
Orbix Management Programme Guide
V6.3.14

Table of Contents

5Preface

5Audience

5Related documentation

5Typographical conventions

6Keying conventions

7Introduction to Application Management

7Introduction to Orbix Management Tools

8Administrator Web Console

8Orbix Management Service

8Orbix Configuration Explorer

9Orbix Configuration Authority

9Integrating with Enterprise Management Systems

10Further information

10Introduction to Java Management Extensions

10MBeans

11The MBean server

12Management instrumentation

12Standard and Dynamic MBeans

12Further information

13Introduction to the Orbix management API

13The IIOP adaptor

13Defining MBean relationships

14C++ Instrumentation

14Overview of Management Programming Tasks

15Identifying tasks to be managed

15Writing your MBeans

15Registering your MBeans with the MBean server

16Unregistering your MBeans

16Defining relationships between MBeans

Table of Contents

- 2/87 -

16Further information

17CORBA Java Management

17Instrumenting CORBA Java Applications

17Step 1—Identifying Tasks to be Managed

20Step 2—Defining your MBeans

23Step 3—Implementing your MBeans

26Step 4—Gaining Access to an MBean Server

28Step 5—Registering your MBeans

30Step 6—Unregistering your MBeans

31Step 7—Connecting MBeans Together

32Monitoring MBean Statistics

35Displaying CORBA Java Applications

35Displaying MBeans

35Administrator Web Console

36The Process MBean

36Example Process MBean

37Adding Application MBeans to the Tree

38Creating a parent-child relationship

38The createParentChildRelation() method

39Customizing your Application MBean Icons

39Changing the admin.war file

40Updating your image mapping file

41Accessing your custom icons

42CORBA C++ Management

42Instrumenting CORBA C++ Applications

42Step 1—Identifying Tasks to be Managed

46Step 2—Defining your MBeans

52Step 3—Implementing your MBeans

69Step 4—Initializing the Management Plugin

70Step 5—Creating your MBeans

72Step 6—Connecting MBeans Together

Table of Contents

- 3/87 -

76Monitoring MBean Statistics

81Glossary

85Notices

85Copyright

85Trademarks

85Examples

85License agreement

86Corporate information

86Contacting Technical Support

86Country and Toll-free telephone number

Table of Contents

- 4/87 -

Preface

Orbix provides support for enterprise-level management across different platform and programming
language environments. Orbix management tools enable administrators to manage distributed enterprise
applications. This guide explains how programmers can enable applications to be managed by Orbix
management tools (for example, Administrator).

Audience
This guide is aimed at developers writing distributed enterprise applications who wish to enable their
applications for management by Orbix management tools. It assumes knowledge of either C++ or Java.

Related documentation
The document set for Orbix includes the following related documentation:

Management User’s Guide

Administrator’s Guide

CORBA Programmer’s Guide, C++ Edition

CORBA Programmer’s Guide, Java Edition

Typographical conventions
This guide uses the following typographical conventions:

• •

• •

• •

• •

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Preface

- 5/87 -

Keying conventions
This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
Some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or Windows command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in
format and syntax descriptions.

Keying conventions

- 6/87 -

Introduction to Application Management

This section gives an overview of Orbix enterprise application management. It introduces the Orbix
management tools, Sun’s Java Management Extensions API, and the Orbix management API.

The Administrator Web Console, Orbix Management Service and Orbix Configuration Explorer are no
longer automatically installed. They are available as an optional component. To install, please
download and extract the GUI components archive and follow the installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Introduction to Orbix Management Tools
Orbix management tools enable administrators to configure, monitor and control distributed
applications at runtime. These tools provide seamless management of Orbix products, or any
applications developed using those products, across different platform and programming language
environments. Orbix management tools include the following main components:

Administrator Web Console

Orbix Management Service

Orbix Configuration Explorer

Orbix Configuration Authority

Note

• •

• •

• •

• •

Introduction to Application Management

- 7/87 -

Administrator Web Console
The Administrator Web Console provides a web browser interface to the Orbix management tools. It
enables you to manage applications and application events from anywhere, without the need for
download or installation. It communicates with the management service using HTTP (Hypertext
Transfer Protocol), as illustrated in Figure 1.

Orbix Management Service
The Orbix management service is the central point of contact for accessing management information in
a domain. A domain is an abstract group of managed server processes within a physical location. The
management service is accessed by both the Administrator Web Console and by the Orbix Configuration
Explorer.

Managed applications can be written in C++ or Java. The same management service process
(iona_services.management) can be used by Java and C++ applications.

Orbix Configuration Explorer
The Orbix Configuration Explorer is a Java graphical user interface (GUI) that enables you to manage
your configuration settings. It communicates with your configuration repository (CFR) or configuration
file using IIOP (Internet Inter-ORB Protocol).

Figure 1 shows the Administrator Web Console, and how it interacts with managed applications to
provide management capability.

Figure 1 Administrator Web Console

Note

Administrator Web Console

- 8/87 -

Orbix Configuration Authority
The Orbix Configuration Authority provides a web browser interface to descriptive information about all
Orbix configuration settings. You can browse and search for information about Orbix configuration
variables in your CFR or configuration file.

Integrating with Enterprise Management Systems
Performance logging plugins enable Orbix to integrate effectively with Enterprise Management
Systems (EMS), such as IBM Tivoli™, HP OpenView™, CA Unicenter™, or BMC Patrol™.

These systems enable system administrators and production operators to monitor enterprise-critical
applications from a single management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action.

Orbix Configuration Authority

- 9/87 -

Further information
For detailed information on using the Orbix management tools, and on how to configure EMS
integration, see the Orbix Management User’s Guide.

Introduction to Java Management Extensions
Java Management Extensions (JMX) is a standards-based API from Sun that provides a framework for
adding enterprise management capabilities to user applications. This section explains the main JMX
concepts and shows how JMX and Orbix interact to provide enterprise management for Java
applications. This section includes the following:

MBeans

The MBean server

Management instrumentation

Standard and Dynamic MBeans

Further information

MBeans
The concept of an MBean (a managed bean) is central to JMX. An MBean is simply an object with
associated attributes and operations. It acts as a handle to your application object, and enables the
object to be managed.

For example, a Car MBean object, with an associated speed attribute, and start() and stop()
operations, is used to represent a car application object, with corresponding attributes and operations.
Application developers can express their application objects as a series of related MBeans. This enables
administrators to manage these application objects using an administration console (for example,
Administrator).

• •

• •

• •

• •

• •

Further information

- 10/87 -

The MBean server
All the MBeans created by developers are managed and controlled by a MBean server, which is
provided by JMX. All MBeans that are created must be registered with an MBean server so that they can
be accessed by management applications, such as Orbix.

Figure 2 shows a Java example of the JMX components at work. It shows how these components interact
with Orbix to provide management capability for your application.

For simplicity, this diagram only shows one MBean. An application might have multiple MBeans
representing the application objects that you wish to manage. In addition, new instrumentation code is
not solely confined to the MBean. You will need to add some new code to your sever implementation
(for example, to enable your server to contact the management service).

Figure 2 JMX Management and Orbix

The MBean server

- 11/87 -

Management instrumentation
Adding JMX management code to your application is also known as adding management
instrumentation or instrumenting your existing application. These standard management terms are used
throughout this book.

Figure 2 shows the new management instrumentation code as an MBean. MBeans must be added to
your application to enable it for management.

Standard and Dynamic MBeans
The MBeans discussed so far in this chapter are referred to as standard MBeans. These are ideally suited
to straightforward management scenarios where the structure of managed data is well defined and
unlikely to change often. JMX specifies another category of MBeans called dynamic MBeans. These are
designed for when the structure of the managed data is likely to change regularly during the lifetime of
the application.

Implementing dynamic MBeans is more complex than for standard MBeans. If your management
solution needs to provide integration with existing and future management protocols and platforms,
using dynamic MBeans could make it more difficult to achieve this goal. The examples cited in this book
use standard MBeans only.

Further information
For more information about JMX, see the JMX Instrumentation and Agent Specification, and Reference
Implementation Javadoc. These documents are available online at:

For information on how to integrate Administrator with other general purpose management
applications (for example, HP Openview™ or CA UniCenter™), see the "SNMP Integration" chapter in the
Orbix Management User’s Guide.

[http://www.oracle.com/technetwork/java/javase/tech/
javamanagement-140525.html](http://www.oracle.com/technetwork/java/javase/
tech/javamanagement-140525.html)

Management instrumentation

- 12/87 -

Introduction to the Orbix management API
JMX does not specify how to remotely access MBeans using network protocols. The Orbix management
API is used to enable remote communications for MBeans. This API also enables you to specify
relationships between MBeans, and display MBeans in Administrator. This section includes the
following:

The IIOP adaptor

Defining MBean relationships

C++ Instrumentation

The IIOP adaptor
The Orbix management API enables network communication between the MBean server and the
management service over IIOP (Internet Inter-ORB Protocol). This is performed using an IIOP adapter,
which is contained in the ORB plugin.

Figure 2 shows an example of this IIOP communication. This cross-platform API also enables
communication for CORBA Java and C++ servers.

Defining MBean relationships
The Orbix management API also enables you to specify hierarchical parent–child relationships between
MBeans. For example, you may want to show relationships between your server and its lower-level
processes. These relationships can then be displayed in the Administrator Web Console.

Figure 3 shows example parent–child relationships displayed in the left pane of the Administrator Web
Console.

Figure 3 Example Parent–Child Relationship

• •

• •

• •

Introduction to the Orbix management API

- 13/87 -

C++ Instrumentation
The concept of an MBean is a Java term that comes from JMX. The C++ version of the Orbix
management API uses the generic concept of a Managed Entity instead of an MBean. A C++ Managed
Entity is functionally similar to the Java MBean. It acts as a handle to your application object, and
enables the object to be managed.

The C++ version of the Orbix management API is defined in IDL (Interface Definition Language).

For more details of the Orbix management API, see the Orbix Management IDLdoc, and the Orbix
Management Javadoc.

