
receiving messages.

Because all of the consumers in an endpoint group share a proxy, they also share the same event
subscriptions, filters, and quality-of-service properties.

Interfaces
Module IT_NotifyChannelAdmin provides an interface to connect endpoint groups of each consumer type
— any , structured , or sequence —to a notification channel:

Connecting to an Event Channel

- 87/172 -

Implementation
The connecting consumer creates a group proxy supplier of the same type in a notification channel. It
then connects to the event channels by invoking the corresponding connect operation on the proxy.

****If more than one member of the group attempts to connect to the event channel, an
AlreadyConnected exception is raised.

// IDL
interface GroupProxyPushSupplier : CosNotifyChannelAdmin::ProxyPushSupplier
{
void connect_group_any_push_consumer(
in IT_NotifyComm::GroupPushConsumer group_push_consumer)
raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupProxyPushSupplier
interface GroupStructuredProxyPushSupplier :
CosNotifyChannelAdmin::StructuredProxyPushSupplier
{
void connect_group_structured_push_consumer(
in IT_NotifyComm::GroupStructuredPushConsumer
group_push_consumer)
raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupStructuredProxyPushSupplier
interface GroupSequenceProxyPushSupplier :
CosNotifyChannelAdmin::SequenceProxyPushSupplier
{
void connect_group_sequence_push_consumer(
in IT_NotifyComm::GroupSequencePushConsumer
group_push_consumer)
raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupSequenceProxyPushSupplier

Note

Connecting to an Event Channel

- 88/172 -

Group Proxy
The proxy created by the connecting consumer serves as the proxy for the entire endpoint group and is
shared by all of the endpoint group members.

If the connecting consumer disconnects from the channel, all members of the endpoint group also
disconnect. However, if the connecting consumer dies without disconnecting, the proxy remains active
and the remaining members of the group continue to receive events.

Example
Example 26 shows how to connect an endpoint group of GroupPushConsumers to a notification channel.

Example 26: Connecting an Endpoint Group to an Event Channel

// Java
import org.omg.CORBA.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
//Orbix specific classes
import com.iona.corba.IT_NotifyComm.*;
import com.iona.corba.IT_NotifyChannelAdmin.*;

class NotifyPushConsumer extends GroupPushConsumerPOA
{
public static ORB orb = null;
public static EventChannel ec = null;
// member variables not shown...
// ...

void main(String[] args)
{
// ORB and POA activation shown above
// ...

[1]
(#example)

org.omg.CORBA.Object obj =
orb.resolve_initial_references("NotificationService");
EventChannelFactory factory =
EventChannelFactoryHelper.narrow(obj);
IntHolder id = new IntHolder();
Property[] init_qos = new Property[0];
Property[] init_admin = new Property[0];

Connecting to an Event Channel

- 89/172 -

[2]
(#example)

try
{
ec = factory.create_named_channel("miop_channel",
init_qos,
init_admin, id);
}
catch(ChannelAlreadyExists cae)
{
// channel already exists
try
{
ec = factory.find_channel("miop_channel", id);
}
catch(ChannelNotFound cnf)
{
System.err.println("Could not create or find
notification channel.");
System.exit(1);
} // catch(ChannelNotFound)
} // catch(ChannelAlreadyExists)

[3]
(#example)

InterFilterGroupOperator op = new
InterFilterGroupOperator();
op = CosNotifyChannelAdmin.AND_OP;
AdminID id;
ConsumerAdmin ca = ec.new_for_consumers(op, id);
IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.ANY_EVENT;

[4]
(#example)

ProxySupplier obj =
ca.obtain_notification_push_supplier(ctype, proxy_id);
GroupProxyPushSupplier pps =
GroupProxyPushSupplierHelper.narrow(obj);

Connecting to an Event Channel

- 90/172 -

This code executes as follows:

Obtains an EventChannelFactory from the ORB.

Obtains the event channel miop_channel .

Creates a consumer admin object for the group.

Creates a GroupProxyPushSupplier for the group.

Invokes connect on the consumer and catches any exceptions.

Receiving Events
Consumers that use IP/Multicast receive events the same way as a non-multicast, push-style consumer
(see Obtaining Event Messages).

Filtering and Event Subscription
Like non-multicast consumers, endpoint groups can use mapping and forwarding filters and subscribe
to events. However, because they share a proxy supplier, any change in filters or subscriptions made by
one endpoint group member affects every other endpoint group member.

ALL_UPDATES_NOW
To maximize the overhead benefits of using IP/Multicast, consumers should call obtain_offered_types()
with ALL_UPDATES_NOW . The channel then automatically notifies the group of future changes in the list of
available events using IP/Multicast through offer_change() . Consumers should implement
offer_change() to handle notification (see Implementing offer_change()).

[5]
(#example)

try
{
pps.connect_group_any_push_consumer(consumer);
}
catch(AlreadyConnected)
{
// implementation left to developer
}
} // main
} // NotifyPushConsumer

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Receiving Events

- 91/172 -

Updating the Subscription List
Changes to the list of available events are broadcast to all endpoint group members using this
implementation. However, only one endpoint group member should make changes to the subscription
list, because all endpoint group members share the same proxy.

IIOP Calls
Calls to obtain_offered_events() , create_filter() , and add_filter() are two-way and do not use IP/
Multicast.

For More Information
For more information on filters and subscribing to events, see Event Filtering and Subscribing and
Publishing.

Disconnecting from an Event Channel
An endpoint group is disconnected from the notification channel when one of its members invokes the
disconnect operation on the group’s proxy supplier. This operation terminates the connection between
the group and its proxy supplier. The notification channel then releases all resources allocated to
support its connection to the group, including the destruction of the group’s proxy supplier.

Each proxy supplier interface supports a disconnect operation. For example,
disconnect_structured_push_supplier() is defined in StructuredProxyPushSupplier.

When one group member invokes disconnect on the proxy supplier, all members of the group stop
receiving events from the notification channel.

Subscribing and Publishing
Notification service consumers can tell an event channel which event types they wish to receive from suppliers,
and suppliers can advertise the event types they offer to consumers.

The event channel maintains all information about event type supply and demand, and passes this
information to consumers and suppliers:

As consumers change their subscriptions, the channel updates its subscription list and informs
suppliers of the changes, so that they can adjust event output accordingly.

Warning

• •

Disconnecting from an Event Channel

- 92/172 -

As suppliers add or remove event types that they supply, the channel updates its publication list
and informs consumers of the changes, so that they can re-evaluate their subscriptions.

Event Subscription
Event subscription enables clients to inform suppliers which events they are interested in receiving.
Event subscription requires the following actions from client consumers and suppliers:

Each consumer subscribes to its desired event types by adding or modifying forwarding filters to
their proxy suppliers or consumer admin.

Each supplier builds its own list of event types to evaluate changes to the channel subscription list
against the list of events that they supply.

On connecting to the event channel, suppliers call obtain_subscription_types() on their proxy
consumers to discover which event types are currently subscribed to by consumers.

The supplier’s implementation of subscription_change() evaluates changes to the channel’s
subscription list and acts accordingly.

Adding Forwarding Filters
A consumer initially specifies which event types it wishes to subscribe to by adding forwarding filters to
its proxy supplier or consumer admin. The event types specified in these filters are relayed to the
channel, which consolidates, in a single subscription list, all event types that consumers require. A
consumer can also remove or modify existing filters. Each time a consumer changes its forwarding
filters, the channel modifies its subscription list accordingly.

Filter Modification Operations
A consumer modifies its forwarding filters through one of the following operations, defined in module
CosNotifyFilter :

• •

• •

• •

• •

• •

Event Subscription

- 93/172 -

Subscription List
The channel’s subscription list contains one entry for each event type, and associates a reference count
with it. When a consumer adds an unknown event type to one of its filters, the channel opens a new
entry in the subscription list and assigns it a reference count of 1. It then notifies client suppliers of the
new event type by calling subscription_change() , which is implemented by each supplier’s developer, on
them. The supplier’s implementation (see Implementing subscription_change().) typically uses
subscription information to evaluate consumer demand, and to determine whether it should continue
or stop supplying certain events.

If an event type’s reference count falls to 0—that is, no filters specify this event type—the channel
removes the event type from its subscription list. It then notifies all suppliers of the removal through
subscription_change() . Given this new information, suppliers can stop supplying this particular event
type.

Consumers should never invoke subscription_change() on their proxy suppliers. The notification
service calls this operation automatically when a proxy supplier detects changes in consumer
subscriptions.

For information about implementing forwarding filters, see Forwarding Filters.

Example
Example 27 implements a client push supplier that defines an array of SuppliedType elements. This
structure encapsulates the event types that this supplier can produce, and sets a flag of true or false to
indicate which ones the supplier should push.

Example 27: Client Push Supplier

in FilterAdmin interface: in Filter interface:

add_filter() remove_filter() rem
ove_all_filters();

add_constraints()
modify_constraints remove_constrain
ts

Note

Event Subscription

- 94/172 -

Obtaining Subscriptions

obtain_subscription_types()
After a supplier connects to an event channel, it can ascertain which event types consumers currently
require by calling obtain_subscription_types() on its proxy consumer. This operation is defined as
follows:

Arguments
It takes a single ObtainInfoMode argument as input, which informs the channel whether to automatically
notify this supplier of future subscription list changes. This argument is typically set with one of the
following flags:

ALL_NOW_UPDATES_ON: The invocation returns the contents of the subscription list, and enables
automatic notification by subscription_change() . Use this argument for a supplier that implements
subscription_change() to handle notification (see Implementing subscription_change()).

ALL_NOW_UPDATES_OFF: The invocation returns the contents of the subscription list, and disables
automatic notification. Use this argument for a supplier that wishes to control when it receives
subscription changes, through subsequent calls to obtain_subscription_types() .

// Java
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
class SuppliedType
{
public String domain_name;
public String type_name;
public boolean supply;
}
private SuppliedType[] m_supply_types = null;
private int num_types_supplied = 5;
//...
}

org.omg.CosNotification.EventType[]
obtain_subscription_types(in ObtainInfoMode mode);

Event Subscription

- 95/172 -

NONE_NOW_UPDATES_ON: The invocation enables automatic notification of updates to the
subscription list without returning the contents of the subscription list. Use this argument for a supplier
that implements subscription_change() to handle notification (see Implementing subscription_change()).

NONE_NOW_UPDATES_OFF: The invocation disables automatic notification of updates to the
subscription list without returning the contents of the subscription list. Use this argument for a supplier
that wishes to control when it receives subscription changes, through subsequent calls to
obtain_subscription_types() .

Return Values
The operation returns an EventType[] , which contains all event types currently requested by consumers.

Example
In Example 28, a client supplier performs the following steps to implement obtain_subscription_types() :

Initializes a list of event types that it supplies.

Calls obtain_subscription_types() to obtain a list of subscription types.

For each subscription type, calls find_index() (shown in the next section), which compares each
subscription type against the client’s own event types list; if the event types match, it sets the list
element’s supply flag to true.

Example 28: Implementing obtain_subscription_types()

1. 1.

2. 2.

3. 3.

// Java
class NotifyPushSupplier extends
StructuredPushSupplierPOA
{
\\ ...
void init_supply_types()
{
int i;

[1](#example) m_supply_types = new SupplyType[num_types_supplied];

for(i=0; i < num_types_supplied ; i++)
{
m_supply_types[i].domain_name =
new String("SportsNews");
m_supply_types[i].supply = false;
}

Event Subscription

- 96/172 -

Implementing subscription_change()

subscription_change()
When the channel’s subscription list adds or removes an event type, the channel automatically calls
subscription_change() on all client suppliers. This operation is defined in interface
CosNotifyComm::NotifySubscribe :

m_supply_types[0].type_name = new
String("BaseBallResults");
m_supply_types[1].type_name = new
String("FootballResults");
// other sporting events ...
m_supply_types[4].type_name = new
String("TennisResults");

[2](#example) org.omg.CosNotification.EventType[] types_to_supply =
m_proxy->obtain_subscription_types(ALL_NOW_UPDATES_ON);

[3](#example) // For each supplied event type which consumers want,
// set its boolean flag to true
long index;
for (i=0; i<types_to_supply.length(); i++)
{
index = find_index(types_to_supply[i]);
if (index >= 0)
m_supply_types[index].supply = true;
}
}
// ...
}

Event Subscription

- 97/172 -

Arguments
The operation receives two EventTypeSeq arguments:

A supplier implements this operation in order to ascertain which event types are being consumed and
which are not, and re-evaluate its event output accordingly.

Example
If a consumer subscribes to sports news events, suppliers can detect this interest through their
implementation of subscription_change() and start to push events of that type. When consumers are no
longer interested in this event type, the channel’s subscription list changes again, and the channel calls
subscription_change() on its suppliers with this change. The supplier can then stop pushing those
events.

In the implementation of subscription_change() shown in Example 29 the supplier updates the list of
events that it can supply.