Overview of Management Programming Tasks
This section gives an overview of the typical management programming tasks. These include the
following:

Identifying tasks to be managed

Writing your MBeans

Registering your MBeans with the MBean server

Unregistering your MBeans

Defining relationships between MBeans

• •

• •

• •

• •

• •

C++ Instrumentation

- 14/87 -

These tasks are explained in more detail in the rest of this document.

Identifying tasks to be managed
Before adding any management code to an application, you must decide on the application tasks that
you wish the administrator to manage.

Deciding which tasks should be managed varies from application to application. This depends on the
nature of the application, and on the type of runtime administration that is required. Typical managed
tasks include monitoring the status of an application (for example, whether it is active or inactive), and
controlling its operation (for example, starting or stopping the application).

Writing your MBeans
When you have decided which parts of your application need to be managed, you can define and
implement MBeans to satisfy your management objectives. Each MBean object must implement an
interface ending with the term MBean (for example, CarMBean).

To expose its attributes, an MBean interface must declare a number of get and set operations. If get
operations are declared only, the MBean attributes are read-only. If set operations are declared, the
MBean attributes are writable.

Registering your MBeans with the MBean server
Registering application MBeans with the MBean server enables them to be monitored and controlled
by the Administrator. Choosing when to register or expose your MBeans varies from application to
application. However, there are two stages when all applications create and register MBeans:

During application initialization.
During any application initialization sequence, a set of objects is created that represents the core
functionality of the application. After these objects are created, MBeans should also be created and
registered, to enable basic management of that application.

During normal application runtime.
During normal application runtime, new objects are created as a result of internal or external events
(for example, an internal timer, or a request from a client). When new objects are created,
corresponding MBeans can be created and registered, to enable management of these new application
components. For example, in a bank example when a new account is created, a new account MBean
would be also be created and registered with the MBean server.

Identifying tasks to be managed

- 15/87 -

Unregistering your MBeans
You might wish to unregister an MBean in response to an administrator’s interaction with the system.
For example, if a bank teller session is closed, it would be appropriate to unregister a corresponding
session MBean. This ensures that the MBean will no longer be displayed as part of the application that
is being managed.

Defining relationships between MBeans
You can use the Orbix management API to define parent–child relationships between MBeans. These
relationships are then displayed in the Administrator Web Console, as shown in Figure 3.

Parent-child relationships are no longer displayed in the console when the MBean is unregistered by the
application (for example, if a bank account is closed).

Further information
All of these management programming tasks are explained in detail, with examples, in these sections:

CORBA Java Management CORBA Java management.

CORBA C++ Management CORBA C++ management.

It is not necessary to read one part before another. You can read these parts in any order.

• •

• •

Unregistering your MBeans

- 16/87 -

CORBA Java Management

Instrumenting CORBA Java Applications
This section explains how to use the Java Management Extensions API and the Orbix Java Management
API to enable an existing CORBA Java application for management. It uses a banking example
application.

Step 1—Identifying Tasks to be Managed
Before adding management code to an application, you must decide on the tasks in your application
that you wish to be managed by a system administrator. Only then should you start thinking about
adding management instrumentation code to your existing application.

This section includes the following:

Existing user tasks

New management tasks for administrators

Planning your Programming Steps

Existing user tasks
The First Northern Bank (FNB) example used in this chapter adds management capabilities to an
existing CORBA Java banking application. This example application delivers standard banking services to
customers.

The existing FNB application enables bank tellers to do the following:

Log on and log off the system.

Create a customer account.

Lodge money into an account.

Withdraw money from an account.

Figure 4 shows the user interface to these existing features.

Figure 4 Bank Teller Application

• •

• •

• •

• •

• •

• •

• •

CORBA Java Management

- 17/87 -

New management tasks for administrators
The new management instrumentation code added to FNB application enables administrators to do the
following:

Monitor the back-tier server

Monitor customer accounts

Unload account objects from memory

Monitor the middle-tier server

Monitor teller sessions

Monitor bank tellers

Administrators can perform these tasks using the Administrator Web Console, shown in Figure
5.

Figure 5 Bank Example in Administrator

• •

• •

• •

• •

• •

• •

Step 1—Identifying Tasks to be Managed

- 18/87 -

Planning your Programming Steps
When you have identified your management tasks, you should think carefully about how exactly you
wish to add the new management code to your existing application. For example, how much of the new
code you will add to your existing classes, and how much will be in new classes. Depending on the size
of your application, you might wish to keep new instrumentation classes in a separate directory.

This chapter shows how JMX management code was added to the FNB CORBA Java application. It shows
the standard programming steps. For example, defining and implementing MBeans, and registering
and unregistering your MBeans with the MBean server.

When instrumenting CORBA Java servers, you do not need to make any changes to the CORBA IDL.
You can enable your application for management simply by adding new MBean instrumentation
code to your CORBA Java implementation.

Note

Step 1—Identifying Tasks to be Managed

- 19/87 -

Step 2—Defining your MBeans
When you have planned which parts of your application need to be managed, you can then define
MBeans to satisfy your management objectives. This section shows how to define example MBean
interfaces for the FNB application. It includes the following:

Rules for MBean interfaces

Example MBeans

AccountMgrMBean interface

CreditCardMBean interface

BusinessSessionManagerMBean interface

BusinessSessionMBean interface

MBean object names

Further information

Rules for MBean interfaces
Each MBean object must implement an interface ending with the term MBean (for example,
BusinessSessionMBean).

To expose its attributes, an MBean interface must declare a number of get() and set() operations. If
only get() operations are declared, the MBean attributes are read-only. If set() operations are
declared, the MBean attributes are writable.

To expose management operations, you must declare an appropriate method in the MBean interface,
and then implement it in the corresponding MBean class.

Example MBeans
Table 1 lists the example MBeans that are declared for the FNB application.

Table 1: FNB MBeans

• •

• •

• •

• •

• •

• •

• •

• •

MBean Functionality

AccountMgrMBean This back-tier MBean represents the bank account information
managed by an administrator. For example, the number and type of
accounts in the bank.

CreditCardMBean This back-tier MBean represents credit card accounts.

Step 2—Defining your MBeans

- 20/87 -

AccountMgrMBean interface
The interface for the AccountMgrMBean is defined as follows:

CreditCardMBean interface
The interface for the CreditCardMBean is defined as follows:

MBean Functionality

BusinessSession
ManagerMBean

This middle-tier MBean represents the number of open bank teller
sessions in the bank.

BusinessSession
MBean

This middle-tier MBean represents the list of recent transactions for a
particular bank teller session.

package bankobjects.management;
import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;
public interface AccountMgrMBean {
// attributes
public int getNumberOfAccounts();
public int getNumberOfCreditCards();
public int getNumberOfCurrentAccounts();
public int getNumberOfLoadedAccounts();
public ObjectName[] getActiveCreditCards();
// operations
public boolean unloadAccount (int accountNum);
}

Step 2—Defining your MBeans

- 21/87 -

BusinessSessionManagerMBean interface
The interface for the BusinessSessionManagerMBean is as follows:

BusinessSessionMBean interface
The interface for the BusinessSessionMBean is defined as follows:

MBean object names
MBean object names are used to uniquely identify an MBean. Object names are represented by the
javax.management.ObjectName class, which extends the java.lang.Object class.

In the FNB example, the AccountMgrMBean interface declares the following get() method for the
ActiveCreditCards attribute:

package bankobjects.management;
import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;
public interface CreditCardMBean {
public int simpleOp ();
}

package fnbba.management;
import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;
public interface BusinessSessionManagerMBean {
public int getNumberOfOpenSessions ();
}

package fnbba.management;
import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;
public interface BusinessSessionMBean {
public String[] getRecentTransactionList();
}

Step 2—Defining your MBeans

- 22/87 -

This returns an array of MBean object names for the associated credit card accounts. The
getActiveCreditCards() method is an example of using an object name to connect MBeans together.

Further information
For information about how to specify MBean object names, see Step 3—Implementing your MBeans.

For detailed information about the ObjectName class, see Oracle’s JMX Reference Implementation
Javadoc. This is available along with the source code from http://docs.oracle.com/javase/7/docs/api/
javax/management/ObjectName.html.

Step 3—Implementing your MBeans
After defining your MBean interfaces, you must provide an MBean implementation. MBean
implementation objects typically interact with the application they are designed to manage, enabling
monitoring and control.

For example, this section shows interaction between an MBean (BusinessSessionManager) and the
CORBA server implementation object (BusinessSessionManagerDelegate). The MBean’s
getNumberOfOpenSessions() method calls the implementation object’s openSessions() method. This
section includes the following:

Example MBean implementation

The management wrapper class

Management wrapper implementation

Identifying MBeans

Further information

Example MBean implementation
The following code example shows the BusinessSessionManager implementation for the
BusinessSessionManagerMBean:

public ObjectName[] getActiveCreditCards();

• •

• •

• •

• •

• •

Step 3—Implementing your MBeans

- 23/87 -

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

The management wrapper class
In this example, the MBean representing the bank teller BusinessSessionManager uses an underlying
class (the ManagementWrapper class) to perform most of the work. The ManagementWrapper object
creates the BusinessSessionMBeans for each bank teller session. It registers these beans with the
MBean server, and then adds them to the Administrator Web Console display. A simplified overview is
shown in Figure 6.

This is a typical MBean implementation, where the MBean uses the functionality of other application
objects (in this case, the management wrapper) to provide the management capability. The
management wrapper performs the core management tasks (for example, gaining access to the MBean
server, and registering the MBean with the MBean server).

Figure 6 Bank Application Overview

package fnbba.management;
import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;
public class BusinessSessionManager
implements BusinessSessionManagerMBean {
private ManagementWrapper mgmtWrapper = null;
private ObjectName myName = null;
private fnbba.BusinessSessionManagerDelegate myImpl = null;
public BusinessSessionManager (fnbba.BusinessSessionManagerDelegate myImpl){
this.myImpl = myImpl;
try { myName = new
ObjectName("FNBMiddleTier:name=BusinessSessionManager");
}
catch (Exception j) {}
public int getNumberOfOpenSessions()
{ return myImpl.openSessions(); }
public void remove ()
{ mgmtWrapper.removeMBean (myName);}
}

Step 3—Implementing your MBeans

- 24/87 -

Management wrapper implementation
The ManagementWrapper.instanc e() method that creates the MBean is defined as a static class
method. This is because only one wrapper is required by each domain displayed by Administrator. For
example, Figure 5 on page 16 shows the FNBMiddleTier node, which has a FNBMiddleTier MBean domain.
Multiple wrappers representing multiple domains can be stored in an array of management wrappers.
For example, you could add ATM support, which would use a separate management wrapper to
manage the ATM sessions. For more information on MBean domain names, see Identifying MBeans.

The management wrapper code and the standard management tasks that it performs are explained in
the sections that follow.

Identifying MBeans
An ObjectName must be a unique name in the MBean server. It includes an MBean domain name,
separated from a list of name and value pairs by a colon. These name value pairs can be of any type or
value. The syntax is:

domain-name:name1=value1 , name2=value2 ,...

Step 3—Implementing your MBeans

- 25/87 -

The object name used in the BusinessSessionManager example represents the following simple domain
and name-value pair:

FNBMiddleTier:name=BusinessSessionManager

The MBean domain name is not related to an Orbix configuration or location domain. This is purely a
namespace for MBeans only.

Further information
For detailed information about the ObjectName class, see Oracle’s JMX Reference Implementation
Javadoc. This is available along with the source code from http://docs.oracle.com/javase/7/docs/api/
javax/management/ObjectName.html

For another Java example, see the . This shows an MBean object name that specifies additional name-
value pairs. This enables you to display more information in the Administrator Web Console.

Step 4—Gaining Access to an MBean Server
After defining and implementing your MBeans, you must gain access to an MBean Server. In the FNB
example application, the MBean server is accessed by the management wrapper object. The
management wrapper object performs the same tasks for different MBean implementations.

You must explicitly load the management plugin (it_mgmt) for CORBA Java applications.

This section includes the following:

Loading the Orbix management plugin

Accessing the MBean server

IT_IIOPAdaptorServer object

Specifying an MBean object name

Loading the Orbix management plugin
You must first ensure that the Orbix management plugin (it_mgmt) is specified by your orb_plugins
configuration variable in the appropriate configuration scope.

Note

Note

• •

• •

• •

• •

Step 4—Gaining Access to an MBean Server

- 26/87 -

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

For example, the following settings are taken from the FNB configuration file:

You must ensure that all settings are made in correct configuration scope (for example,
FNBMiddleTier). Do not add the it_mgmt plugin to the orb_plugins variable in the global
configuration scope.

Accessing the MBean server
The following code extract from the ManagementWrapper class shows how its constructor method
accesses the default MBean server:

IT_IIOPAdaptorServer object
In the ManagementWrapper class, the IT_IIOPAdaptorServer object is used to provide a reference to the
MBean server. When you have accessed the default MBeanServer using the getMBeanServer() method,
you can then register your MBeans with the MBean server.

For detailed reference information about IT_IIOPAdaptorServer , see the Management Javadoc.

FNBMiddleTier{
orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};
FNBMainframe {
orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};

Note

private ManagementWrapper (String ConfigDomainName) {
adaptorServer =
(IT_IIOPAdaptorServer)com.iona.management.jmx_iiop.IT_DynamicLoading.getDefaultIIOPAdaptorServer();
try {
managedObjName = new ObjectName(ConfigDomainName);
mBeanServer = adaptorServer.getMBeanServer();
} catch (Exception ex) {
System.out.println("Unexpected exception while registering iBankMBean: " +
ex);
}
myConfigDomain = new String (ConfigDomainName);
processMBean =com.iona.management.jmx_iiop.IT_DynamicLoading.
getProcessObjectName();
}

Step 4—Gaining Access to an MBean Server

- 27/87 -

Specifying an MBean object name
The ConfigDomainName parameter passed to ManagementWr apper() specifies the MBean object
name used by the management wrapper, and which is displayed in Administrator as an MBean object.
For example, the middle-tier fnbba server uses the following object name:

FNBMiddleTier:name=FNBMiddleTier

The ConfigDomainName parameter is not related to the Orbix configuration or location domain.
This is an MBean ObjectName domain is purely a namespace for MBeans only.

For more information, see Identifying MBeans.

The Process MBean
The process MBean is the starting point for navigation through a sever in the Administrator Web
Console. In the console, application MBeans are displayed as nodes that are added to the process
MBean in the navigation tree.

The ManagementWrapper obtains the process MBean’s object name using the getProcessObjectName()
method. This standard JMX call obtains the process MBean that will be used later to add the application
MBean to the Administrator display. For more information, see Creating parent-child relationships.

Step 5—Registering your MBeans
After gaining access to the MBean server, you can then register your MBeans with the MBean server.
Registering MBeans enables them to be monitored and controlled using Administrator. This section
includes the following:

Example MBean registration

addMBean() implementation

Registering MBeans

Creating parent-child relationships

Example MBean registration
The following FNB example from the BusinessSession class first creates a MBean for a bank teller
session, and then registers it with the MBean server. The MBean is registered using the management
wrapper’s addMBean() method:

Note

• •

• •

• •

• •

Step 5—Registering your MBeans

- 28/87 -

addMBean() implementation
The addMBean() method is implemented in the ManagementWrapper class as follows:

Registering MBeans
You can register MBean objects using either of the following approaches:

Create the MBean object manually, and then register it with the MBean server. If you choose this
approach, you must use the new() constructor and registerMBean() method.

Create and register your MBean with the MBean server, using the createMBean() constructor. This
registers the MBean automatically.

public BusinessSession (fnbba.BusinessSessionDelegate myImpl,
String SessionName) {
this.myImpl = myImpl;
mgmtWrapper = ManagementWrapper.instance
("FNBMiddleTier:name=FNBMiddleTier");
try {
String t =new String ("FNBMiddleTier:name=" + SessionName);
myName = new ObjectName(t);
}
catch (Exception j) {}
mgmtWrapper.addMBean(this, myName);
}

public boolean addMBean (java.lang.Object mbean, ObjectName mbeanName)
{
System.out.println ("Registering mbean...");
try {
ObjectName tmpArray [] = new ObjectName [1];
tmpArray [0] = mbeanName;
mBeanServer.registerMBean(mbean, mbeanName);
 adaptorServer.createParentChildRelation(processMBean,tmpArray
);
}
catch (Exception j) {
System.err.println ("Exception in registering MBean " + j);
return false;
}
return true;
}

• •

• •

Step 5—Registering your MBeans

- 29/87 -

The FNB example uses the MBean server’s registerMBean() method to register the MBean. The
registerMBean() method takes two parameters:

The MBean object instance (mbean in this example).

An ObjectName , which is used to identify the MBean. The object name in this example is
mbeanName. For more information on object names, see Identifying MBeans.

Creating parent-child relationships
The createParentChildRelation() method adds the MBean to the Process MBean. This is the starting
point for navigation through a sever in the Administrator Web Console. The createParentChildRelation()
method takes two parameters:

The parent MBean ObjectName .

The child MBean ObjectName .

For more information on the Process MBean and how it is displayed by Administrator, see
Displaying CORBA Java Applications.

Step 6—Unregistering your MBeans
You might wish to unregister an MBean in response to an administrator’s interaction with the system.
For example, if an bank teller session is closed, it would be appropriate to unregister the corresponding
BusinessSessionMBean . This ensures that the MBean will no longer be displayed as part of the application
that is being managed. This section includes the following:

Example MBean unregistration

The unregisterMBean() method

Example MBean unregistration
To unregister an MBean, use the MBean server’s unregisterMBean() method. In the FNB application, the
unregisterMBean() method is called by the management wrapper’s removeMBean() method. The following
code extract is taken from the BusinessSession class:

The removeMBean() method is implemented in the management wrapper class as follows:

• •

• •

• •

• •

• •

• •

public void remove ()
{
mgmtWrapper.removeMBean (myName);
}

Step 6—Unregistering your MBeans

- 30/87 -

The unregisterMBean() method
When the account’s MBean has been unregistered, using the unregisterMBean() method, it is no longer
displayed by the Administrator Web Console. All parent-child relationships between MBeans created
using the createParentChildRelation() method are also removed.

The unregisterMBean() method takes an MBean object name as a parameter. For more information, see
MBean object names.

Step 7—Connecting MBeans Together
Your application is displayed in the Administrator Web Console as a series of related or connected
MBeans, which can be monitored by administrators.

This section explains how to connect MBeans together. There are two different approaches:

Connecting MBeans using a get() method

Connecting MBeans using the createParentChildRelation() method

Connecting MBeans using a get() method
To connect two MBeans together using a get() method, you must create MBean methods that return
MBean ObjectName s. For example, in the FNB application the AccountMgr MBean must be connected with
the active CreditCard MBeans. The AccountMgrMBean interface declares the following get() method for
the ActiveCreditCards attribute:

This method returns an array of MBean object names for the associated credit card accounts. If this
method returns object names that are already registered MBean names, these MBeans are displayed in
the ActiveCreditCards attribute of the CreditCard MBean.

public boolean removeMBean (ObjectName mbean) throws Exception
{
mBeanServer.unregisterMBean (mbean);
return true;
}
}

• •

• •

public ObjectName[] getActiveCreditCards();

Step 7—Connecting MBeans Together

- 31/87 -

By using methods that return ObjectName s, you will see hyperlinks displayed in the details view on the
right of the console. You can use these hyperlinks to navigate between managed objects like they are
web pages. The navigation tree on the left is not affected.

Connecting MBeans using the createParentChildRelation() method
Using the get() method, hyperlinks between MBeans are displayed in the details view, on the right of
the console. Alternatively, you can use createParentChildRelation() method to connect two MBeans
together. This enables MBeans to appear as children of others in the tree view, on the left of the
console.

The createParentChildRelation() method takes the parent and child MBeans as parameters, and is
defined as follows:

For an example of using this method, see addMBean() implementation.

Monitoring MBean Statistics
Optionally, you can also monitor statistics from MBeans in your own applications. The
it_mbean_monitoring performance logging plug-in enables you to periodically harvest statistics
associated with MBean attributes. This section includes the following:

MBean monitoring

Configuration steps

Programming steps

MBean monitoring
The IT_MBeanMonitoring IDL interface provides the support for monitoring MBean statistics. This
interface is defined as follows:

public boolean createParentChildRelation(ObjectName parentObjName,
ObjectName[] childObjNames) throws
com.iona.common.management.relation.RelationServiceException

• •

• •

• •

Monitoring MBean Statistics

- 32/87 -

When the it _ mbean_monitoring plug-in is included in your orb_plugins list, an initial reference is
registered for the IT_MBeanMonitoringRegistration interface.