Example 29: Updating the Supplier’s List of Events

\\ IDL
module CosNotifyComm
{
exception InvalidEventType {CosNotification::EventType type;};
// ...
interface NotifySubscribe
{
void subscription_change(
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);
}
// ...
};

added Specifies new event types that this supplier now offers.

removed Specifies event types that the supplier no longer offers.

// Java
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
\\ ...

Event Subscription

- 98/172 -

This code executes as follows:

int find_index(org.omg.CosNotification.EventType e_type)
{
for(int i=0; i < num_types_supplied; i++)
if(etype.domain_name.equals(m_supply_type[i].domain_name)
&& etype.type_name.equals(m_supply_tpye[i].type_name))
return i;
return -1; // event tyoe not found
}

void subscription_change(org.omg.CosNotifaction.EventType[]
added, org.omg.EventType[] removed)
{

[1]
(#example)

// Turn on supplying of added types
for(i = 0; i < added.length(); i++)
if find_index(added[i]) >= 0)
m_supply_types[i].supply = IT_TRUE;

[2]
(#example)

// Turn off supplying of removed types
for(i = 0; i < removed.length(); i++)
if(find_index(removed[i]) >= 0)
m_supply_types[i].supply = IT_FALSE;
}
// ...
}

Event Subscription

- 99/172 -

The first argument (added) is evaluated for new event types that have been added to the subscription
list. If the argument contains event types, find_index() is called for each event type and compares it
against the client’s list of supplied event types. If it is on the list, the event type’s Boolean flag is set to
true.

The second argument (removed) is evaluated for event types that have been removed from the
subscription list. If the argument contains event types, find_index() is called for each event type and
compares it against the client’s list of supplied event types. If it is on the list, the event type’s Boolean
flag is set to false.

A supplier that wishes not to be notified of subscription changes should implement
subscription_change() to throw a CORBA::NO_IMPLEMENT exception.

Publishing Event Types
Event publication enables consumers to discover new event types as they are offered by suppliers.
Event publication requires the following actions from client consumers and suppliers:

Suppliers advertise event types that they can provide by calling offer_change() .

On connecting the consumer to the event channel, consumers call obtain_offered_types() on their
proxy suppliers to discover which event types are currently available.

The consumer’s implementation of offer_change() evaluates changes to the channel’s publication
list and acts accordingly.

Advertising Event Types

offer_change()
A supplier informs the event channel of those event types that it can supply by calling offer_change() on
its proxy consumer or supplier admin object. This operation is defined in interface NotifyPublish
interface, which is inherited by all ConsumerAdmin and SupplierAdmin interfaces:

1. 1.

2. 2.

Note

• •

• •

• •

Publishing Event Types

- 100/172 -

Arguments to offer_change()
offer_change() receives two arguments of the EventTypeSeq type, which is a sequence of EventType
structures defined as follows:

The two parameters let the supplier modify the channel’s publication list:

Publication List
An event channel maintains a single publication list of all event types that its suppliers advertise, which
it updates with each supplier’s invocation of offer_change() .

The channel’s publication list contains one entry for each event type, and associates a reference count
with it. When a supplier calls offer_change() with an unknown event type, the channel opens an entry in
the publication list and assigns it a reference count of 1. It then notifies client consumers of the new
event type by calling offer_change() on them. The consumer’s implementation (see Implementing
offer_change()) typically evaluates the updated publication data, to determine whether it contains event
types of interest.

\\ IDL
module CosNotifyComm
{
exception InvalidEventType{CosNotification::EventType type;};
interface NotifyPublish
{
void offer_change(in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises(InvalidEventType);
};
// ...
};

// IDL in module CosNotification
struct EventType {
string domain_name;
string type_name;
};
typedef sequence<EventType> EventTypeSeq;

added Specifies new event types that this supplier now offers.

removed Specifies event types that the supplier no longer offers.

Publishing Event Types

- 101/172 -

As other suppliers advertise the same event type, the channel updates its reference count. However,
intermediate changes in an event type’s reference count—for example, an increase from 1 to 2—are not
conveyed to consumers.

If an event type’s reference count falls to 0—that is, no suppliers offer this event type—the channel
removes the event type from its publication list. It then notifies all consumers of the removal through
offer_change() . Given this new information, consumers can remove or modify the filters that forward
this event type, and avoid the overhead these otherwise incur.

Example
In the following code, a supplier builds event types that it wishes to supply, and adds them to an
EventType sequence. It then invokes offer_change() on its structured proxy push consumer,
structured_ppc.

Discovering Available Event Types

obtain_offered_types()
After a consumer connects to an event channel, it can ascertain which event types are currently
available from suppliers by calling obtain_offered_types() on its proxy supplier or consumer admin. This
operation is defined as follows:

Arguments
It takes a single ObtainInfoMode argument as input, which informs the channel whether or not to
automatically notify this consumer of future publication list changes. This argument is typically set with
one of the following flags:

ALL_NOW_UPDATES_ON:

// Java
import org.omg.CosNotification.*;
EventType[] added = new EventType[2];
added[0].domain_name = new String("SportsNews");
added[0].type_name = new String("BaseballResults");
added[1].domain_name = new String("SportsNews");
added[1].type_name = new String("FootballResults");
EventType[] removed = EventType[0];
structured_ppc.offer_change(added, removed);

CosNotification::EventTypeSeq
obtain_offered_types(in ObtainInfoMode mode);

Publishing Event Types

- 102/172 -

The invocation returns the contents of the publication list, and enables automatic notification of future
changes to the list through offer_change() . Use this argument for a consumer that implements
offer_change() to handle notification (see Implementing offer_change()).

ALL_NOW_UPDATES_OFF:

The invocation returns the contents of the publication list, and disables automatic notification. Use this
argument for a consumer that wishes to control when it receives publication changes through
subsequent calls to obtain_offered_types() .

NONE_NOW_UPDATES_ON:

The invocation enables automatic notification of updates to the publication list without returning the
contents of the publication list. Use this argument for a supplier that implements offer_change() to
handle notification (see Implementing offer_change()).

NONE_NOW_UPDATES_OFF:

The invocation disables automatic notification of updates to the publication list without returning the
contents of the publication list. Use this argument for a supplier that wishes to control when it receives
publication changes, through subsequent calls to obtain_offered_types() .

Return Values
The operation returns an EventTypeSeq , which contains all event types currently available from suppliers.

Example
The code shown in Example 30 might be called by a consumer during or immediately after instantiation.
In it, two methods are implemented.

init_consume_types()

calls obtain_offered_types() , which returns with all currently advertised event types. The method then
calls get_choices() , which returns with the events selected (if any) by an end user. The method finally
calls add_subscription() .

add_subscription()

receives the user-selected event types and builds a forwarding filter for each one. It then builds an
indexed list of filter data and their IDs, which allows the client consumer to access filters as its
subscription needs change.

Example 30: Subscribing to Selected Event Types

Publishing Event Types

- 103/172 -

// Java
import org.omg.CosNotifyFilter.*;
import org.omg.CosNotification.*;
class NotifyPushConsumer extends
StructuredPushConsumerPOA
{
FilterID[] filterID;
int num_filters;
EventType[] consume_types;
int max_filters = 10; // hard coded array size
\\ ...

// Add a subscription for new event types chosen by user
public void add_subscription(EventType e_type)
{
// Create a filter for the new subscription
FilterFactory dff = channel.default_filter_factory();
Filter filter = dff.create_filter("EXTENDED_TCL");
// Set up constraint expression for new filter
EventType[] event_types = new EventType(1);
event_types[0].domain_name = new
String(e_type.domain_name);
event_types[0].type_name = new String(e_type.type_name);
ConstraintExp[] constraints = new CosNotifyFilter(1);
constraints[0].event_types = event_types;
constraints[0].constraint_expr = new String("");
// Add constraint to new filter
ConstraintInfo[] info = filter-
>add_constraints(constraints)
filterID[num_filters] = proxy.add_filter(filter);

// Update internal data structures to track subscription
data
consume_types[num_filters].domain_name =
new String(e_type.domain_name);
consume_types[num_filters].type_name =
new String(e_type.type_name);
num_filters++;
}

Publishing Event Types

- 104/172 -

The code executes as follows:

Obtains all available event types that are currently advertised in the event channel.

Calls get_choices() , which returns with user-selected event types.

For each chosen event type, calls add_subscription() , which subscribes the client consumer to receive
that event type.

Implementing offer_change()
When the channel’s publication list adds or removes an event type, the channel calls offer_change() on
all client consumers. This operation receives two input arguments of type EventTypeSeq , which contain
added and removed event types (see Arguments to offer_change()). A consumer’s implementation
should examine both arguments and re-evaluate its subscriptions accordingly.

Example
In Example 31, offer_change() returns new event types to an end user, who decides which (if any) of the
new event types to subscribe to.

Example 31: Adding and Removing Event Types

[1](#example) public void init_consume_types()
{
org.omg.CosNotification.EventType[] types_available =
proxy.obtain_offered_types(ALL_NOW_UPDATES_ON);

[2](#example) // return with user choices
org.omg.CosNotification.EventType[] types_wanted =
get_choices(types_available);

[3](#example) for (int i = 0; i < types_wanted.length(); i++)
add_subscription(types_wanted[i]);
}

// ...
}// NotifyPushConsumer

1. 1.

2. 2.

3. 3.

Publishing Event Types

- 105/172 -

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;
class NotifyPushConsumer extends
StructuredPushConsumerPOA
{
FilterID[] filterID;
int num_filters;
EventType[] consume_types;
int max_filters = 10; // hard coded array size
\\ ...

public void offer_change(EventType[] added, EventType[]
removed)
throw (org.omg.CORBA.SystemException)
{

[1]
(#example)

// return with user choices
EventType[] types_wanted;
if (added.length() > 0)
{
types_wanted = get_choices(added);// not implemented here
for(int i=0; i < types_wanted.length(); i++)
add_subscription(types_wanted[i]);
} // if added

[2]
(#example)

// Remove subscription for types no longer supplied
for(int i = 0; i < removed.length(); i++)
{
for(int n = 0, n < num_filters; n++)
{
if
(removed[i].domain_name.equals(consume_types[n].domain_na
me)
&&
removed[i].type_name.equals(consume_types[n].type_name))
{
// Remove filter from proxy
proxy.remove_filter(filterID[n]);

Publishing Event Types

- 106/172 -

This code executes as follows:

The first argument (added) is evaluated for new event types that have been added to the publication
list. If the argument contains event types, get_choices() is called and returns with the user’s choices,
if any. For each event type chosen, add_subscription() is called (shown in the previous section), which
builds a filter for that event type, and updates the consumer’s own subscription list.

The second argument (removed) is evaluated for event types that have been removed from the
subscription list. If the argument contains event types, the method looks up each event type in the
consumer’s subscription list. If found, the corresponding filter is removed and the consumer’s
subscription list is updated.

A consumer that wishes not to be notified of publication changes should implement offer_change()
to throw exception CORBA::NO_IMPLEMENT .

// Remove subscription data from customer list
for (int ix = n; ix < (num_filters-1); ix++)
{
filterID[ix] = filterID[ix + 1];
consume_types[ix].domain_name =
consume_types[ix + 1].domain_name;
consume_types[ix].type_name =
consume_types[ix + 1].type_name;
} // for ix

// Resize data structures appropriately.
num_filters--;
}// if equals
} // for n
} // for i
} // offer_change
// ...
}

1. 1.

2. 2.

Note

Publishing Event Types

- 107/172 -

Managing the Notification Service
Orbix notification provides several configuration variables that allow you to control the behavior of a
deployed notification service.

Configuring the Notification Service

Uses of Configuration Variables
Configuration variables allow the user to control the behavior of the notification service. You can alter
the number of event channels that can be created, the maximum number of notification clients, the
threading behavior of the individual components of the service, and other properties. Because the
elements in the notification service are interdependent, changing one configuration variable may affect
how several components of the service perform.

Namespaces
The notification service’s behavior is affected by variables in two namespaces:

plugins:notification

The variables in this namespace control both the event and notification service. They control the
general performance characteristics of event channel objects, including the number of threads they can
use and how many event channels can be created at a time.

plugins:notify

The variables in this namespace are specific to the notification service. They control the amount of
debugging information the notification service generates, how the service’s database behaves, and the
threading strategy used in dispatching events to notification service clients.

For a complete listing of the notification service’s configuration variables, see the CORBA Administrator’s
Guide.

Changing
You can edit the values of the notification service’s configuration variables either by using itadmin or, in
the case of a file-based configuration, hand editing the configuration file. For more information, see the
CORBA Administrator’s Guide.

Managing the Notification Service

- 108/172 -

Running the Notification Service

Starting the service
Like all Orbix services, the notification service can be configured to start on demand, to start at system
boot, or be started by a script generated by the configuration tool.

You can also manually start the notification service with the following command:

Stopping the Service
To stop the notification service you can use the stop script generated by the configuration tool or you
can use the following command:

Using Direct Persistence
By running in direct persistence mode, the notification service can function as a stand-alone
component. It does not require the Orbix infrastructure.

Technical Details
When the notification service runs in direct persistence mode it listens on a fixed host and port number.
This information is embedded into the IOR that the service exports as an initial reference.

When a CORBA client asks for the notification service’s initial reference, it receives the IOR containing
the host and port information for the service. The client uses the embedded information to directly
contact the notification service, bypassing the locator and node daemon normally used by Orbix CORBA
services.

Performance Issues
While direct persistence liberates the notification service from the Orbix infrastructure, it also has a cost
in terms of fault tolerance and flexibility. When running in direct persistence mode the notification
service cannot be started on demand and must always listen on the configured host and port number.

itnotify

itnotify stop

Running the Notification Service

- 109/172 -

Configuring Direct Persistence
To configure the notification service to run in direct persistence mode complete the following steps:

If the notification service is running, shut it down with the command

Set plugins:notify:direct_persistence to TRUE within the notification service’s configuration scope. The
default scope is iona_services.notify .

For information on changing configuration variables, see the CORBA Administrator’s Guide.

Within the same configuration scope, set plugins:notify:iiop:port to some open port number.

Prepare the service, by running the command

This command causes the notification service to generate a new IOR for itself. The new IOR will be
printed to the console. Save it for use in the next step.

Within the same configuration scope as used in steps 2 and 3, replace the value of
initial_references:NotificationService:reference with the IOR returned in step 4.

Start the service using the command

Managing a Deployed Notification Service

Using the notification service console
The notification service console provides administrators the ability to monitor and control a deployed
notification service. It provides controls to create and destroy notification channels, admin objects,
proxy objects, and filters. It also provides controls to edit QoS properties and assign filters and
subscriptions to objects in a deployed notification service.

To start the notification console use the following command:

1. 1.

itnotify stop

2. 2.

Note

3. 3.

4. 4.

itnotify prepare

5. 5.

6. 6.

itnotify

Managing a Deployed Notification Service

- 110/172 -

The console has detailed context sensitive help to guide you in using it.

The Notification Service Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from Rocket Software.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Example 1: Generating Trace Information

Scenario
Your company recently installed an inventory control program using Orbix notification to facilitate
communication between the sales, manufacturing, and purchasing departments. The sales department
takes orders on PDAs and syncs them with the inventory and ordering system when they return to the
office. The sales information triggers manufacturing jobs, which in turn produce materials requisitions.
The inventory system checks the requisitions against what is in-stock. If all of the requisitions for a job
can be filled, the requisitions are filled. If a requisition cannot be filled, the system alerts purchasing and
the remaining requisitions are filled.

Problem
A large number of jobs are being held up because the needed materials are not being ordered. After
looking for human causes and finding none, the company tasks you with finding the bottleneck in the
new system.

Solution
The first step in your task is to determine if the purchasing system is receiving the alert that it needs to
order new materials. To accomplish this task you need to turn on the notification services logging
facility.

itnotify_console

Note

Example 1: Generating Trace Information

- 111/172 -

The logging facility is controlled using the variables in the plugins:notify:trace namespace. By default
they are set to 0 , which means no logging information is generated. To trace events as they pass
through the notification service, use itadmin to set plugins:notify:trace:events to 1 . If you need more
detailed information, set the value higher.

Example 2: Failure Recovery

Scenario
Your bank has just converted its ATM network to a system built using Orbix notification. Because of the
sensitivity of the information and the fact that it processes information when service personnel may not
be immediately available, the system needs to be extremely fault tolerant.

Solution
To increase the fault tolerance of Orbix notification you can change the settings of the variables in the
plugins:notify:database namespace. These variables control the database used by persistent channels
in a deployed notification service.

For example, if you wanted to retain archive copies of old checkpoint logs, you would set
plugins:notify:database:checkpoint_archive_old_files to true . You could also reduce the interval between
database checkpoints by setting plugins:notify:database:checkpoint_interval to a smaller number.

Example 2: Failure Recovery

- 112/172 -

The Telecom Log Service

Telecom Log Service Basics
The telecom log service provides a mechanism for creating a persistent log of events in a distributed
computing environment. It provides tools for reviewing past events and it also allows for the recovery of events
in the event of a catastrophic failure.

Telecom Log Service Objects

BasicLog
BasicLog objects provide standard, event-unaware, CORBA objects write access to the telecom log
service’s persistent store. The BasicLog object can also query the service’s persistent store.

EventLog
EventLog objects provide event functionality to event-aware CORBA objects. The EventLog object can
forward events from an event supplier to an event consumer. It also allows log clients to receive log
generated events.

NotifyLog
NotifyLog objects extend the functionality of the EventLog objects to take advantage of the notification
service’s filtering and QoS capabilities. NotifyLog objects can also filter the types of events that are
logged to the persistent store. You must have a licensed and functioning notification service to use
NotifyLog objects.

Factory objects
Each type of log object also has an associated log factory object for creating and managing log objects.

The Telecom Log Service

- 113/172 -

Telecom Log Service Features
Table 4 shows the features that each type of log object supports.

Table 4: Log feature support

Quality of Service
The telecom log service offers three quality of service levels:

QoSNone

specifies that log records are buffered in memory when received and are written to the persistent store
by the log at preconfigured intervals.

QoSFlush

specifies that log records are buffered in memory and are written to the persistent store when the
flush() method is invoked on the log object.

Type of
Log

Write
Operations

Filtering Event
Forwarding

Event
Generation

QoS

BasicLog Store data
directly to
the log.

None None None Log level
QoS

EventLog Write data
directly to
the log and
push/pull
style events.

None Supports
push and
pull style
forwarding
of
unstructured
events.

Yes Log level
QoS

NotifyLog Write data
directly to
the log and
push/pull
style writing
of structured
and
unstructured
events.

Supports
filtering of
events
being
written to
the log as
well as
notification
style event
filtering.

Supports
push and
pull style
forwarding
of structured
and
unstructured
events.

Yes Log level
and
notification
service
levels of
QoS

Telecom Log Service Features

- 114/172 -

QosReliability

specifies that log records are written directly to the persistent store.

Developing Telecom Log Clients
Clients connect to the telecom log service to create a persistent record of their activities.

Creating a Log
The telecom log service provides a factory object for each type of logging object. A factory object, which
also acts as a manger for the log objects it creates, can be used to instantiate log objects of the same
type. For example, a NotifyLogFactory object would be used to instantiate a NotifyLog object.

Steps
To create a log object complete the following steps:

Obtain a log factory

Obtain a log object

Obtain a log factory
You obtain a log factory by resolving the telecom log service’s initial reference through the ORB, by
calling resolve_initial_references() with the string for the type of log factory you wish to obtain.

Table 5 lists the string to use for each factory object.

Table 5: Initial reference strings

Once you have obtained the object reference from resolve_initial_references() , you need to narrow it
to the proper object type (BasicLogFactory , EventLogFactory , or NotifyLogFactory).

Example 32 shows how to obtain the NotifyLogFactory .

1. 1.

2. 2.

Factory Initial Reference String

BasicLogFactory BasicLoggingService

EventLogFactory EventLoggingService

NotifyLogFactory NotifyLoggingService

Developing Telecom Log Clients

- 115/172 -

Example 32: Obtaining a NotifyLogFactory

Initialize the orb.

Obtain a reference to the NotifyLoggingService .

Narrow the object reference to the NotifyLogFactory .

Obtain a log object
Once you have a log factory, you can then obtain a log object from it. The log factories provide three
methods of obtaining a log object:

find_log()

allows you to find a log object using its unique id number.

create()

creates a log object with an id assigned by the telecom log service.

create_with_id()

creates a log object with a user assigned id.

Finding a log
If you have a specific log object you wish to use and you know its id, you can call the log factory’s
find_log() method. It has the following syntax:

// Java
import org.omg.DsNotifyLogAdmin.*;

[1](#obtain-a-log-
factory)

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB_init(args,
props);

[2](#obtain-a-log-
factory)

org.omg.CORBA.Object obj =
orb.resolve_initial_references("NotifyLoggingService
");

[3](#obtain-a-log-
factory)

NotifyLogFactory factory =
NotifyLogFactoryHelper.narrow(obj);

1. 1.

2. 2.

3. 3.

Creating a Log

- 116/172 -

If the log exists find_log() returns a reference to the log object. Otherwise, it returns a nil object
reference.

Creating a BasicLog
A BasicLog object is created from the BasicLogFactory . Once you have obtained the BasicLogFactory from
the ORB, you can use either the create() method or create_with_id() method to create a BasicLog .

create()

The BasicLogFactory ’s create() method has the following signature:

It takes the following parameters:

full_action

defines how the log will behave once it has reached it maximum size. Table 6 shows the possible values
for full_action .

Table 6: Settings for a log’s full_action

max_size

specifies the maximum size of the log in bytes.

id

is the unique id assigned to the log object by the log factory.

// IDL
Log find_log(in LogId id);

// IDL
BasicLog create(in LogFullActionType full_action,
in unsigned long long max_size,
out LogId id)
raises (InvalidLogFullAction);

Value Behavior

halt The log stops logging events until the old events have been cleared out and the
log’s size is below its max size.

wrap The log will wipe out the oldest events to make room for new event logging.

Creating a Log

- 117/172 -

create() will raise the InvalidLogFullAction exception if full_action is not a valid LogFullActionType .

create_with_id()

The BasicLogFactory ’s create_with_id() method has the following signature:

It takes the following parameters:

id

is the log object’s unique id.

full_action

defines how the log will behave once it has reached it maximum size. Table 6 on page 108 shows the
possible values for full_action.

max_size

specifies the maximum size of the log in bytes.

create_with_id() raises the following exceptions:

LogIdAlreadyExists

is raised if a log object is already using the id you passed as a parameter.

InvalidLogFullAction

is raised if full_action is not a valid LogFullActionType .

Creating an EventLog
An EventLog object is created from the EventLogFactory . Once you have obtained the EventLogFactory
from the ORB, you can use either the create() method or create_with_id() method to create an
EventLog .

When a new log object is created, the EventLogFactory generates an ObjectCreation event.

create()

The EventLogFactory ’s create() method has the following signature:

// IDL
BasicLog create_with_id(in LogID id
in LogFullActionType full_action,
in unsigned long long max_size,
raises (LogIdAlreadyExists, InvalidLogFullAction);

Creating a Log

- 118/172 -

The EventLogFactory ’s create() method is similar to the BasicLogFactory ’s create() method. See create().
However, the EventLogFactory adds the thresholds parameter. This parameter holds a sequence of short
which specifies, as a percentage of max log size, the points at which an ThresholdAlarm event will be
generated. If an invalid threshold value is passed to the method, InvalidThreshold exception is thrown.

create_with_id()

The create_with_id() method also takes the additional thresholds parameter and will throw
InvalidThreshold . Otherwise it is identical to the BasicLogFactory ’s create_with_id() method. See
create_with_id().

Creating a NotifyLog
A NotifyLog object is created from the NotifyLogFactory . Once you have obtained the NotifyLogFactory
from the ORB, you can use either the create() method or create_with_id() method to create a
NotifyLog .

create()

The NotifyLogFactory ’s create() method has the following signature:

The NotifyLogFactory ’s create() method extends the functionality of the EventLogFactory ’s create()
method by including parameters to support a Notification Channel. These parameters are:

// IDL
EventLog create(in LogFullActionType full_action,
in unsigned long long max_size,
in CapacityAlarmThresholdList thresholds,
out LogId id)
raises (InvalidLogFullAction,
InvalidThreshold);

// IDL
NotifyLog create(in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out DsLogAdmin::LogId id)
raises(DsLogAdmin::InvalidLogFullAction,
DsLogAdmin::InvalidThreshold,
CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

Creating a Log

- 119/172 -

initial_qos

specifies the initial QoS properties for the log’s associated notification channel.

initial_admin

specifies the initial admin properties for the log’s associated notification channel.

id

is the unique id assigned to the log object by the log factory.

create_with_id()

The NotifyLogFactory ’s create_with_id() method has the following signature:

When a new log object is created, the NotifyLogFactory generates an ObjectCreation event.

The NotifyLogFactory ’s create() and create_with_id() methods are similar to the EventLogFactory ’s
create() and create_with_id() methods. See Creating an EventLog. However, the NotifyLogFactory
inherits the CosNotifyChannelAdmin::ConsumerAdmin interface and NotifyLog objects take full advantage of
the telecom log service’s ability to provide notification channel functionality. Therefore, the
NotifyLogFactory ’s create() and create_with_id() methods have two additional parameters. One
configures its QoS properties and one configures its Admin properties. In addition, the
NotifyLogFactory ’s methods throw both the CosNotification::UnsupportedQoS exception and the
CosNotification::UnsupportedAdmin exception. For more information see Notification Service Properties.

Example
Example 33 creates a NotifyLog of type QoSNone that will generate a ThresholdAlarm when it reaches 90%
of its maximum capacity. Note that by default, the log will be created with the QoSNone QoS property.