When you resolve on your application MBean, the IT_MBeanMonitoring API can be used to switch on, or
turn off, monitoring of an application MBean. Statistics for user monitored MBeans will then appear in
the performance logs.

Configuration steps
You must ensure that the it _ mbean_monitoring plug-in is included in your orb_plugins list.

In addition, the following Orbix JAR file must be included on your classpath:

module IT_MBeanMonitoring
{
const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
"IT_MBeanMonitoringRegistration";
// Interface exceptions.
exception MBeanNotFound {};
exception MBeanAttributeNotFound {};
exception MBeanAttributeInvalidType {};
// IT_MBeanMonitoring::MBeanMonitoringRegistration
//
// An interface which provides a means to
// monitor and log statistics about mbeans
// registered with the management service.
local interface MBeanMonitoringRegistration
{
void monitor_attribute(
in string object_name,
in string attribute_name,
in string alias) raises (MBeanNotFound,
MBeanAttributeNotFound, MBeanAttributeInvalidType);
void cancel_monitor(
in string object_name,
in string attribute_name,
in string alias) raises (MBeanNotFound);
};
};

Monitoring MBean Statistics

- 33/87 -

Programming steps
This example assumes that you already have an MBean with an attribute that you want to be sampled
and logged. For example, the MBean might track the memory currently being used by the process. The
programming steps are as follows:

Import the following package:

To register your MBean with the it _ mbean_monitoring plug-in, you must first resolve on the MBean
monitoring initial reference:

You can then register the attribute to be monitored by specifying your MBean details to
monitor_attribute() :

The mbean_friendly_name is an alternative alias that will also appear in the log file.

Further information
For more details on Orbix performance logging, see the Orbix Management User’s Guide.

$IT_PRODUCT_DIR/lib/./art/java_management_logging/1.2/perf_logging.jar

1. 1.

import
com.iona.management.logging.IT_MBeanMonitoring.MBeanMonitoringRegistration;

2. 2.

// Resolve initial reference for MBeanMonitoringRegistration object.
MBeanMonitoringRegistration mbeanMonitoringRegistration =
(MBeanMonitoringRegistration)
orb.resolve_initial_references(IT_MBeanMonitoringRegistration);

3. 3.

// Turn on monitoring for mbean attribute.
mbeanMonitoringRegistration.monitor_attribute("*mbean_name*","*attribute
name"*, "*mbean_friendly_name*");

Monitoring MBean Statistics

- 34/87 -

Displaying CORBA Java Applications

This section explains how to display CORBA applications in the Administrator Web Console in more detail. It
explains the concept of the Process MBean, how to add MBeans to the navigation tree, and how to customize
your icons.

The Administrator Web Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Displaying MBeans
This section explains how MBeans are displayed by Administrator. It includes the following:

Administrator Web Console

The Process MBean

Example Process MBean

Administrator Web Console
The Administrator Web Console is shown in Figure 7. This example shows the managed attributes and
operations for the FNB AccountManager object. The attributes and operations displayed correspond to
those declared in .

Figure 7 Account Manager Example

Note

• •

• •

• •

Displaying CORBA Java Applications

- 35/87 -

The Process MBean
shows how the IT_IIOPAdaptorServer object is used to access the default MBean server. When the
IT_IIOPAdaptorServer instance is created, the Administrator Web Console creates an entry in the
navigation tree. This entry represents the Process MBean, the first-level MBean that is exposed. The

Process MBean is the starting point for navigation through an application in the Administrator Web
Console.

Example Process MBean
In Figure 8, the selected Process MBean in the navigation tree is FNBMiddleTier . The MBean’s object
name is displayed as:

The Process MBean has associated default attributes, displayed in the details panel (for example,
process type, uptime, host, and so on).

Figure 8 Bank Process MBean

DefaultDomain:type=Process,name=FNBMiddleTier,
Server=FNBMiddleTier,Domain=DefaultDomain,cascaded=FNBMiddleTier

The Process MBean

- 36/87 -

Adding Application MBeans to the Tree
To display your application MBeans in the navigation tree of the Administrator Web Console, you must
create a parent-child relationship between Process MBean and your application MBean.

To create parent-child relationships between your MBeans, use the createParentChildRelation() method.
This section includes the following:

Creating a parent-child relationship

The createParentChildRelation() method

• •

• •

Adding Application MBeans to the Tree

- 37/87 -

Creating a parent-child relationship
When create parent-child relationships your MBeans will be displayed as children of the Process MBean
in the navigation tree, and as attributes in the details panel. Figure 8 shows the FNBMiddleTier Process
MBean in the navigation tree, and its child MBeans listed details pane (for example, the
BusinessSessionManager MBean).

The following code example shows how the addMBean() method is implemented in the ManagementWrapper
class. This method calls the createParentChildRelation() method:

The createParentChildRelation() method
The createParentChildRelation() method takes two parameters:

The parent MBean ObjectName (in this case, the Process MBean).

The child MBean ObjectName (in this case, an array of MBeans).

MBeans must first be registered in order for them to appear when added to the Process MBean.
For details of how to register MBeans, see Step 5—Registering your MBeans.

public boolean addMBean (java.lang.Object mbean, ObjectName mbeanName)
{
System.out.println ("Registering mbean...");
try {
ObjectName tmpArray [] = new ObjectName [1];
tmpArray [0] = mbeanName;
mBeanServer.registerMBean(mbean, mbeanName);
adaptorServer.createParentChildRelation(processMBean,tmpArray);
}
catch (Exception j) {
System.err.println ("Exception in registering MBean " + j);
return false;
}
return true;
}

• •

• •

Note

Creating a parent-child relationship

- 38/87 -

Customizing your Application MBean Icons
By default, when you add a new MBean, it is displayed using a default blue MBean icon. You can direct
Administrator to use your own custom icons for your application MBeans.

The FNB example uses the default icons, and does not use custom icons. The examples in this section
are taken from a demo application named iBank. The iBank example uses a bank icon to represent a
ManagediBank MBean, and a cash icon to represent a ManagediBankAccountMBean MBean.

This section explains the following:

Changing the admin.war file

Changing the admin.war file

Accessing your custom icons

Changing the admin.war file
You must first update the contents of the management web console by changing the admin.war file. The
admin.war file can be found in the following directory:

< install-dir /asp/version/etc/admin/webapps

You may want to make a backup copy of admin.war before removing it.

Under this directory, create a new directory called admin . Unjar admin.war into this directory, for
example, using the following commands:

When you have changed the admin.war file you can then edit the image_mapping.properties file.

• •

• •

• •

Note

cd admin
jar xvf ../admin.war
rm ../admin.war

Customizing your Application MBean Icons

- 39/87 -

Updating your image mapping file
To use custom icons, you must update your image_mapping.properties file. This file is stored in your
resources directory:

For example, the image_mapping.properties file lists all the iBank MBeans; and for each MBean there are
several entries. The following entries are for Banking Servers type, which contains the ManagediBank
MBean:

These entries specify the images for a small icon (16x16), a larger icon (32x32), the text displayed for the
icon, and its type or group (BankingServer).

In the first three entries in this example, the first part of the property name denotes the classname of
the MBean. For example, " examples.ejb.management.ibank.ManagediBank ".

In the remaining entries, the first part of the property name denotes the type of the property (for
example, BankingServer). This is the type in which the MBean is grouped and displayed in the console.

UNIX < install-dir > /etc/opt/iona /domains/my-domain/resources

Windows < install-dir > \etc\ domains\my-domain\resources

Type = BankingServer
examples.ejb.management.ibank.ManagediBank.small =
 resources/images/bank16.gif
examples.ejb.management.ibank.ManagediBank.large =
 resources/images/bank32.gif
examples.ejb.management.ibank.ManagediBank.text = "iBank"
BankingServer.small=bank16.gif
BankingServer.large=bank32.gif
BankingServer.text=Banking Server
BankingServer.type=Banking Servers

Updating your image mapping file

- 40/87 -

Accessing your custom icons
To access your new icons, simply copy them into your resources/images subdirectory.

When you are happy with the results you, may want to jar your .war file again. You can do this from
within the admin directory, for example, using the following command:

You must clear out the classloading cache to see your changes take effect. You can do this by stopping
the management service and removing the contents of the cache, for example, as follows:

jar cvf ../admin.war .
cd ..
rm -rf admin

rm -rf <install-dir>/var/mydomain/dbs/mgmt/cache/CJMP/*

Accessing your custom icons

- 41/87 -

CORBA C++ Management

Instrumenting CORBA C++ Applications
This section explains how to use the Orbix C++ Management API to enable an existing CORBA C++ application
for management. It uses the CORBA instrumented_plugin demo as an example.

The Administrator Web Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Step 1—Identifying Tasks to be Managed
Before adding management code to an application, you must decide on the tasks in your application
that you wish to be managed by a system administrator. Only then should you start thinking about
adding management instrumentation code to your existing application. This section includes the
following:

Existing functionality

New management tasks

Planning your programming steps

Location of the management code

Existing functionality
The instrumented_plugin example adds management capability to an existing CORBA C++ application.
This is a simple "Hello World" application, where the client application reads the server’s object
reference from a file.

Note

• •

• •

• •

• •

CORBA C++ Management

- 42/87 -

For details of how to run the instrumented plugin application, see the README_CXX.txt file in the
following Orbix directory:

New management tasks
The new management instrumentation code added to instrumented_plugin application enables
administrators to perform the following additional tasks:

install-dir\asp*version*\demos\corba\pdk\instrumented_plugin

Step 1—Identifying Tasks to be Managed

- 43/87 -

Monitor the status of the Hello server (active or inactive).

Monitor the number of times that the client reads the server’s object reference.

Set a hello text message.

Invoke a weather forecast with specified text values.

Shutdown the Hello server.

Administrators can perform these tasks using the Administrator Console, shown in Figure 9.