Example 33: Creating a NotifyLog

// IDL
NotifyLog create_with_id(in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin)
raises(DsLogAdmin::LogIdAlreadyExists,
DsLogAdmin::InvalidLogFullAction,
DsLogAdmin::InvalidThreshold,
CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

Creating a Log

- 120/172 -

Specify the QoS and Admin properties for the log object.

Specify the threshold list for the log object.

Call create() on the factory object to get the log object.

Logging Events
Events are stored in the log’s persistent database. This is accomplished by one of two mechanisms, for
BasicLog objects you must directly call the write_records() method or the write_recordlist() method.
You can use the write_records() or the write_recordlist() methods to write data directly to the log. In
addition to using write_records() and write_recordlist() , you can record events in EventLog and
NotifyLog objects using the push/pull mechanisms as you would when using the event or notification
service.

When data is recorded in the log, it is assigned a unique id and the time it was recorded is noted. This
information is stored in a record header that can be used to retrieve the data.

Logging with a BasicLog
BasicLog objects have no knowledge of events or event channels and therefore must communicate
directly with the log. The write_records() method and a write_recordlist() method, specified in
DsLogAdmin::Log , provide BasicLog objects with this functionality.

// Java
import org.omg.DsLogAdmin.*
import org.omg.CosNotification.*;
IntHolder id = new IntHolder();

[1]
(#example)

// create the notification QoS properties
Property[] qos = new Property[0];
// create the notification Admin properties
Property[] admin = new Property[0];

[2]
(#example)

// Set a threshold alarm at 90% full
short[] threshold = new short[1];
threshold[0] = 90;

[3]
(#example)

// factory obtained previously
NotifyLog log = factory.create(halt, 0, threshold, qos,
admin, id);

1. 1.

2. 2.

3. 3.

Logging Events

- 121/172 -

write_records()
write_records() has the following signature:

It takes a sequence of Any that contains the data to be logged. The data is recorded directly into the log
without any filtering or indexing. It raises the following exceptions:

To store data using write_records() complete the following steps:

Package the data to be logged into a DsLogAdmin::Anys , which is a sequence of Any .

Invoke write_records() on the log.

Catch any exceptions.

Example 34 writes a record containing information about a cell phone call. The information logged is
the number the call originated from, the number called, and the reason for the event.

Example 34: Writing data to a BasicLog object

// IDL in DsLogAdmin::Log
typedef sequnce<any> Anys;
void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

LogFull Raised if the log has reached its maximum size and its full action is set to ha
lt .

LogOffDuty Raised when the log is not scheduled to receive data.

LogLocked Raised when the log’s administrative state is set to locked .

LogDisabled Raised when the log’s operational state is set to disabled .

1. 1.

2. 2.

3. 3.

// Java
import org.omg.DsLogAdmin.*;

[1]
(#write_records)

DsLogAdmin.Any[] anys = new DsLogAdmin.Any[3];
any[0].value.insert_string("7989028321");
any[1].value.insert_string("8606531000");
any[2].value.insert_string("connected");

Logging Events

- 122/172 -

write_recordlist()
write_recordlist() has the following signature:

[2]
(#write_records)

try
{
log.write_records(anys); // log obtained earlier
}

[3]
(#write_records)

catch(const DsLogAdmin::LogFull&)
{
System.err.println("'Basic log "+log->id()+"' is
full");
}
catch(const DsLogAdmin::LogOffDuty&)
{
System.err.println("'Basic log "+log->id()+"' is off
duty");
}
catch(const DsLogAdmin::LogLocked&)
{
System.err.println("'Basic log "+log->id()+"' is
locked");
}
catch(const DsLogAdmin::LogDisabled&)
{
System.err.println("'Basic log "+log->id()+"' is
disabled");
}

Logging Events

- 123/172 -

write_recordlist() is functionally identical to write_records() . It writes data directly to the log and raises
the same exceptions. The major difference is that the record’s data is stored in a LogRecord . This allows
you to add a series of name/value pair attributes to assist in querying the log.

To store data using write_recordlist() complete the following steps:

Package the data to be logged into a DsLogAdmin::RecordList , which is a sequence of LogRecord . Each
record’s id and time members will be filled in by the log.

Invoke write_recordlist() on the log.

Catch any exceptions.

Example 35 writes a record to a BasicLog object using write_recordlist() . The record includes a single
attribute that identifies the type of minutes being billed.

Example 35: Writing data to a BasicLog object

// IDL is DsLogAdmin.idl
struct NVPair
{
string name;
any value;
};
typedef sequence<NVPair> NVList;
struct LogRecord
{
RecordId id;
TimeT time;
NVList attr_list; // attributes, optional
any info;
};
typedef sequence<LogRecord> RecordList;
void write_recordlist(in RecordList list)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

1. 1.

2. 2.

3. 3.

// Java
import org.omg.DsLogAdmin.*;

Logging Events

- 124/172 -

[1]
(#write_recordlist
)

//Create a new log record
LogRecord record = new LogRecord();
// create a new attribute list
record.attr_list[] = new NVList[1];
record.attr_list[0].name = "minute_type";
record.attr_list[0].value =
org.omg.CORBA.ORB.init().create_any();
record.attr_list[0].value.insert_string("free");
// Load the data into an any
record.info =
org.omg.CORBA.ORB.init().create_any();
record.info.insert_string("7989028321, 8606531000,
connected");
// Create a RecordList
Record[] records =new Records[1];
records[0] = record;

[2]
(#write_recordlist
)

try
{
log.write_recordlist(records); // log obtained
previously
}

Logging Events

- 125/172 -

Logging Events with an EventLog
While an EventLog object can use the write_records() method or the write_recordlist() method to log
data in a persistent data store, EventLog objects also take advantage of the CORBA event services push/
pull mechanisms to log events.

Procedure
The procedure for logging events using an EventLog object is identical to sending an event through the
event service. The object generating the event is an event service supplier and it either pushes events to
the log or allows the log to pull events from it depending on the suppliers implementation.

The EventLog inherits from the CosEventChannelAdmin::EventChannel interface, thus it has the associated
methods to connect an event supplier through a proxy consumer.

To log events using an EventLog , complete the following steps:

Obtain a SupplierAdmin from the log.

Obtain a proxy consumer from the SupplierAdmin .

Connect the proxy consumer to the log’s event channel.

[3]
(#write_recordlist
)

catch(const DsLogAdmin::LogFull&)
{
System.err.println("'Basic log "+log->id()+"' is
full");
}
catch(const DsLogAdmin::LogOffDuty&)
{
System.err.println("'Basic log "+log->id()+"' is off
duty");
}
catch(const DsLogAdmin::LogLocked&)
{
System.err.println("'Basic log "+log->id()+"' is
locked");
}
catch(const DsLogAdmin::LogDisabled&)
{
System.err.println("'Basic log "+log->id()+"' is
disabled");
}

1. 1.

2. 2.

3. 3.

Logging Events

- 126/172 -

Send events to the log using either push() or pull() depending on the type of supplier you choose to
use.

For more information on connecting supplier to an event channel, see the chapter on the event
service in the CORBA Programmer’s Guide.

Once the supplier is connected to the log, you can continue to pass events to the log until you
explicitly disconnect from the log.

Example
Example 36 logs events to an EventLog using a push supplier. The code is labeled according to the steps
outlined in the procedure above.

Example 36: Logging events to an EventLog using a push supplier

In step 3 a nil supplier reference is used because the log object does not need a disconnect notification.

Logging Events with a NotifyLog
NotifyLog objects are similar to EventLog objects in that they use an event channel and use the push/
pull methods to log data. However, NotifyLog objects also inherit from CosNotifyChannelAdmin , which
enables them to log sturctured events and sequenced events.

Procedure
The procedure for connecting to a NotifyLog and logging events is the same as that used for a
connecting to the notification service.

To log events using an NotifyLog , complete the following steps:

4. 4.

[1]
(#procedure)

org.omg.CosEventChannelAdmin.SupplierAdmin sa =
log.for_suppliers();

[2]
(#procedure)

org.omg.CosEventChannelAdmin.ProxyPushConsumer ppc =
sa.obtain_push_consumer();

[3]
(#procedure)

ppp.connect_push_supplier(org.omg.CosEventComm.PushSullpl
ier._nil());

org.omg.CORBA.Any any =
org.omg.CORBA.ORB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

[4]
(#procedure)

ppc.push(any);

Logging Events

- 127/172 -

Obtain a SupplierAdmin from the log.

Obtain a proxy consumer from the SupplierAdmin .

Connect the proxy consumer to the log’s event channel.

Send events to the log using either push() or pull() depending on the type of supplier you choose to
use.

For information on connecting to the notification service, see the Implementing a Supplier.

Example
Example 37 logs events to a NotifyLog using a push supplier.

Example 37: Logging events to a NotifyLog using a push supplier

Get the default SupplierAdmin object for the log’s notification channel.

Get a proxy consumer that uses unstructured events.

Narrow the returned proxy to a ProxyPushConsumer .

1. 1.

2. 2.

3. 3.

4. 4.

// Java
import org.omg.CosNotifyChannelAdmin.*;

[1]
(#example)

SupplierAdmin sa = log.default_supplier_admin();

[2]
(#example)

IntHolder proxy_id = new IntHolder();
ClientType ctype = CosNotifyChannelAdmin.ANY_EVENT;
ProxyConsumer obj =
sa.obtain_notification_push_consumer(ctype, proxy_id);

[3]
(#example)

ProxyPushConsumer pc =
ProxyPushConsumerHelper.narrow(obj);

[4]
(#example)

pc.connect_any_push_supplier(CosEventComm.PushSupplier._nil
());

org.omg.CORBA.Any any =
org.omg.CORBA.ORB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

[5]
(#example)

pc.push(any);

1. 1.

2. 2.

3. 3.

Logging Events

- 128/172 -

Connect the proxy consumer to the log’s notification channel. A nil reference can be passed because
the log does not need to be notified of a disconnect.

Push the event to the log.

Getting Log Records
When a record is stored in the log, the log creates a header for it that contains a unique id for the
record and the time that the data was recorded. This header can also contain an optional attribute list.
Using this data, you can retrieve records from the log.

The telecom log service provides two methods for getting records from the log:

You can retrieve a series of records based on the time when they were logged. For example, you can
retrieve the first 100 records logged after 10pm February 3, 2014.

You can retrieve records based on a search criteria. For example, you can retrieve all of the events
that record losses by your local rugby team.

Retrieving records based on time logged
The retrieve() operation reads the log records in the log sequentially starting from any given time. It
has the following signature:

If a negative value for the number of records to retrieve is supplied, retirieve() will return records that
were logged prior to the start time, starting with the most recently logged and ending with the oldest in
the series

The iterator value is used to handle the retrieval of large amounts of data. If the number of records
specified cannot fit in the return value, the iterator provides access to the remaining records. If the
iterator is not needed it will be nil.

Querying the log for records
Each log record contains the time it was logged, a unique record id, a set of optional attributes, and the
data being logged. Queries can be constructed to retrieve log records based on any of this information.

Queries are constructed using a constraint language based on the standard OMG Trader Constraint
Language with some modifications that make it more suitable for use in querying log records. For more
information on the constraint language, see Filter Constraint Language.

4. 4.

5. 5.

1. 1.

2. 2.

// IDL
RecordList retrieve(in TimeT start, in long num, out Iterator i);

Getting Log Records

- 129/172 -

The query() operation takes in a constraint and returns all of the records in the log that matches it.
query() has the following signature:

The grammar parameter indicates how to interpret the constraint string. The default grammar is
“ EXTENDED_TCL ”. The records which match the constraint, match_string , are returned as a RecordList . An
iterator may be returned to handle large query results. A nil object reference will be returned for the
iterator if it is not needed.

query() can raise the following exceptions:

Example 38 retrieves all of the records that have the attribute minute_type set to “ roaming “.

Example 38: Querying a log for records

Deleting Records from the Log
Records are removed from the log automatically once they reach their life expectancy. However, it is
occasionally necessary to delete records from the log. The telecom log service provides you with the
option of deleting specific records based on their record id or deleting records based on a constraint.

Deleting records by id
The delete_records_by_id() operation deletes specific log records from the log. It takes a sequence of
RecordId as a parameter, and returns the number of records deleted. If no records match the ids
specified, the operation will return 0.

// IDL
RecordList query(in string grammar, in Constraint match_string, out Iterator
i)
raises(InvalidGrammar, InvalidConstraint);

InvalidGrammar Raised if the log does not support the grammar specified.

InvalidConstraint Raised if the constraint string is invalid.

// Java
org.omg.DsLogAdmin.IteratorHolder iter = new
org.omg.DsLogAdmin.IteratorHolder();
org.omg.DsLogAdmin.Record[] list = log.querey(“EXTENDED_TCL”, "$minute_type
== ’roaming’", iter);

Deleting Records from the Log

- 130/172 -

Using a constraint to delete records
The delete_records() operation deletes records from the log based on a constraint. See Querying the
log for records for more information on how to form a constraint.

It returns the number of records deleted and can raise the following exceptions:

Example 39 deletes all of the records whose id is less than 10.

Example 39: Deleting records from a log

Example 40: Deleting records from a log

Ending a Logging Session
To end a logging session, the client needs to release the object reference to the log object. For EventLog
objects and NotifyLog objects, the developer must also disconnect the client from the event channel
associated with the log.

Using the destroy() operation will eliminate the object instantiating the log in the telecom log service
and destroy any records stored in the log.

InvalidGrammar Raised if the implementation does not support the specified
grammar.

InvalidConstraint Raised if the constraint string is invalid.

InvalidAttribute Raised if one of the attributes specified in the constraint string is
invalid.

// C++
CORBA::ULong deled = log->delete_records(“EXTENDED_TCL”, "$.id < 10");
cout << deled << "records deleted from the log." << endl;

// Java
org.omg.CORBA.Ulong deled = log.delete_records(“EXTENDED_TCL”, "$.id <
10");
System.out.println(deled + " records deleted from the log.");

Ending a Logging Session

- 131/172 -

Advanced Features
The telecom log service provides a number of features to make it flexible enough to handle most enterprise
level applications. Most of the features leverage the functionality of the event and notification services and are
therefore only available to EventLogs and NotifyLogs.

Scheduling
All log implementations allow you to schedule when the log is active. During this time, it will be fully
functional and log messages. When the log is not scheduled to log new records, it will still be available
for record retrieval and event forwarding.

Scheduling scenario
The ability to schedule when the log records data can be valuable to control both the size of the
persistent store and the overall performance of your system. For example, suppose you need to
develop an application to monitor the performance of a cell phone network. During peak hours, there
are millions of events generated per hour on the network and there are technicians on hand at all
times. During off-peak hours, the number of events generated is cut in half and there is only a skeleton
crew of technicians available to handle critical failures.

The added overhead of logging events during peak hours will most likely have serious implications in
overall system performance and may, during particularly heavy periods, be prohibitive. Because there
are a number of technicians and support personnel on hand to monitor the network manually, it may
not be necessary to log events during peak hours. Therefore you could schedule the log to only log
events during off-peak hours when the overhead would be lower and there are not enough technicians
to constantly monitor the network.

Schedule data
Log schedules are specified using a WeekMask which is a struct defined in module DsLogAdmin .

Advanced Features

- 132/172 -

The intervals field of a WeekMaskItem specifies the time, in 24 hour format, that the log will begin
logging records and the time that the log will stop logging records.

The days field of WeekMaskItem indicates which days of the week to apply the start and stop times
specified in the intervals field. It is created using a bitwise OR operation to create a bitmask specifying
the days. For example, to specify that an interval should be valid on Friday, Saturday, and Sunday you
would use the following code:

Setting a schedule
By default, a log has no set schedule and will log records continuously. If you want to alter that
behavior, you use the set_week_mask() operation to set a schedule for the log. The operation has the
following signature:

// IDL in DsLogAdmin
struct Time24
{
unsigned short hour; // 0-23
unsigned short minute; // 0-59
};
struct Time24Interval
{
Time24 start;
Time24 stop;
};
typedef sequence<Time24Interval> IntervalsOfDay;
const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;
const unsigned short Friday = 32;
const unsigned short Saturday = 64;
typedef unsigned short DaysOfWeek;// Bit mask of week days
struct WeekMaskItem
{
DaysOfWeek days;
IntervalsOfDay intervals;
};
typedef sequence<WeekMaskItem> WeekMask;

DaysOfWeek days = Friday | Saturday | Sunday;

Scheduling

- 133/172 -

The masks parameter allows you to specify as complex a schedule as needed. For instance you can set a
different logging interval for each day of the week or specify multiple intervals during a single day to
log records (providing the intervals do not overlap).

When using an EventLog or a NotifyLog , an AttributeValueChange event is generated whenever the log’s
schedule is changed. See Log Generated Events for more information.

set_week_mask() raises the following exceptions:

Example 41 tells a log to log records from 12am until 8am and from 7:30pm until 11:59pm Monday
through Friday.

Example 41: Setting a logs schedule

\\ IDL
void set_week_mask(in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask);

InvalidTime One of the values specified for a start or stop time is not within the valid
range.

InvalidTimeIn
terval

One of the time intervals is improperly formed. For example, the stop
time is before the start. Also raised if the intervals overlap.

InvalidMask The days parameter is malformed.

// Java
import org.omg.DsLogAdmin.*;

// Contruct the times between the log is to record data
IntervalsOfDay[] intervals = new IntervalOfDay[2];
intervals[0].start.hour = 0;
intervals[0].start.minute = 0;
intervals[0].stop.hour = 8;
intervals[0].stop.minute = 0;
intervals[1].start.hour = 19;
intervals[1].start.minute = 30;
intervals[1].stop.hour = 23;
intervals[1].stop.minute = 59;

Scheduling

- 134/172 -

Determining a log’s schedule
You can determine what schedules, if any, have been set for a given log by calling the get_week_mask()
method on it. get_week_mask() takes no parameters and returns the scheduling information for the log
in a WeekMask .

// Build the mask to specify the days on which
// the schedule is valid
DaysOfWeek days = Monday | Tuesday | Wednesday | Thursday | Friday;

// Package the schedule
WeekMask[] sched = new WeekMask[1];
sched[0].days = days;
sched[0].intervals = intervals;

// Apply the schedule to the log
try
{
log->set_week_mask(sched);
}

// Handle any exceptions
catch(const InvalidTime&)
{
...
}
catch(const InvalidTimeInterval&)
{
...
}
catch(const InvalidMask&)
{
...
}

Scheduling

- 135/172 -

Log Generated Events
EventLogFactory and NotifyLogFactory objects can keep their clients informed of the telecom log
service’s state by generating events and forwarding the events onto their clients. This feature can be
particularly useful for developing clients that need to respond gracefully to log failures or other status
changes.

For example, you need to implement a system to process purchases made through your companies
web site and you decide to use the telecom log service to create a persistent record of the purchases
made outside of normal business hours, so that the orders can be handled the following business day.
If the log being used to store the purchases reached its threshold before the new purchases could be
processed, the log would have two options of how to react, depending on how you set its full_action .
The log could either stop recording the purchases, or it could write over the old records. Neither option
is acceptable.

If you developed a client that received log generated events, you could design it to handle a full log
gracefully. For instance, you could have the client stop accepting new purchases until the log was
emptied or you could have it create a new log object and begin to record purchases there.

Log events
Log objects generate events for the following reasons:

Table 7: Events generated by a log factory

Event Reason

ObjectCrea
tion

Generated when a log object is created.

ObjectDele
tion

Generated when a log object is destroyed.

ThersholdA
larm

Generated when a log object’s threshold capacity is reached. Alarms can be
configured at different percentages of the logs capacity. For example, one
alarm event can be generated when the log reaches 90% of capacity and
another can be generated when the log reaches 95% of capacity.

Log Generated Events

- 136/172 -

Event propagation
The EventLogFactory and NotifyLogFactory interface inherit from the CosEventChannelAdmin::ConsumerAdmin
and the CosNotifyChannelAdmin::ConsumerAdmin interfaces, respectively. Therefore event service
consumers, both push and pull style, can connect to an EventLogFactory to receive log generated events.
Also, notification service consumers, both push and pull, can connect to a NotifyLogFactory to receive
log generated events. For more information about event propagation see Event Communication.

Receiving log generated events
To develop a telecom log service client that receives log generated events from the EventLogFactory or
the NotifyLogFactory complete the following steps:

Event Reason

AttributeV
alueChange

Generated when a log changes one of the following log attributes:

- capacity alarm threshold

- log full action

- maximum log size

- start time

- stop time

- week mask

- adding/removing/changing a constraint expression on the log’s filter object

- max record life

- quality of service

StateChange Generated when a log object’s operational or administrative state is
changed.

Processing
ErrorAlarm

Generated when a log generates an error.

Log Generated Events

- 137/172 -

Obtain a reference to the log factory, either EventLogFactory or NotifyLogFactory . See Obtain a log
factory.

Obtain a proxy supplier from the log factory.

Connect to the proxy supplier using its connect method.

For a pull consumer, call pull() or try_pull() to receive events. For a push consumer, you will need to
implement the appropriate push() method.

For a more detailed description of how to connect an event consumer to an event channel, see the
CORBA Programmer’s Guide and Implementing a Consumer.

Example 42 implements a push consumer that receives events from the NotifyLogFactory .

Example 42: Receiving events from the NotifyLogFactory

1. 1.

2. 2.

3. 3.

4. 4.

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

[1](#receiving-log-
generated-events)

class NotifyPushConsumer extends PushConsumerPOA
{
// member variables not shown...
void public push(Any event)
{
// Process the event
// ...
}
void public NotifyPushConsumer()
{
{
// client consumer program
public static main(String args[])
{
// ORB and POA activation not shown
// ...

[2](#receiving-log-
generated-events)

// Create the push consumer
NotifyPushConsumer consumer = new
NotifyPushConsumer();

Log Generated Events

- 138/172 -

[3](#receiving-log-
generated-events)

// get a reference to the NotifyLogFactory
Object obj =
orb.resolve_initial_references("NotifyLoggingServi
ce");
org.omg.DsNotifyLogAdmin.NotifyLogFactory factory =
org.omg.DsNotifyLogAdmin.NotifyLogFactoryHelper.na
rrow(obj);

// The client consumes events of type ANY
ClientType type = CosNotifyChannelAdmin.ANY_EVENT;
// get the push proxy supplier
IntHolder proxy_id = new IntHolder();

[4](#receiving-log-
generated-events)

try
{
ProxySupplier obj =
factory.obtain_notification_push_supplier(type,
proxy_id);
}
catch(CosNotifyChannelAdmin::AdminLimitExceeded
err)
{
// handle the exception
}
ProxyPushSupplier_var pps =
ProxyPushSupplierHelper.narrow(obj);

Log Generated Events

- 139/172 -

Implement the consumer’s class and its push() method.

Instantiate the consumer.

Obtain a reference to the NotifyLogFactory , which inherits from CosNotifyChannelAdmin::ConsumerAdmin .

Obtain a push supplier from the log factory and narrow it to a ProxyPushSupplier .

Connect the consumer to its proxy supplier.

Once the consumer is connected to its proxy it will continue to receive log generated events until it
explicitly disconnects.

Event data types
Each event generated by the telecom log service is passed to the clients as an any and the clients are
responsible for unpacking the data correctly before decoding it. The data types defined for each event
provide all of the information necessary to describe the action that generated the event. For example,
an AttributeValueChanged event’s data structure includes a field to describe which attribute was changed,
the old value of the attribute, and the new value of the attribute.

ObjectCreation event

An ObjectCreation event has the following data structure:

[5](#receiving-log-
generated-events)

try
{
pps.connect_push_consumer(consumer)
}
catch (AlreadyConnected ac)
{
System.out.println("Already connected to
channel.");
exit (1);
}
catch (CORBA::SystemException& se)
{
System.out.println("System exception occurred
during connect.");
exit(1);
}
// ...
} // main
} // NotifyPushConsumer

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

Log Generated Events

- 140/172 -

It contains the new log’s id and the time that the new log was created.

ObjectDeletion event

An ObjectDeletion event has the following data structure:

It contains the id of the deleted log and the time it was deleted.

ThresholdAlarm event

A ThresholdAlarm event has the following data structure:

It contains the object reference and the id of the log whose alarm was set off and the time when the log
reached its capacity alarm threshold. The observed_value field indicates the log’s size, as a percentage of
the maximum log size. The crossed_value field indicates the threshold level that was crossed. The
perceived_severity field is minor if log is not full, and critical otherwise.

// IDL
struct ObjectCreation
{
LogId id;
TimeT time;
};

// IDL
struct ObjectDeletion
{
LogId id;
TimeT time;
};

// IDL
struct ThresholdAlarm
{
Log logref;
LogId id;
TimeT time;
Threshold crossed_value;
Threshold observed_value;
PerceivedSeverityType perceived_severity;
};

Log Generated Events

- 141/172 -

AttributeValueChanged event

An AttributeValueChanged event has the following data structure:

Along with the affected log’s object reference, the affected log’s id, and the time of the event, the data
structure includes the type field which identifies the attribute that was changed, the old value of the
attribute, and the new value of the attribute.

StateChange event

A StateChange event has the following data structure:

Along with the affected log’s object reference, the affected log’s id, and the time of the event, the data
structure includes the type field, which identifies the attribute that was changed, and the new_value
field, which contains the new value of the attribute.

ProcessingErrorAlarm event

A ProcessErrorAlarm event has the following data structure:

// IDL
struct AttributeValueChange
{
Log logref;
LogId id;
TimeT time;
AttributeType type;
any old_value;
any new_value;
};

// IDL
struct StateChange
{
Log logref;
LogId id;
TimeT time;
StateType type;
any new_value;
};

Log Generated Events

- 142/172 -

It contains the error number and a textual description of the log object’s error.