Figure 9 Instrumented Plugin in Administrator

Planning your programming steps
When you have identified your management tasks, you should think carefully about how exactly you
wish to add the new management code to your existing application. For example, how much of the new
code you will add to existing files, and how much will be in new files.

In the instrumented_plugin example, the instrumentation code is part of the service and is initialized
when the service is initialized. For larger applications, you might wish to keep new instrumentation files
in a separate directory.

• •

• •

• •

• •

• •

Step 1—Identifying Tasks to be Managed

- 44/87 -

This chapter explains how Orbix C++ management code was added to the instrumented_plugin
application, and shows the standard programming steps. For example, defining and implementing your
MBeans, and defining relationships between MBeans.

When instrumenting CORBA C++ servers, you do not need to make any changes to the CORBA IDL.
You can enable your application for management simply by adding new MBean instrumentation
code to your CORBA C++ implementation files.

Location of the management code
You should first decide where you wish to store your new management code. All source code for the
instrumented_plugin application is stored in the following directory:

install-dir\ asp\ version \demos\corba\pdk\instrumented_plugin\

The management code for the CORBA C++ server is stored in the following directory:

...\instrumented_plugin\cxx_server

The following files are discussed in detail in this chapter

hello_mbean.h

hello_mbean.cxx

hello_world_impl.cxx

For larger applications, it is advised that you to store your management code in a separate
management directory. This will make your application more modular, and easier to understand.

Instrumented plugin overview
Figure 10 shows the main components of the instrumented_plugin application. In this simple example,
there is only one C++ MBean, the HelloBean .

Most of the key management programming tasks in this example are performed in the HelloWorld
server implementation (hello_world_impl.cxx). For example, management initialization, creating the
MBean, and displaying MBeans in the navigation tree of the console. The server implementation
interacts with the MBean implementation to perform these tasks.

Figure 10 Instrumented Plugin Application Overview

Note

• •

• •

• •

Step 1—Identifying Tasks to be Managed

- 45/87 -

Step 2—Defining your MBeans
When you have planned which parts of your application need to be managed, you can then define
MBeans to satisfy your management objectives. This section shows how to define an example MBean
header file for the instrumented_plugin application. This section includes the following:

Managed Entities and MBeans

Rules for MBean declarations

Example MBean declaration

Example private description

Further information

Managed Entities and MBeans
The C++ version of the Orbix management API is based around the concept of a Managed Entity. This is
similar to the JMX MBeans that are used by Java Programmers. A managed entity acts as a handle to
your application object, and enables the object to be managed. The terms managed entity and MBean
are used interchangeably in this document.

• •

• •

• •

• •

• •

Step 2—Defining your MBeans

- 46/87 -

The Orbix C++ Management API is defined in CORBA IDL (Interface Definition Language). For full details
of the Orbix Management API, see the Orbix Management IDLdoc.

Rules for MBean declarations
The following rules apply for C++ MBeans:

Each MBean object must implement the declaration defined for it in a C++ header file (in this
example, hello_mbean.h).

The following two operations must be declared and implemented:

get_mgmt_attribute()

set_mgmt_attribute()

(although their implementation may be empty). These are the only two operations for getting and
setting all MBean attributes. The name of the attribute is passed as a parameter, and the
operation determines whether to get or set the attribute.

The invoke_method() operation must also be declared and implemented (although its
implementation may be empty).

You must declare all these methods in the MBean header file, and then implement them in the
corresponding MBean implementation file (in this example, hello_mbean.cxx).

Example MBean declaration
The header file for the instrumented_plugin application is hello_mbean.h . It includes the following Hello
MBean declaration:

• •

• •

• •

• •

Example1Hello MBean Declaration

#ifndef _HELLO_MBEAN_H_
#define _HELLO_MBEAN_H_
#include <omg/orb.hh>
#include <orbix_pdk/instrumentation.hh>
#include <orbix/corba.hh>
#include <it_dsa/string.h>
#include <it_dsa/list.h>
#include <it_ts/mutex.h>
class HelloWorldImpl;
class HelloMBean :

Step 2—Defining your MBeans

- 47/87 -

[1](#example-mbean-
declaration)

public virtual IT_Mgmt::ManagedEntity,
public virtual IT_CORBA::RefCountedLocalObject
{
public:
HelloMBean (
HelloWorldImpl * orb_info,
const char * name
);
virtual ~HelloMBean();

[2](#example-mbean-
declaration)

IT_Mgmt::ManagedEntityIdentifier
managed_entity_id()
IT_THROW_DECL((CORBA::SystemException));

[3](#example-mbean-
declaration)

char* entity_type()
IT_THROW_DECL((CORBA::SystemException));

[4](#example-mbean-
declaration)

CORBA::Any* get_mgmt_attribute(const char*
key)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown));
void set_mgmt_attribute(
const char* key, const CORBA::Any &
new_value)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown,
IT_Mgmt::AttributeReadOnly,
IT_Mgmt::AttributeValueInvalid));
CORBA::Any* invoke_method (const char*
method_name,
const IT_Mgmt::ArgumentSeq& in_parameters,
IT_Mgmt::ArgumentSeq_out out_parameters)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::MethodUnknown,
IT_Mgmt::InvocationFailed));

Step 2—Defining your MBeans

- 48/87 -

This hello_mbean.h code example is described as follows:

The HelloMBean class implements the IT_Mgmt::ManagedEntity IDL interface. All entities that need to
be managed must derive from this interface. The C++ implementation of the
IT_Mgmt::ManagedEntity IDL interface is equivalent to a Java MBean.

The IT_Mgmt::ManagedEntityIdentifier managed_entity_id() operation is used to uniquely identify the
managed entity.

The entity_type() operation returns a string indicating the type. This demo uses HelloMBean , which is
the C++ classname. The naming service, for example, uses NamingMBean .

The get_mgmt_attribute(), set_mgmt_attribute () , and invoke_method() operations all use the
CORBA::Any type to access managed entity attributes and operations.

The CORBA::Any type enables you to specify values that can express any IDL type. For detailed
information about the CORBA::Any type, see the CORBA Programmer’s Guide (C++ version).

The get_description() operation returns an XML description of the managed entity. This is used to
display information about the managed entity in the Administrator Web Console. This is described in
more detail in the next topic.

Example private description
The hello_mbean.h file also includes the following privately declared information:

[5](#example-mbean-
declaration)

IT_Mgmt::ManagedEntityDescription
get_description()
IT_THROW_DECL((CORBA::SystemException));
struct HelloParam
{
const char *name;
const char *type;
const char *description;
};
typedef IT_List<HelloParam> HelloParamList;
.
.
.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Step 2—Defining your MBeans

- 49/87 -

Example2HelloMBean Private Declaration

private:

[1](#example-private-
description)

struct HelloAttribute
{
const char * name;
const char * type;
const char * description;
IT_Bool access;
};
typedef IT_List<HelloAttribute>
HelloAttributeList;
struct HelloOperation
{
const char * name;
const char * return_type;
const char * description;
HelloParamList params;
};
typedef IT_List<HelloOperation>
HelloOperationList;
void initialize_attributes();
void initialize_operations();
IT_String get_attributes_XML() const;

IT_String get_attribute_XML(HelloAttribute
att) const;
IT_String get_operations_XML() const;
IT_String get_operation_XML(HelloOperation
op) const;
IT_String get_param_XML(HelloParam param)
const;

Step 2—Defining your MBeans

- 50/87 -

This privately declared information is used to display descriptions of managed attributes and
operations in the Administrator Web Console. For example, the initialize_attributes() function uses
a HelloAttribute structure to define a single attribute. An instance of this attribute and anything else
that you declare are pushed on to a a list. This list is then processed by get_attributes_XML() and by
get_attribute_XML() to generate the description for display in the Administrator Web Console.

These operations all throw IT_Mgmt management exceptions. You also can specify custom
management exceptions. For more information, see Throw the managed exceptions.

[2](#example-private-
description)

IT_Bool
validate_create_forecast_parameters(
const IT_Mgmt::ArgumentSeq& in_parameters)
throw (IT_Mgmt::InvocationFailed);
void throw_wrong_num_parameters()
throw (IT_Mgmt::InvocationFailed);
void throw_invalid_parameter(const char
*param_name)
throw (IT_Mgmt::InvocationFailed);
void throw_bad_temp_range(const char
*paramName,
CORBA::Short minVal, CORBA::Short maxVal)
throw (IT_Mgmt::InvocationFailed);
void throw_max_must_be_greater_than_min()
throw (IT_Mgmt::InvocationFailed);
HelloAttributeList m_attribute_list;
HelloOperationList m_operation_list;
IT_String m_identity;
IT_String m_domain;
IT_String m_class_name;
IT_String m_type;
IT_String m_name;
IT_Mutex m_mutex;
// Attribute names
const char* m_hit_count_name;
const char* m_children_name;
const char* m_message_name;
// Operation names
const char* m_create_forecast_name;
HelloWorldImpl* m_hello;
};

1. 1.

2. 2.

Step 2—Defining your MBeans

- 51/87 -

Further information
C++ Managed entities are similar to the JMX MBeans that are used by Java Programmers. For
information about Java MBeans see:

Step 3—Implementing your MBeans
After defining your MBean interfaces, you must provide an MBean implementation. MBean
implementation objects interact with the application they are designed to manage, enabling
monitoring and control.

For example, this section shows the interaction between an MBean (HelloMBean) and the CORBA server
implementation object (HelloWorldImpl). This section shows example code extracts from the MBean
implementation file (hello_mbean .cxx). It includes the following steps:

Write the MBean constructor and destructor

Get the managed entity ID and entity type

Get the managed attributes

Set the managed attributes

Invoke the managed operations

Throw the managed exceptions

Get the MBean description

Write the MBean constructor and destructor
The HelloMBean constructor and destructor are shown in the following extract from hello_mbean .cxx:

[http://www.oracle.com/technetwork/java/javase/tech/
javamanagement-140525.html](http://www.oracle.com/technetwork/java/javase/
tech/javamanagement-140525.html)

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Step 3—Implementing your MBeans

- 52/87 -

This code extract is explained as follows:

The HelloMBean() constructor specifies all the key information used to identify the MBean, and
display it in the Administrator Web Console. For example, this includes its domain name, a Java-style
class name (com.iona.hello.HelloMBean), and a managed entity ID. For information about registering
MBeans as managed entities, see Creating an example MBean.