Unpacking log generated events
Clients can determine how to unpack log generated events in one of two ways:

Trial and Error

You can code the client code to simply keep trying to stuff the returned any into the different log event
data structures. Example 43 shows client code for unpacking log generated events by trial and error.

Example 43: Unpacking an event by trial and error

Type Codes

// IDL
struct ProcessingErrorAlarm
{
long error_num;
string error_string;
};

// Java
org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any = // the event received by the client.
const org.omg.DsLogNotification.ObjectCreation* object_creation;
const org.omg.DsLogNotification.ObjectDeletion* object_deletion;
if(any >>= object_creation)
{
// An object creation event was received.
}
else if(any >>= object_deletion)
{
// An object deletion event was received.
}
else
{
// Some other event type...
}

Log Generated Events

- 143/172 -

You can also use the type code of the returned any to determine what type of event was returned and
unpack it accordingly. Example 44 shows client code for unpacking log generated events based on their
typecode.

Example 44: Unpacking log generated events by typecode

When using NotifyLog clients, you can limit the type of events they receive from the log by filtering out
the events you do not want the client to receive. See Filtering and Event Filtering for detailed
information on event filtering.

Event Forwarding
As seen in Figure 3 the telecom log service encapsulates an event channel to provide added
functionality to EventLog objects and NotifyLog objects. Therefore both EventLog objects and NotifyLog
objects are capable of emulating an event channel and passing events between suppliers and
consumers using both the push and pull methods. NotifyLog clients can also take advantage of the
notification service style QoS properties and notification style filtering. See Filtering and Log
Management.

Logs will forward events as long as their ForwardingState attribute is set to on . Changing a log’s
administrative state or using a schedule to turn logging on and off does not affect the log’s ability to
forward events.

// Java
org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any = // the event received by the client.
org.omg.CORBA.TypeCode tc = any.type();
if(tc.equivalent(DsLogNotification.ObjectCreationHelper.type()))
{
// An object creation event was received.
// Unpack the event and handle the results.
}
else if(tc.quivalent(DsLogNotification.ObjectDeletionHelper.type()))
{
// An object deletion event was received.
// Unpack the event and handle the results.
}
else
{
// Some other event type...
}

Event Forwarding

- 144/172 -

The basic steps involved in log event forwarding are:

Set the log’s ForwardingState to on . This is the default for all newly created EventLog objects and
NotifyLog objects.

Connect the clients to the log object via the event or notification channel interface it supports.

NotifyLog clients specify filters. See Filtering.

Suppliers send events to the log by using either push() for push style suppliers, or pull() for pull
style suppliers. Pull style suppliers can also use try_pull() .

If the log is set to log events, the events sent to the log object will be recorded.

Consumers receive events from the channel.

Developing a telecom log application that uses event forwarding
Developing a telecom log service that uses event forwarding is essentially identical to developing an
event service or notification service application. However, the telecom log service has the added benefit
that it will maintain a persistent and fully accessible history of the events that are being passed through
the channel. The telecom log service suppliers can also be implemented to receive log generated
events. See Log Generated Events.

To develop a telecom log service application that forwards events between event suppliers and event
consumers complete the following steps:

Implement the required methods for the event supplier. If you use a pull style supplier, you will need
to implement the appropriate pull() and/or try_pull() method.

Implement the required methods for the event consumer class. If you use a push style consumer, you
will need to implement the appropriate push() method.

Instantiate both the supplier’s class and the consumer’s class.

Obtain either an EventLog object or a NotifyLog object that has its ForwardingState set to on .

Connect the supplier to the log’s associated event channel by obtaining a SupplierAdmin from the log
object. From the SupplierAdmin , you obtain a ProxyConsumer to connect to the channel.

Begin generating events.

Connect the consumer to the log’s associated event channel by obtaining a ConsumerAdmin from the
log object. From the ConsumerAdmin , you obtain a ProxySupplier to connect to the channel.

For a detailed description of implementing event consumers and event suppliers, see Developing
Suppliers and Consumers and the CORBA Programmer’s Guide.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Event Forwarding

- 145/172 -

NotifyLog features
If you are using a NotifyLog object, you can take full advantage of all of the notification services
features. These include: event filtering, structured and sequence events, event subscription, and
notification-style QoS properties for events. See Notification Service Properties.

Example
The following example implements an application that passes an unstructured event containing the
price of a stock from a notification push supplier to a notification push consumer. They both connect to
a NotifyLog with the id 123. By using a log with a user defined id , you ensure that the consumer and
the supplier are connected to the log object.

Example 45 implements the notification push supplier.

Example 45: Implementing the push supplier.

// Java
import org.omg.DsNotifyLogAdmin.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

[1]
(#example)

class NotifyPushSupplier extends PushSupplierPOA
{
// Member variables not shown...
public void NotifyPushSupplier()
{
// Implementation not shown...
}

[2]
(#example)

// The main entry point @param args command line args
public static void main (String args[])
{
// ORB and POA Activation not shown
NotifyPushSupplier supplier = new NotifyPushSupplier();

Event Forwarding

- 146/172 -

The supplier code show in Example 45 does the following:

[3]
(#example)

// Get a Log Factory
Obect obj =
orb.resolve_initial_references("NotifyLoggingService");
NotifyLogFactory factory =
NotifyLogFactoryHelper.narrow(obj);

[4]
(#example)

// The log will have an id of 123
IntHolder id = new IntHolder();
id = (ULong)123;
// Set the Log’s QoS properties
Property[] qos = new Property[0];
qos[0].name = Type;
qos[0].value.insert_int(QoSNone);
Property[] admin = new Property[0];
CapacityAlarmThresholdList thresholds = null;
NotifyLog log = factory.create_with_id(id, halt, 0,
thresholds, qos, admin);

[5]
(#example)

SupplierAdmin sa = log.default_supplier_admin();
IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.ANY_EVENT;
try
{
ProxyConsumer obj =
sa.obtain_notification_push_consumer(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
// handle the exception
}
ProxyPushConsumer ppc =
ProxyPushConsumerHelper.narrow(obj);

[6]
(#example)

Any any = org.omg.CORBA.ORB.init().create_any();
any.insert_string("FKUSX, $33.02");
ppc.push(any);
// ...
}
}

Event Forwarding

- 147/172 -

Implements the supplier’s object class.

Instantiates a supplier object.

Initializes the ORB and uses resolve_initial_references() to get a reference to the NotifyLogFactory .

Creates a log with an id of 123 using create_with_id() . The log is of type QoSNone and does not have
any threshold alarms set.

Obtains a ProxyPushConsumer and connects to the log’s associated notification channel.

Pushes a single event.

Example 46 implements the notification push consumer.

Example 46: Implementing the push consumer

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

[1]
(#example)

class NotifyPushConsumer extends PushConsumerPOA
{
// member variables not shown...
void public NotifyPushConsumer()
{
}
public void push(Any event)
{
if ((event.type()).kind() == TCKind.tk_string)
{
String stock_pice = event.extract_string();
System.out.println("Stock price is" + stock_price);
}
else
System.out.println("Invalid Event");
}

Event Forwarding

- 148/172 -

[2]
(#example)

// The main entry point @param args command line args
public static void main (String args[])
{
// ORB and POA initialization not shown ...
NotifyPushConsumer consumer = new NotifyPushConsumer();

[3]
(#example)

Obect obj =
orb.resolve_initial_references("NotifyLoggingService");
NotifyLogFactory factory =
NotifyLogFactoryHelper.narrow(obj);

[4]
(#example)

IntHolder id = 123;
NotifyLog log = factory.find_log(id))

Event Forwarding

- 149/172 -

The consumer code show in Example 46 does the following:

Implements the consumer’s object class.

Instantiates a consumer object.

Uses resolve_initial_references() to get a reference to the NotifyLogFactory .

Uses find_log() to obtain a reference the log created by the supplier.

[5]
(#example)

ConsumerAdmin ca = log.default_consumer_admin();
IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.ANY_EVENT;
try
{
ProxySupplier obj =
ca.obtain_notification_push_supplier(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
//handle exception
}
ProxyPushSupplier pps =
ProxyPushSupplierHelper.narrow(obj);
try
{
pps.connect_push_consumer(consumer);
}
catch(AlreadyConnected.value ac)
{
System.err.println("Already connecting to channel.");
System.exit(1);
}
catch (SystemException sys)
{
System.err.println("Encountered system exception during
connect: " + SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

[6]
(#example)

orb.run();
}
}

7. 7.

8. 8.

9. 9.

10. 10.

Event Forwarding

- 150/172 -

Obtains a ProxyPushSupplier and connects to the log’s associated notification channel.

Turns control over to the ORB to wait for events.

Filtering
NotifyLog objects support two types of filtering:

Notification style filtering which determines if an event passes through the log’s associated event
channel.

Log filtering which determines if an event is logged.

Figure 9 on page 136 shows the different types of filters that can be used by a NotifyLog .
Notification style filters are applied to the admin and proxy objects in the NotifyLog object’s
associated event channel. Each admin and proxy object may have multiple filters associated with
it. If an event is discarded due to a filter on a proxy consumer or supplier admin, it will not reach
the log filter and will not be logged.

Figure 9: Filter points in event’s life-cycle

Log filters are applied directly to the log object and do not effect the forwarding of an event. If the
event does not pass the log filter, it will not be logged, but it will be passed on to the consumer
admin. Unlike a proxy or admin object, a log object can only have one filter associated with it. The
log filter can be useful in situations where the log’s clients are generating a large number of
events of varying types. If you are only interested in a few types of events, you can control the size
of the log by applying filters. For example, you can log only events whose "severity" is greater
than 4 or events with a "log" attribute of 1.

For a more detailed discussion of filtering, see Event Filtering.

11. 11.

12. 12.

• •

• •

Filtering

- 151/172 -

Implementing a filter
To implement a filter complete the following steps:

Obtain a filter factory from the log using the default_filter_factory() method.

Create a filter using the factory’s create_filter() method. Specify the EXTENDED_TCL grammar, which is
the same grammar used by the notification service. See Filter Constraint Language.

Build your constraints for the filter, and add them using the filter’s add_constraints() method.

Attach the filter to the desired object (proxy, admin, or log) using the appropriate method. Table 8 on
page 137 shows the method used to attach a filter to the specified object.

Table 8: Methods for attaching filters

Example 47 on page 137 creates a filter to log data error events whose severity is greater than 4 and
attaches it to the log.

Example 47: Attaching a filter to a log object

1. 1.

2. 2.

3. 3.

4. 4.

Object Method

log object set_filter(CosNotifyFilter::Filter filter)

proxy object add_filter(CosNotifyFilter::Filter filter)

admin object add_filter(CosNotifyFilter::Filter filter)

// Java
import org.omg.CosNotifyFilter.*;
import org.omg.CosNotification.*;

[1](#implementing-a-
filter)

// NotifyLog log obtained earlier
FilterFactory dff =
log.default_filter_factory();

[2](#implementing-a-
filter)

Filter filter =
dff.create_filter("EXTENDED_TCL");

Filtering

- 152/172 -

Filter evaluation
An event must pass each notification style filter before it is forwarded to the next point in the channel. If
filters are set on an admin object and one of its proxies, events can be evaluated against both sets of
filters, depending on whether the admin object was created with AND or OR semantics:

AND semantics require events to pass both admin and proxy filters.

OR semantics only require an event to pass an admin or proxy filter.

A filter evaluates an event against its set of constraints until one evaluates to true. A constraint
evaluates to true when both of the following conditions are true:

A member of the constraint's EventTypeSeq matches the message's event type.

The constraint expression evaluates to true.

The first filter in which the event message evaluates to true forwards the event to the next
delivery point in the channel. If the event message fails to pass any filters, the event may not be
forwarded.

[3](#implementing-a-
filter)

// create a constraint
EventType[] event_types = new EventType(1);
event_types[0].domain_name = new String("Dial
Up");
event_types[0].type_name = new String("Data
Error");
ConstraintExp[] constraints = ConstraintExp(1);
constraints[0].event_types = event_types;
constraint[0].constraint_expr = new
String("$severity > ’4’");
ConstraintInfo[] info =
filter.add_constraints(constraint);

[4](#implementing-a-
filter)

log.set_filter(filter)

• •

• •

• •

• •

Filtering

- 153/172 -

Log Management
The telecom log service allows you to control the following attributes of a log:

Administrative State

Maximum log size

Log duration

Record lifetime

Log QoS properties

You can also monitor a log’s availability status, its operational state, and its current size (in bytes
and number of records).

Administrative State
Administrative state can also be thought of as the “logging state” and is used to turn logging on and off.
A log’s administrative state does not affect the log’s ability to forward events. If the administrative state
of the log is locked, events will pass through the event channel as long as the log’s forwarding state is
set to on.

States
Logs can be put into one of two administrative states:

Table 9: Administrative states for a log

By default, the administrative state of a newly created log object is unlocked .

Methods
You can determine the administrative state of a log by using its get_administrative_state() method. It
returns the administrative state in the enumerated type, AdministrativeState .

• •

• •

• •

• •

• •

Administrative
State

Log Functionality

Unlocked The log is fully functional. New records can be added. Records can be
retrieved and deleted from the log. Events can be forwarded.

Locked The log will not create new records. All other functionality of the log is
still available.

Log Management

- 154/172 -

You set a log’s administrative state using its set_administrative_state() method, which takes a single
parameter of type AdministrativeState . A StateChange event is generated whenever the administrative
state of a log is changed.

Example
Example 48 checks to see if a log is locked and if it is changes its administrative state to unlocked .

Example 48: Setting a log’s administrative state

Maximum Log Size

Setting
A log’s set_max_size() method sets its maximum size in bytes. The method takes an unsigned long long .
If a value of zero is supplied, then the log size will be set to have no predefined limit. If the new
maximum log size is less than the current log size, an InvalidParam exception will be raised. If the
maximum size of the log is changed, an AttributeValueChange event is generated.

Checking
A log’s get_max_size() method returns its size in bytes.

Log Duration
In addition to setting fine-grained scheduling intervals for a log to record data, you can also specify a
course-grained duration for a log’s functionality. By default, a log’s functional duration is set to be the
log’s lifetime. It will start logging records immediately after it is created and continue to log events until
it is destroyed.

However, you can program the log to start functioning at a specific time and stop functioning at a later
date. Before the log’s start time and after its stop time, it will not provide any logging functionality and
any schedules set for the log will be invalid. The log will, however, forward events. See Event
Forwarding.

// Java
// log obtained previously
if (log.get_administrative_state() == AdministrativeState.locked)
{
log.set_administrative_state(AdministrativeState.unlocked);
System.out.println("Log " + log.id() + "is now unlocked.");
}

Log Management

- 155/172 -

Specifying
A log’s duration is specified using a TimeInterval structure which has the following signature:

If you specify a start time of zero, the log will become functional as soon as it is enabled. A stop time of
zero causes the log to remain functional until it is destroyed.

Setting
You use a log’s set_interval() method to set a log’s functional interval. It takes a single TimeInterval
parameter. An InvalidTimeInterval is thrown if the start time is before the stop time. If the log’s
functional duration is successfully changed, an AttributeValueChange event is generated.

A race condition could exist when setting the start/stop time. For instance, if a log’s start time is too
close to the time the set_interval() method is invoked, then the time the log may have missed some
events that should have been logged before it could be activated.

Record Lifetime
The lifetime of records in a log determines the amount of time between when the log creates the record
and when the log compacts, or deletes the record. By default, all logs have a record life of zero, which
specifies that records have an infinite lifespan. However, this also means that the log can not perform
any automatic garbage collecting.

For logs with a limited amount of persistent storage space, or for logs that store large volumes of
records, you may want to have records expire and be automatically compacted.

Setting
You set a log’s record lifetime using the log’s set_record_life() method. It specifies the record’s lifetime
in seconds. When you successfully change a log’s record lifetime, an AttributeValueChange event is
generated.

\\ IDL
struct TimeInterval
{
TimeT start;
TimeT stop;
};

Note

Log Management

- 156/172 -

Checking
The get_max_record_life() method returns the log’s record lifetime setting.

Log QoS Properties
The telecom log service supports a lightweight QoS framework that specifies the level of assurance that
logged records will be stored in a log’s persistent data store.

Properties
Log objects support the following QoS settings:

Table 10: Log QoS settings

Setting
The set_log_qos() operation sets the quality of service properties of the log. If the QoS properties of a
log is changed, an AttributeValueChange event is generated. If set_log_qos() is passed an invalid QoSList
type, it will raise a DsLogAdmin::UnsupportedQoS exception.

Flushing the buffer
The flush() method writes out a log’s memory buffer to the persistent store. It guarantees that all
events recorded by the log before the invocation of the flush() operation will be written to the
persistent store.

QoS Setting Log Behavior

QoSNone
(default)

Records are buffered in memory when they are logged. The log flushes its
memory buffer to the persistent store at intervals specified in the telecom log
service’s configuration database. This level of service provides no guarantee
that logged records will be stored to the persistent store.

QoSFlush Records are buffered in memory when they are logged. The log’s memory
buffer is flushed when a client invokes the log’s flush() method. This level of
service also provides no guarantee that logged records will be written to the
persistent store. However, it does provide log clients with greater control over
when a log’s memory buffer is flushed to the persistent store.

QoSReliab
ility

Records are written directly to the persistent store when they are logged. This
level of service guarantees that all records will be available in the persistent
store and provides a high level of recoverability in the event of a crash. It will
suffer a performance hit due to the increased amount of disk access.

Log Management

- 157/172 -

Example
Example 49 sets a log’s QoS to QoSFlush and then calls flush() on it.

Example 49: Setting a log’s QoS properties and flushing its memory buffer

Availability Status
The telecom log service updates monitors the availability of all active logs. Depending on scheduling
and the amount of data stored in a log, it may not be available for recording new records. Determining
a log’s availability can provide valuable feedback for clients. For example, a log’s clients might generate
an alarm if the log is not available because it is full.

States
A log can be in one of three availability states

Table 11: Availability states for a log

// Java
//log object obtained previously
QoSType[] qos = new QoSType(1);
qos[0] = QoSFlush.value;
try
{
log.set_log_qos(qos);
}
catch (DsLogAdmin::UnsupportedQoS)
{
// handle the exception
}
// ...
// write the log’s memory buffer to disk
log.flush();

State Log Behavior

On duty The log is fully functional. It can log new records, forward events, and retrieve
records.

Off duty The log is not scheduled to log new records. All other functionality is still
available.

Log Management

- 158/172 -

:

Checking
The telecom log service provides the get_availability_status() method to check a log’s availability to log
new records. The method returns an AvailabilityStatus structure, shown in below.

It is possible that both the off_duty and log_full fields can be true at the same time. A log is on duty if
both fields are false and its operational state is enabled .

Operational State
In addition to monitoring logs availability to log new records, the telecom log service also monitors the
operation state of log objects. The operation state differs from the availability status of a log in that a
log’s operational state indicates possible processing errors within a log.

States
Table 12 shows the possible operational states for a log.

Table 12: Log operational states

State Log Behavior

Log full The log has reached its maximum size and is no longer able to log new records.
All other functionality is available.

// IDL
struct AvailabilityStatus
{
boolean off_duty;
boolean log_full;
};

Operational
State

Reason

enabled The log is healthy and its full functionality is available for use.

Log Management

- 159/172 -

Checking
To check the operational state of a log, invoke its get_operational_state() method.
get_operational_state() returns a value of OperationalState , which is an enumerated type with the
values enabled and disabled .

State change events
A StateChange event is generated whenever the operational state of a log changes.

Qualities of Service
In addition to the QoS properties offered by the telecom log service, NotifyLog objects can specify
notification service level Qualities of Service for events. The additional QoS settings provide greater
control over the reliability of messages reaching consumers and the scalability of the telecom log
service. The notification service QoS properties include:

the level of assurance the events will get delivered

the persistence of client connection information

an event’s priority

an event’s lifetime in the channel

the order in which the channel discards stale events

the maximum number of times a proxy tries to contact a client before giving up

the amount of time between a proxy consumer’s calls to pull()

For a full listing of the notification service’s QoS properties and their descriptions, see Notification
Service Properties.

Setting QoS properties
To set notification service level QoS on a NotifyLog you use the log’s set_qos() method. See Log QoS
Properties.

Example 50 on page 144 sets a log’s EventReliability and ConnectionReliability QoS to Persistent .

Operational
State

Reason

disabled The log has encountered a runtime error and is unavailable. The log will not
accept any new records and it may not be able to retrieve valid records. The
log will still attempt to forward events if its ForwardingState is set to on.

• •

• •

• •

• •

• •

• •

• •

Qualities of Service

- 160/172 -

Example 50: Setting notification level QoS on a NotifyLog object

Managing the Telecom Log Service
The telecom log service has several configuration variables that determine its behavior. They can control the
speed and reliability of the telecom log service.

Configuring the Telecom Log Service
The telecom log service can be customized by adjusting the service’s configuration settings. Using this
mechanism you can set the service’s persistence mode, the maximum number or records returned
from a query before an iterator object is used(Getting Log Records), and the interval between flushes of
the log object’s internal memory buffer(Flushing the buffer).

Configuration scopes
Most of the configuration variables for the telecom log service are found in the following configuration
scopes:

iona_services.basic_log - The variables in this scope set the database location, tracing level,
persistence mode, and other default settings used by BasicLog objects.

iona_services.event_log - The variables in this scope set the database location, tracing level,
persistence mode, and other default settings used by EventLog objects.

iona_services.notify_log - The variables in this scope set the database location, tracing level,
persistence mode, and other default settings used by NotifyLog objects.

The initial reference for the telecom log service is set in the configuration’s root scope, as are the
variables for using the telecom log service with the Orbix management service.

// Java
Property[] qos = new Property(2);
qos[0] = new Property();
qos[0].name = EventReliability.value;
qos[0].value = org.omg.CORBA.ORB.init().create_any();
qos[0].value.insert_short(Persistent.value);
qos[1].name = ConnectionReliability.value;
qos[1].value = org.omg.CORBA.ORB.init().create_any();
qos[1].value.insert_short(Persistent.value);
log.set_qos(qos);

• •

• •

• •

Managing the Telecom Log Service

- 161/172 -

Namespaces
The telecom log service’s configuration variables are in the following namespaces:

plugins:tlog

contains variables to control the general performance of the telecom log service. The variables in this
namespace effect all log objects.

plugins:tlog:database

contains variables to configure the database used as the persistent store for log objects.

plugins:basic_log

contains variables that are related to the generic server plug-in.

plugins:event_log

contains variables that are related to the generic server plug-in.

plugins:notify_log

contains variables that are related to the generic server plug-in.

In addition to the namespaces that are specifically used to configure telecom log service properties, the
following namespace is used to configure the telecom log service’s collocated notification service:

plugins:notify

contains variables to control the performance of the collocated notification service used by NotifyLog
objects. To effect the telecom log service the variables in the plugins:notify namespace must occur in
the iona_services.notify_log scope. The variables specified under the iona_services.notification scope
do not effect the telecom log service.

Performance tuning variables
Modifying the telecom log service’s configuration variables effects the overall performance of the
service in terms of the amount of resources it consumes and the speed at which it processes events.
You can use the configuration variables to tune the telecom log service’s performance to meet you
specific needs.

Some of the variables that effect performance are listed in Table 13.

Table 13: Telecom log service configuration variables

Configuring the Telecom Log Service

- 162/172 -

Further reading
For a complete listing of the telecom log service’s configuration variables and a detailed description of
how to set them see the Application Server Platform Administrator’s Guide.

Running the Telecom Log Service

Starting the service
Like all Orbix services, the telecom log service can be configured to start on demand, to start at system
boot, or be started by a script generated by the configuration tool.

You can also manually start the telecom log service with the following command:

Basic Logging

Event Logging

Variable Effect

flush_inte
rval

Specifies the time in seconds between automated flushes of a log object’s
memory buffer. This property only effects log objects with the QoSNone
quality of service. Setting the value to 0 disables automatic flushing. The
default value is 5 minutes. See Log QoS Properties.

max_recor
ds

Specifies the maximum number of records that a query or retrieve operation
can return without using an iterator. The default is 100. See Getting Log
Records.

iterator_t
imeout

Specifies the lifetime of an inactive iterator object in seconds. Iterator objects
that have been inactive for longer than the time specified are reaped. Setting
the value to 0 disables iterator reaping. The default value is 4 hours.

**C:\Program Files\IONA\asp\6.2\bin\itbasic_log.exe -background run -
ORBdomain_name** *<domain_name>* **-ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.basic_log**

Running the Telecom Log Service

- 163/172 -

Notification Logging

Stopping the service
To stop the telecom logging service you can use the stop script generated by the configuration tool or
you can use itadmin . You stop the telecom log service with the following itadmin command:

Basic Logging

Event Logging

Notification Logging

Further reading
For a detailed description of using itadmin to start and stop Orbix services see the Application Server
Platform Administrator’s Guide.

**C:\Program Files\IONA\asp\6.2\bin\itevent_log.exe -background run -
ORBdomain_name** *<domain_name>* **-ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.event_log**

C:\Program Files\IONA\asp\6.2\bin\itnotify_log.exe -background run -
ORBdomain_name *<domain_name>* -ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.notify_log

% **basic_log stop**

% **event_log stop**

% **notify_log stop**

Running the Telecom Log Service

- 164/172 -

Managing a Deployed Telecom Log Service

Using the telecom log service console
The telecom log service console provides administrators the ability to monitor and control a deployed
telecom log service. It provides controls to create and destroy logs, admin objects, proxy objects, and
filters. It also provides controls to edit QoS properties, schedules, and lifespans.

To start the telecom log service console use the following command:

The console has detailed context sensitive help to guide you in its use.