The HelloMBean() destructor. For information about unregistering MBeans as managed entities, see
Removing your MBeans.

Example3MBean Constructor and Destructor

[1](#write-the-mbean-constructor-
and-destructor)

HelloMBean::HelloMBean (
HelloWorldImpl * hello, const char
*name) : m_hello(0)
{
assert(hello != 0);
hello->_add_ref();
m_hello = hello;
m_domain = m_hello-
>get_domain_name();
m_class_name =
"com.iona.hello.HelloMBean";
m_type = "HelloMBean";
m_name = "HelloService";

m_identity = "DefaultDomain";
//m_identity = m_domain.c_str();
m_identity +=
":type=HelloMBean,name=";
m_identity += name;
initialize_attributes();
initialize_operations();
}

[2](#write-the-mbean-constructor-
and-destructor)

HelloMBean::~HelloMBean()
{
m_hello->_remove_ref();
}

1. 1.

2. 2.

Step 3—Implementing your MBeans

- 53/87 -

Get the managed entity ID and entity type
The managed entity ID and type uniquely identify the managed entity. The following code extract shows
how to obtain the managed entity ID and its type:

This code extract is explained as follows:

The ID returned by managed_entity_id() is a string that includes the domain, type, and name, at
minimum. These are the keys that are looked up in the MBean by the management service. The
actual values are decided by the developer.

This example uses the DefaultDomain for the first string (the domain). You can specify your own
domain name instead. The rest of the name value pairs follow, and are separated by commas, for
example:

"DefaultDomain:type=HelloMBean,name=HelloService "

The domain name part of the managed entity ID is not related to an Orbix configuration or location
domain. It is a namespace for managed entities only. For example, in a banking application your IDs
might use a BankingApp domain.

The entity_type() operation returns a string indicating the type of the managed entity. The entity
type is formatted in a dotted Java-style notation, which can be used by the Administrator Web
Console to display icons for an MBean. For example, this demo uses the com.iona.hello.HelloMBean
type.

Example4Managed Entity ID and Type

[1](#get-the-managed-
entity-id-and-entity-
type)

IT_Mgmt::ManagedEntityIdentifier
HelloMBean::managed_entity_id()
IT_THROW_DECL((CORBA::SystemException))
{
return CORBA::string_dup(m_identity.c_str());
}

[2](#get-the-managed-
entity-id-and-entity-
type)

char* HelloMBean::entity_type()
IT_THROW_DECL((CORBA::SystemException))
{
return CORBA::string_dup(m_type.c_str());
}

1. 1.

Note

2. 2.

Step 3—Implementing your MBeans

- 54/87 -

Get the managed attributes
The following code extract shows how to get managed MBean attributes:

Example5Gettiing Managed Attributes

[1](#get-the-managed-attributes)
[\#p_d1862e1_d1863e1_d1864e1_d18
65e1](#get-the-managed-
attributes)

CORBA::Any*
HelloMBean::get_mgmt_attribute(const
char* key)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown))
{

[2](#get-the-managed-attributes)
[\#p_d1862e1_d1863e1_d1864e1_d18
65e1](#get-the-managed-
attributes)

CORBA::Any_var retval = new
CORBA::Any;
if (strcmp(key, m_hit_count_name) ==
0)
{
IT_Locker<IT_Mutex> lock(m_mutex);
*retval <<= m_hello->total_hits();
return retval._retn();
}

[3](#get-the-managed-attributes) else if (strcmp(key, m_children_name)
== 0)
{
IT_Locker<IT_Mutex> lock(m_mutex);
HelloWorldImpl::HelloWorldList children
=
m_hello->get_children();

Step 3—Implementing your MBeans

- 55/87 -

This code extract is explained as follows:

The get_mgmt_attribute() operation is the only operation used for getting all MBean attributes. The
name of the attribute is passed in and the operation determines whether to get the attribute.

The CORBA::Any type enables you to specify values that can express any IDL type. For details of
managed attribute types, see Permitted types. For detailed information about the CORBA::Any type,
see the Orbix CORBA Programmer’s Guide (C++ version).

CORBA::AnySeq
children_seq(children.size());
children_seq.length(children.size());
HelloWorldImpl::HelloWorldList::iterat
or iter =
children.begin();
for (int i = 0; i < children.size();i+
+, iter++)
{
IT_Mgmt::ManagedEntity_var mbean =
(*iter)->get_mbean();
children_seq[i] <<= mbean.in();
}
*retval <<= children_seq;
return retval._retn();
}
else if (strcmp(key, m_message_name) ==
0)
{
IT_Locker<IT_Mutex> lock(m_mutex);
CORBA::String_var message = m_hello-
>get_message();
*retval <<= message.in();
return retval._retn();
}
else
{
throw new IT_Mgmt::AttributeUnknown();
}
}

1. 1.

2. 2.

Step 3—Implementing your MBeans

- 56/87 -

This get_mgmt_attribute() implementation supports complex attribute types by also getting the
attributes of child MBeans.

In the instrumented_plugin example, the children attribute of the Hello MBean gets a list of references
to child MBeans.

For example, in Figure 9 on page 40, the Children attribute and its child MBeans (hello3 and hello2)
are displayed in the Administrator Web Console.

Permitted types
The following basic types are permitted for managed attributes:

In addition, you can use ManagedEntity references to connect one Managed Entity and another. These
will be displayed as hyperlinks on the web console. Finally, you can use CORBA::AnySeq to create lists of
any of the permitted types already listed.

Set the managed attributes
The following code extract shows how to set managed MBean attributes:

3. 3.

CORBA::Short
CORBA::Long
CORBA::LongLong
CORBA::Float
CORBA::Double
CORBA::Boolean
CORBA::Octet
CORBA::String
CORBA::WString

Step 3—Implementing your MBeans

- 57/87 -

Example6Setting Managed Attributes

[1](#set-the-managed-attributes)
[get_the_managed_attributes_1609.md\#p_d1
862e1_d1863e1_d1864e1_d1865e1](#get-the-
managed-attributes)

void
HelloMBean::set_mgmt_attribute
(const char* key,
const CORBA::Any & new_value
IT_THROW_DECL((CORBA::SystemE
xception,
IT_Mgmt::AttributeUnknown,
IT_Mgmt::AttributeReadOnly,
IT_Mgmt::AttributeValueInvalid
))
{
if (strcmp(key,
m_message_name) == 0)
{
CORBA::TypeCode_var
tc(new_value.type());
CORBA::TCKind kind = tc-
>kind();
if (kind != CORBA::tk_string)
{
throw new
IT_Mgmt::AttributeValueInvalid
();
}
const char *new_message;
new_value >>= new_message;

Step 3—Implementing your MBeans

- 58/87 -

This code extract is explained as follows:

The set_mgmt_attribute() operation is the only operation used for setting all MBean attributes. The
name of the attribute is passed in and the operation determines whether to set the attribute.

The CORBA::Any type enables you to specify values that can express any IDL type. For detailed
information about the CORBA::Any type, see the Orbix CORBA Programmer’s Guide (C++ version).

The set_message() function enables you to set the text message for the hello greeting that is returned
by the Hello object. For example, Figure 9 on page 40, shows an example text greeting for the
Message attribute in the Administrator Web Console.

Invoke the managed operations
The following code extract shows how to invoke MBean operations:

[2](#set-the-managed-attributes)
[get_the_managed_attributes_1609.md\#p_d1
862e1_d1863e1_d1864e1_d1865e1](#get-the-
managed-attributes)

m_hello-
>set_message(new_message);
}
else if (strcmp(key,
m_hit_count_name) == 0)
{
throw new
IT_Mgmt::AttributeReadOnly();
}
else if (strcmp(key,
m_children_name) == 0)
{
throw new
IT_Mgmt::AttributeReadOnly();
}
else
{
throw new
IT_Mgmt::AttributeUnknown();
}
}

1. 1.

2. 2.

Step 3—Implementing your MBeans

- 59/87 -

Example7Invoke Operations

[1](#invoke-the-managed-
operations)

CORBA::Any* HelloMBean::invoke_method(const
char* method_name,
const IT_Mgmt::ArgumentSeq& in_parameters,
IT_Mgmt::ArgumentSeq_out out_parameters)
IT_THROW_DECL((CORBA::SystemException,IT_Mgmt
::MethodUnknown
IT_Mgmt::InvocationFailed))
{
CORBA::Any_var retval = new CORBA::Any;
if
(strcmp(method_name,m_create_forecast_name)
== 0)
{
IT_Locker<IT_Mutex> lock(m_mutex);
out_parameters = new
IT_Mgmt::ArgumentSeq(0);
out_parameters->length(0);
CORBA::String_var forecast;
CORBA::Short min_temp, max_temp;
const char *prospect;
if (in_parameters.length() != 3)
{
throw_wrong_num_parameters();
}

Step 3—Implementing your MBeans

- 60/87 -

This code extract is explained as follows:

[2](#invoke-the-managed-
operations)

validate_create_forecast_parameters(in_param
eters);
in_parameters[0].value >>= min_temp;
if (min_temp < COLDEST_MIN_TEMP || min_temp
>
HOTTEST_MAX_TEMP)
{
throw_bad_temp_range("minimumTemperature",
COLDEST_MIN_TEMP,HOTTEST_MAX_TEMP);
}
in_parameters[1].value >>= max_temp;
if (max_temp < COLDEST_MIN_TEMP || max_temp
>
HOTTEST_MAX_TEMP)
{
throw_bad_temp_range("maxmimumTemperature",
COLDEST_MIN_TEMP, HOTTEST_MAX_TEMP);
}

in_parameters[2].value >>= prospect;
if (max_temp < min_temp)
{
throw_max_must_be_greater_than_min();
}

[3](#invoke-the-managed-
operations)

m_hello->set_forecast_parameters(
min_temp,
max_temp,
prospect
);
forecast = m_hello->get_forecast();
*retval <<= forecast.in();
return retval._retn();
}
else
{
throw new IT_Mgmt::MethodUnknown();
}
}

Step 3—Implementing your MBeans

- 61/87 -

The invoke_method() operation is the only operation used for invoking all MBean operations. The
name of the operation is passed in and the invoke_method() operation determines whether to
invoke the operation.