The Telecom Log Service Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions .

The GUI components archive can be downloaded from Rocket Software.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

itlogging_console

Note

Managing a Deployed Telecom Log Service

- 165/172 -

Glossary

A

administration

All aspects of installing, configuring, deploying, monitoring, and managing a system.

C

client

An application (process) that typically runs on a desktop and requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a program that requests services from CORBA objects.

configuration

A specific arrangement of system elements and settings.

configuration domain

Contains all the configuration information that Orbix ORBs, services and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior. This information consists of configuration variables and their
values. Configuration domain data can be implemented and maintained in a centralized Orbix configuration repository or as a set of
files distributed among domain hosts. Configuration domains let you organize ORBs into manageable groups, thereby bringing
scalability and ease of use to the largest environments. See also configuration file and configuration repository.

configuration file

A file that contains configuration information for Orbix components within a specific configuration domain. See also configuration
domain.

configuration repository

A centralized store of configuration information for all Orbix components within a specific configuration domain. See also
configuration domain.

configuration scope

Orbix configuration is divided into scopes. These are typically organized into a root scope and a hierarchy of nested scopes, the fully-
qualified names of which map directly to ORB names. By organizing configuration properties into scopes, different settings can be
provided for individual ORBs, or common settings for groups of ORB. Orbix services have their own configuration scopes.

CORBA

Common Object Request Broker Architecture. An open standard that enables objects to communicate with one another regardless of
what programming language they are written in, or what operating system they run on. The CORBA specification is produced and
maintained by the OMG. See also OMG.

Glossary

- 166/172 -

CORBA objects

Self-contained software entities that consist of both data and the procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and Java.

D

deployment

The process of distributing a configuration or system element into an environment.

E

event

The occurrence of a condition or state change, or the availability of some information that is of interest to one or more modules in a
system. Suppliers generate events and consumers subscribe to receive them.

event channel

Accepts incoming events from client suppliers and forwards supplier-generated events to all connected consumers. From a
supplier’s perspective, the event channel appears as a single consumer; from a consumer’s perspective, the event channel appears a
a single supplier.

event service

See Orbix event service.

I

IDL

Interface Definition Language. The CORBA standard declarative language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose in a server application. Clients use these interfaces to access
server objects across a network. IDL interfaces are independent of operating systems and programming languages.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined by the OMG, for communications between ORBs and
distributed applications. IIOP is defined as a protocol layer above the transport layer, TCP/IP.

installation

The placement of software on a computer. Installation does not include configuration unless a default configuration is supplied.

Interface Definition Language

See IDL.

invocation

A request issued on an already active software component.

Glossary

- 167/172 -

IOR

Interoperable Object Reference. See object reference.

N

node daemon

Starts, monitors, and manages servers on a host machine. Every machine that runs a server must run a node daemon.

notification service

See Orbix notification service.

O

object reference

Uniquely identifies a local or remote object instance. Can be stored in a CORBA naming service, in a file or in a URL. The contact
details that a client application uses to communicate with a CORBA object. Also known as interoperable object reference (IOR) or
proxy.

OMG

Object Management Group. An open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including CORBA. See www.omg.com.

ORB

Object Request Broker. Manages the interaction between clients and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a distributed computer environment. Key component in CORBA.

Orbix event service

An implementation of the OMG Event Service Specification. Decouples communication between objects. Defines two roles for
objects: a supplier role and a consumer role. Suppliers produce event data and send it to consumers through an event channel.

Orbix notification service

An implementation of the OMG Notification Service Specification. Extends the CORBA Event Service Specification to include qualities
of service, subscription mechanisms, filtering and structured messages.

Orbix OTS

An implementation of the OMG Transaction Service Specification. Provides interfaces to manage the demarcation of transactions
and the propagation of transaction contexts.

Orbix telecom log service

An implementation of the OMG Telecom Log Specification. The telecom log service encompasses and builds on the functionality of
the event and the notification services by providing a durable and searchable log.

P

Glossary

- 168/172 -

http://www.omg.com
http://www.omg.com

POA

Portable Object Adapter. Maps object references to their concrete implementations in a server. Creates and manages object
references to all objects used by an application, manages object state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB products. Can be transient or persistent.

protocol

Format for the layout of messages sent over a network.

S

server

A program that provides services to clients. CORBA servers act as containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T

TCP/IP

Transmission Control Protocol/Internet Protocol. The basic suite of protocols used to connect hosts to the Internet, intranets, and
extranets.

telecom log service

See Orbix telecom log service.

TLS

Transport Layer Security. An IETF open standard that is based on, and is the successor to, SSL. Provides transport-layer security for
secure communications.

Glossary

- 169/172 -

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 170/172 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 171/172 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 172/172 -

	Orbix Enterprise Messaging Guide Java
	V6.3.14

	Preface
	Specification compliance
	Audience
	Organization of this Guide
	Document Conventions

	Messaging Service Technologies
	CORBA Messaging Technologies
	Event Service
	Service Capabilities
	Connections
	How Many Clients?
	Example
	Event Delivery
	Further Reading

	Notification Service
	Extensions of Event-based Communication

	Telecom Log Service
	Features of the Telecom Log Service

	Event Communication
	Push Model
	Pull Model
	Mixing Push and Pull Models

	The Notification Service
	Developing Suppliers and Consumers
	Obtaining an Event Channel
	Procedure
	Event Channel Factory Operations
	OMG Operations
	Orbix Extensions
	Example

	Implementing a Supplier
	Actions
	Instantiating the Supplier
	Which Interface to Use?
	Example

	Connecting to a Channel
	Procedure
	Obtaining a Supplier Admin
	Why Create Multiple Admin Objects?
	Proxy Consumers
	Obtaining a Proxy Consumer
	Example
	Connecting a Supplier to a Proxy Consumer
	Example

	Creating Event Messages
	Types of Event Messages
	Structured Event Messages
	Why Use Structured Event Messages?
	Example

	Sending Event Messages
	Push Supplier
	Example
	Pull Supplier
	Example

	Disconnecting From the Event Channel

	Implementing a Consumer
	Actions
	Instantiating a Consumer
	Which Interface to Use?
	Example

	Connecting to the Channel
	Procedure
	Obtaining a Consumer Admin
	Why Create Multiple Admin Objects?
	Proxy Suppliers
	Obtaining a Proxy Supplier
	Example
	Connecting a Consumer to a Proxy Supplier
	Example

	Obtaining Event Messages
	Event Message Conversion
	Push Consumer
	Example
	Pull Consumer
	Example

	Disconnecting From the Event Channel

	Notification Service Properties
	Property Types
	Administration Properties
	Quality-of-Service Properties

	Property Inheritance
	Order of Inheritance

	Setting Properties
	Consistency
	Setting Properties Programmatically
	Methods for Setting Properties
	set_admin()
	set_qos()
	Example

	Setting a Structured Event’s QoS Properties
	BAD_QOS Exception
	Example

	Getting Properties
	Methods
	get_admin()
	get_qos()
	Example

	Validating Properties
	Methods
	Parameters
	UnsupportedQoS Exception
	Example

	Property Descriptions
	Reliability Properties
	Property Names
	EventReliability
	ConnectionReliability
	Valid Combinations

	Event Queue Order
	OrderPolicy
	Values

	Event Priority
	Priority
	Interaction with OrderPolicy
	Values

	Lifetime Properties
	Property Names
	StopTime
	StopTimeSupported
	Timeout

	Start Time Properties
	Property Names
	StartTime
	StartTimeSupported

	Undelivered Event Properties
	Property Names
	MaxEventsPerConsumer
	Discard Policy

	RequestTimeout
	Sequenced Events Properties
	Property Names
	MaximumBatchSize
	PacingInterval
	Setting Both Properties

	Proxy Push Supplier Properties
	Property Names
	MaxRetries
	RetryTimeout
	RetryMultiplier
	MaxRetryTimeout

	Proxy Pull Consumer Properties
	Property Names
	MaxRetries
	PullInterval

	Channel Administration Properties
	MaxConsumers
	MaxSuppliers
	MaxQueueLength
	RejectNewEvents

	Event Filtering
	Forwarding Filters
	Implementing a Forwarding Filter
	Procedure
	Obtaining a Filter Object
	Example
	Setting Up Filter Constraints
	Example
	Adding Constraints to a Filter
	Attaching Filters
	Example
	Filter Evaluation

	Processing Events with Forwarding Filters
	Event Message Evaluation
	Traversing Multiple Filters in a Channel

	Mapping Filters
	Implementing a Mapping Filter Object
	Procedure
	Obtaining a Mapping Filter Object
	Example
	Setting Up Filter Constraints
	Example
	Adding Constraints to a Mapping Filter
	Attaching Mapping Filters

	Processing Events with Mapping Filters
	Event Evaluation
	Traversing Multiple Mapping Filters in a Channel

	Filter Constraint Language
	Constraint Expression Data Structure
	Constraint Sequence
	EventTypeSeq
	constraint_expr

	Event Type Filtering
	Filtering for a Single Event Type
	Applying a Constraint to All Events
	Using Wildcards

	Referencing Filtered Data
	Name-Value Pair Notation
	Shorthand Notation

	Operand Handling
	Examples

	Examples of Notification Service Constraints

	Multicast Consumers
	MIOP
	Definition
	Endpoint Groups
	Limitations

	IDL Interfaces
	Interfaces for Endpoint Groups
	Oneway Communication

	Configuring Orbix for Multicast
	Configuration Scope
	Settings
	Example

	Implementing an Endpoint Group
	Instantiating an IP/Multicast Consumer
	Determining the Interface
	ORB Initialization
	Example
	Required Methods

	Creating a POA for an Endpoint Group
	Required Policies
	Example

	Registering an Endpoint Group Object Reference
	Object Name
	Example

	Connecting to an Event Channel
	Interfaces
	Implementation
	Group Proxy
	Example

	Receiving Events
	Filtering and Event Subscription
	ALL_UPDATES_NOW
	Updating the Subscription List
	IIOP Calls
	For More Information

	Disconnecting from an Event Channel

	Subscribing and Publishing
	Event Subscription
	Adding Forwarding Filters
	Filter Modification Operations
	Subscription List
	Example

	Obtaining Subscriptions
	obtain_subscription_types()
	Arguments
	Return Values
	Example

	Implementing subscription_change()
	subscription_change()
	Arguments
	Example

	Publishing Event Types
	Advertising Event Types
	offer_change()
	Arguments to offer_change()
	Publication List
	Example

	Discovering Available Event Types
	obtain_offered_types()
	Arguments
	Return Values
	Example

	Implementing offer_change()
	Example

	Managing the Notification Service
	Configuring the Notification Service
	Uses of Configuration Variables
	Namespaces
	Changing

	Running the Notification Service
	Starting the service
	Stopping the Service

	Using Direct Persistence
	Technical Details
	Performance Issues
	Configuring Direct Persistence

	Managing a Deployed Notification Service
	Using the notification service console

	Example 1: Generating Trace Information
	Scenario
	Problem
	Solution

	Example 2: Failure Recovery
	Scenario
	Solution

	The Telecom Log Service
	Telecom Log Service Basics
	Telecom Log Service Objects
	BasicLog
	EventLog
	NotifyLog
	Factory objects

	Telecom Log Service Features
	Quality of Service

	Developing Telecom Log Clients
	Creating a Log
	Steps
	Obtain a log factory
	Obtain a log object
	Finding a log
	Creating a BasicLog
	Creating an EventLog
	Creating a NotifyLog
	Example

	Logging Events
	Logging with a BasicLog
	write_records()
	write_recordlist()

	Logging Events with an EventLog
	Procedure
	Example

	Logging Events with a NotifyLog
	Procedure
	Example

	Getting Log Records
	Retrieving records based on time logged
	Querying the log for records

	Deleting Records from the Log
	Deleting records by id
	Using a constraint to delete records

	Ending a Logging Session

	Advanced Features
	Scheduling
	Scheduling scenario
	Schedule data
	Setting a schedule
	Determining a log’s schedule

	Log Generated Events
	Log events
	Event propagation
	Receiving log generated events
	Event data types
	Unpacking log generated events

	Event Forwarding
	Developing a telecom log application that uses event forwarding
	NotifyLog features
	Example

	Filtering
	Implementing a filter
	Filter evaluation

	Log Management
	Administrative State
	States
	Methods
	Example

	Maximum Log Size
	Setting
	Checking

	Log Duration
	Specifying
	Setting

	Record Lifetime
	Setting
	Checking

	Log QoS Properties
	Properties
	Setting
	Flushing the buffer
	Example

	Availability Status
	States
	Checking

	Operational State
	States
	Checking
	State change events

	Qualities of Service
	Setting QoS properties

	Managing the Telecom Log Service
	Configuring the Telecom Log Service
	Configuration scopes
	Namespaces
	Performance tuning variables
	Further reading

	Running the Telecom Log Service
	Starting the service
	Stopping the service
	Further reading

	Managing a Deployed Telecom Log Service
	Using the telecom log service console

	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