The CORBA::Any type enables you to specify values that can express any IDL type. For detailed
information about the CORBA::Any type, see the Orbix CORBA Programmer’s Guide (C++ version).

In this example, the validate_create_forecast_parameters() function checks that the weather forecast
values entered are of the correct type (short or string). The rest of the code checks that the
temperature values entered do not fall outside the range of the predeclared const values:

The set_forecast_parameters() and get_forecast() functions enable you to create and invoke your own
weather forecast. Figure 9 on page 40, shows example parameter values for the CreateForecast
operation in the Administrator Web Console. This operation takes the following parameters:

min_temp (short)

max_temp (short)

prospect (string)

Throw the managed exceptions
Before throwing management exceptions, you must first declare them in your MBean implementation
file, for example:

The following code shows two example functions that are used to throw management exceptions:

1. 1.

2. 2.

static const CORBA::Short COLDEST_MIN_TEMP = -100;
static const CORBA::Short HOTTEST_MAX_TEMP = 150;

3. 3.

static const char *BAD_TEMP_RANGE_EX =
"com.iona.demo.pdk.instrumentedplugin.BadTempRange";
static const char *MAX_MUST_BE_GREATER_THAN_MIN_EX =
"com.iona.demo.pdk.instrumentedplugin.MaxMustBeGreaterThanMin";
static const char *INVALID_PARAM_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_MIN_VAL = "minVal";
static const char *BAD_TEMP_RANGE_EX_MAX_VAL = "maxVal";

Step 3—Implementing your MBeans

- 62/87 -

Custom exception messages
You can specify custom messages using the exception-ia.properties file, which is located in the
following directory:

Example8Throwing Management Exceptions

void HelloMBean::throw_bad_temp_range(
const char *paramName,
CORBA::Short minVal,
CORBA::Short maxVal) throw (IT_Mgmt::InvocationFailed)
{
IT_Mgmt::InvocationFailed ex;
IT_Mgmt::InvocationError err;
IT_Mgmt::PropertySeq_var properties = new
IT_Mgmt::PropertySeq(3);
properties->length(3);
properties[0].name = BAD_TEMP_RANGE_EX_PARAM_NAME;
properties[0].value <<= paramName;
properties[1].name = BAD_TEMP_RANGE_EX_MIN_VAL;
properties[1].value <<= minVal;
properties[2].name = BAD_TEMP_RANGE_EX_MAX_VAL;
properties[2].value <<= maxVal;

err.id = (const char *) BAD_TEMP_RANGE_EX;
err.error_params = properties;
ex.error_details = err;
throw IT_Mgmt::InvocationFailed(ex);
}
void HelloMBean::throw_max_must_be_greater_than_min()
throw (IT_Mgmt::InvocationFailed)
{
IT_Mgmt::InvocationFailed ex;
IT_Mgmt::InvocationError err;
err.id = (const char *) MAX_MUST_BE_GREATER_THAN_MIN_EX;
ex.error_details = err;
throw IT_Mgmt::InvocationFailed(ex);
}

Step 3—Implementing your MBeans

- 63/87 -

For example, the entry in this file for the throw_bad_temp_range () operation is as follows:

Figure 11 Instrumented Plugin Custom Exception

Get the MBean description
The following code shows how the MBean descriptions are obtained for display in the Administrator
Web Console:

<install-dir>\e2a\etc\domains\sample-domain\resources

com.iona.demo.pdk.instrumentedplugin.BadTempRange=Bad temperature range
entered for parameter %paramName%. The temperature must be between %minVal%
and %maxVal%.

Step 3—Implementing your MBeans

- 64/87 -

Example9Getting the MBean description

[1](#get-the-mbean-
description)

IT_Mgmt::ManagedEntityDescription
HelloMBean::get_description()
IT_THROW_DECL((CORBA::SystemException))
{
IT_String xml_str =
"<?xml version=\"1.0\"?>"
"<?rum_dtd version=\"1.0\" ?>"
"<mbean>"
"<class_name>";
xml_str += m_class_name;
xml_str +=
"</class_name>"
"<domain>";
xml_str += m_domain;
xml_str +=
"</domain>"

"<type>";
xml_str += m_type;
xml_str +=
"</type>"
"<identity>";
xml_str += m_identity;
xml_str +=
"</identity>"
"<description>";
xml_str += "Hello Service";
xml_str +=
"</description>";
xml_str += get_attributes_XML();
xml_str += get_operations_XML();
xml_str += "</mbean>";
return CORBA::string_dup(xml_str.c_str());
}

Step 3—Implementing your MBeans

- 65/87 -

[2](#get-the-mbean-
description)

void HelloMBean::initialize_attributes()
{
m_hit_count_name = "TotalHelloCalls";
HelloAttribute total_hits =
{

m_hit_count_name, "long",
"The total number of successful calls to
HelloWorld::request_number() "
"since the Hello Service started",
IT_FALSE
};
m_attribute_list.push_back(total_hits);
m_children_name = "Children";
HelloAttribute children =
{
m_children_name, "list",
"The list of children of this MBean",
IT_FALSE
};
m_attribute_list.push_back(children);
m_message_name = "Message";

HelloAttribute message =
{
m_message_name, "string",
"Message that this object emits",
IT_TRUE
};
m_attribute_list.push_back(message);
}

Step 3—Implementing your MBeans

- 66/87 -

[3](#get-the-mbean-
description)

IT_String HelloMBean::get_attributes_XML() const
{
IT_String xml_str("");
HelloAttributeList::const_iterator iter =
m_attribute_list.begin();
while (iter != m_attribute_list.end())
{
xml_str += get_attribute_XML(*iter);
iter++;
}
return xml_str;
}

IT_String HelloMBean::get_attribute_XML
(HelloAttribute att) const
{
IT_String xml_str =
"<managed_attribute>"
"<name>";
xml_str += att.name;
xml_str +=
"</name>"
"<type>";
xml_str += att.type;
xml_str +=
"</type>"
"<description>";
xml_str += att.description;
xml_str +=
"</description>"

Step 3—Implementing your MBeans

- 67/87 -

This code extract is explained as follows:

The get_description() operation returns an XML string description of the managed entity, which is
displayed by Administrator. This description normally includes the managed entity’s attributes and
operations (with parameters and return types). This string must be exact in order to parse correctly.
This code example includes the class_name , domain and type attributes in the description.

The rest of the functions are local to this particular implementation, and are not defined in IDL. The
initialize_attributes() function uses a locally-defined structure (HelloAttribute) to define a single
attribute. HelloAttribute is declared in hello_mbean.h . An instance of this attribute and anything else
that you declare are pushed on to a list, including child MBeans.

The HelloAttributeList is then processed by get_attributes_XML() and by get_attribute_XML() to
generate the description for display in the Administrator Web Console.

There are similar functions for displaying the operations and their parameters in the console
(get_operation_XML() , get_operations_XML() and get_param_XML()).

For full details of the mbean.dtd file used to display the XML string description, see MBean Document
Type Definition.

"<property>"
"<name>Access</name>"
"<value>";
xml_str += att.access ? "ReadWrite" : "Read";
xml_str +=
"</value>"
"</property>"
"</managed_attribute>";
return xml_str;
}
.
.
.

1. 1.

2. 2.

3. 3.

Step 3—Implementing your MBeans

- 68/87 -

Step 4—Initializing the Management Plugin
After defining and implementing your MBeans, you should then initialize the management plugin in
your server implementation. The instrumented_plugin example adds the additional instrumentation
code to the existing server implementation file.

Alternatively, for a larger application, you could create a separate instrumentation class, which is called
by your server implementation.

Example management initialization
The following code extract is also from the server implementation file (hello_world_impl.cxx) . It shows
how the management plugin is initialized in the instrumented_plugin application:

Example10Management Initialization

void
HelloWorldImpl::initialize_management()
IT_THROW_DECL(())
{

[1](#example-management-
initialization)

if (!m_config->get_string("domain_name",
m_domain_name))
{
cerr << "Couldn't get domain_name from
config" << endl;
m_domain_name = "<unknown domain>";
}
try
{
CORBA::Object_var obj;
CORBA::String_var process_object_name;

Step 4—Initializing the Management Plugin

- 69/87 -

This hello_world_impl.cxx code extract is described as follows:

The get_string() operation obtains the managed entity domain name. For more information, see Get
the managed entity ID and entity type.

Like any other Orbix service, the management service must be initialized by your server
implementation. The resolve_initial_references() operation obtains a reference to the management
instrumentation interface, IT_Instrumentation. This is then narrowed to the
IT_Mgmt::Instrumentation type.

A managed entity must be registered with the instrumentation interface to be displayed in the
Administrator Web Console.

Step 5—Creating your MBeans
After initializing the management service plugin, you can then create your MBeans in your server
implementation. This section includes the following:

Creating an example MBean.

Removing your MBeans.

Creating an example MBean
The following is a continuation of the example in the last section, taken from the server implementation
file. It shows how the MBean is created for the instrumented_plugin application:

[2](#example-management-
initialization)

obj = m_orb-
>resolve_initial_references("IT_Instrument
ation");
IT_Mgmt::Instrumentation_var instrument;
instrument =
IT_Mgmt::Instrumentation::_narrow(obj);
if (CORBA::is_nil(instrument))
{
throw IT_String("Instrumentation reference
is nil");
}
.
.
.

1. 1.

2. 2.

• •

• •

Step 5—Creating your MBeans

- 70/87 -

This hello_world_impl.cxx code extract is described as follows:

You must create the MBean using the new() method, and register it as a managed entity using the
new_entity() operation.

This gets the string that specifies the process object. The process object is displayed as the parent of
the HelloMBean in the navigation tree of the Administrator Web Console. For more information about
the process name, see The Process MBean.

Example11Creating an MBean

void HelloWorldImpl::initialize_management()
IT_THROW_DECL(())
{
.
.
.
// Create and register the Hello MBean
IT_Mgmt::ManagedEntity_var hello_mbean_ref;

[1](#creating-an-example-
mbean)

hello_mbean_ref = m_hello_mbean_servant =
new HelloMBean(this,m_name.in());
instrument->new_entity(hello_mbean_ref);
if (m_is_parent)
{

[2](#creating-an-example-
mbean)

//Get the Process ObjectName
process_object_name = instrument-
>get_process_object_name();

[3](#creating-an-example-
mbean)

// Add the MBean as a child of the Process
MBean.
instrument->create_parent_child_relationship(
process_object_name,
hello_mbean_ref->managed_entity_id()
);
}
.
.
}

1. 1.

2. 2.

Step 5—Creating your MBeans

- 71/87 -

This creates a parent-child relationship between your MBean and the Process MBean. The
create_parent_child_relationship() operation takes two parameters:

The parent MBean name (in this case, the Process MBean).

The child MBean name (in this case, a reference to the HelloMBean).

Creating a parent-child relationship adds the MBean to the navigation tree of the console.

Removing your MBeans
You might wish to remove an MBean in response to an administrator’s interaction with the system. For
example, in a banking application, if an account is deleted from the bank, it would be appropriate to
remove the corresponding MBean for the account.

Removing an MBean unregisters it as a managed entity. This ensures that the MBean will no longer be
displayed as part of the managed application.

To remove an MBean, use the remove_entity() operation.When the account’s MBean has been removed,
it is no longer displayed in the Administrator Web Console. The remove_entity() operation takes the
managed entity name as a parameter.

The instrumented_plugin application is a simple example that does not remove any MBeans.

Further information
For full details of the Orbix Management API, see the Orbix Management IDLdoc.

Step 6—Connecting MBeans Together
Applications are displayed in the Administrator Web Console as a series of related or connected
MBeans, which can be monitored by administrators. This section explains how to connect your
application MBeans together.

The Process MBean
The management service plugin creates a Process MBean when it is first loaded. A Process MBean is the
default starting point in the console for navigation within a managed process. In the
instrumented_plugin application, the HelloMBean is a child of the Process MBean.

Figure 12 shows the Process MBean for the instrumented_plugin application. The Process MBean has
associated default attributes, displayed in the details pane (for example, process type, time running,
hostname, and so on).

Figure 12 Instrumented Plugin Process MBean

3. 3.

• •

• •

Step 6—Connecting MBeans Together

- 72/87 -

Creating parent–child relationships
Use the create_parent_child_relationship () operation to connect two MBeans together. This enables
MBeans to appear as children of others in the navigation tree on the left of the console.

Creating an example MBean shows how to use this operation to add your application MBean as a child
of the Process MBean. In Example 12, the add_child() function shows how to add further child MBeans
created by your application to the navigation tree.

Example12Creating Child MBeans

void
HelloWorldImpl::add_child(HelloWorldImpl
*child)
IT_THROW_DECL(())
{
// Lock mutex
try
{

Step 6—Connecting MBeans Together

- 73/87 -

This hello_world_impl.cxx code extract is described as follows:

[1](#creating-parent–child-
relationships)

CORBA::Object_var obj;
obj = m_orb-
>resolve_initial_references("IT_Instrumen
tation");
IT_Mgmt::Instrumentation_var instrument;
instrument =
IT_Mgmt::Instrumentation::_narrow(obj);
if (CORBA::is_nil(instrument))
{
throw IT_String("Instrumentation reference
is nil");
}
CORBA::String_var my_name, child_name;

[2](#creating-parent–child-
relationships)

my_name = m_hello_mbean_servant-
>managed_entity_id();
IT_Mgmt::ManagedEntity_var childMBean =
child->get_mbean();
child_name = childMBean-
>managed_entity_id();

[3](#creating-parent–child-
relationships)

instrument-
>create_parent_child_relationship(
my_name.in(),
child_name.in()
);

[4](#creating-parent–child-
relationships)

m_children.push_front(child);
}
catch(IT_Mgmt::ManagementBindFailed& ex)
{
cerr << "Management bind failed: " << ex
<< endl;
m_is_managed = IT_FALSE;
}
.
.
.
}

Step 6—Connecting MBeans Together

- 74/87 -

The resolve_initial_references() operation obtains a reference to the management instrumentation
interface, IT_Instrumentation. This is then narrowed to the IT_Mgmt::Instrumentation type. All
managed entities must be registered with the instrumentation interface to be displayed in the
Administrator Web Console.

The create_parent_child_relationship() operation takes the parent MBean and the child MBean as
parameters.

This adds the child MBean to the list of MBeans. These steps add the child MBean to the tree for
display in console. For example, Figure 13 shows a child MBean for the instrumented_plugin
application (in this example, hello3).

Figure 13 Instrumented Plugin Child MBean

1. 1.

2.

3. 3.

4. 4.

Step 6—Connecting MBeans Together

- 75/87 -

Monitoring MBean Statistics
Optionally, you can also monitor statistics from MBeans in your own applications. The
it_mbean_monitoring performance logging plug-in enables you to periodically harvest statistics
associated with MBean attributes. This section includes the following:

MBean monitoring

Programming steps

MBean monitoring
The IT_MBeanMonitoring IDL interface provides the support for monitoring MBean statistics. This
interface is defined as follows:

When the it_mbean_monitoring plug-in is included in your orb_plugins list, an initial reference is
registered for the IT_MBeanMonitoringRegistration interface.

• •

• •

module IT_MBeanMonitoring
{
const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
"IT_MBeanMonitoringRegistration";
// Interface exceptions.
exception MBeanNotFound {};
exception MBeanAttributeNotFound {};
exception MBeanAttributeInvalidType {};
// IT_MBeanMonitoring::MBeanMonitoringRegistration
//
// An interface which provides a means to
// monitor and log statistics about mbeans
// registered with the management service.
local interface MBeanMonitoringRegistration
{
void monitor_attribute(
in string object_name,
in string attribute_name,
in string alias) raises (MBeanNotFound,
MBeanAttributeNotFound, MBeanAttributeInvalidType);
void cancel_monitor(
in string object_name,
in string attribute_name,
in string alias) raises (MBeanNotFound);
};
};

Monitoring MBean Statistics

- 76/87 -

When you resolve on your application MBean, the IT_MBeanMonitoring API can be used to switch on, or
turn off, monitoring of an application MBean. Statistics for user monitored MBeans will then appear in
the performance logs.

Programming steps
This example assumes that you already have an MBean with an attribute that you want to be sampled
and logged. For example, the MBean might track the memory currently being used by the process. The
programming steps are as follows:

Monitoring MBean Statistics

- 77/87 -

Include the following header files:

To register your MBean with the it_mbean_monitoring plug-in, you must first resolve on the MBean
monitoring initial reference:

}

You can then register the attribute to be monitored by specifying your MBean details in a call to
monitor_attribute() :

The mbean_friendly_name is an alternative alias that will also appear in the log file.

Further information
For more details on Orbix performance logging, see the Orbix Management User’s Guide.

MBean Document Type Definition
This appendix lists the contents of the mbean.dtd file used to generate the display of the Administrator Web
Console.

1. 1.

#include <orbix_pdk/mbean_monitoring_registration.hh>

2. 2.

try {
Object_var obj = orb->resolve_initial_references(
 IT_MBeanMonitoring::MANAGEMENT_MBEAN_MONITORING_INITIAL_REF
);
m_mbean_monitoring_registration =
MBeanMonitoringRegistration::_narrow(obj);
}
catch(const ORB::InvalidName&)
{
...

3. 3.

try {
m_mbean_monitoring_registration->monitor_attribute("mbean_name",
"attribute_name", "mbean_friendly_name");
}
catch (...)
{
// do nothing.
}

Monitoring MBean Statistics

- 78/87 -

The Administrator Web Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions .

The GUI components archive can be downloaded from our Software License & Download (SLD) site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

The MBean Document Type Definition File
The mbean.dtd file used to generate the XML used in the display of the Administrator Web Console.For
example, the get_description() operation returns an XML string description of the managed entity,
which is then displayed by the console. This description normally includes the managed entity’s
attributes and operations (with parameters and return types).

mbean.dtd contents
The contents of the mbean.dtd file are as follows:

Note

Monitoring MBean Statistics

- 79/87 -

<!-- MBean is the top level element -->
<!ELEMENT mbean (class_name, domain, identity, agent_id, description,
notification_listener*, notification_filter*, notification_broadcaster*,
constructor*, operation*, managed_attribute*)>
<!-- IMMEDIATE MBEAN PROPERTIES -->
<!ELEMENT class_name (#PCDATA)>
<!ELEMENT domain (#PCDATA)>
<!ELEMENT identity (#PCDATA)>
<!ELEMENT agent_id (#PCDATA)>
<!-- COMMON ELEMENT TYPES -->
<!-- type = void | byte| char | double | float | long | longlong | short |
boolean | string | list | ref | UNSUPPORTED -->
<!ELEMENT type (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT param (name, type, description)>
<!-- NOTIFICATION details - note no recipients are shown for the broadcasts
-->
<!ELEMENT notification_listener EMPTY>
<!ELEMENT notification_filter EMPTY>
<!ELEMENT notification_broadcaster EMPTY>
<!-- CONSTRUCTORS -->
<!ELEMENT constructor (name, description, param*)>
<!-- OPERATIONS -->
<!ELEMENT operation (name, type, description, param*)>
<!-- MANAGED ATTRIBUTES -->
<!ELEMENT managed_attribute (name, type, description, property*)>
<!-- PROPERTIES -->
<!-- name = Access -->
<!ELEMENT property (name, value)>
<!-- value = ReadWrite | ReadOnly | INACCESSIBLE -->
<!ELEMENT value (#PCDATA)>

Monitoring MBean Statistics

- 80/87 -

Glossary

Administration

All aspects of installing, configuring, deploying, monitoring, and managing a system.

Application Server

A software platform that provides the services and infrastructure required to develop and deploy middle-tier applications. Middle-
tier applications perform the business logic necessary to provide web clients with access to enterprise information systems. In a
multi-tier architecture, an application server sits beside a web server or between a web server and enterprise information systems.
Application servers provide the middleware for enterprise systems.

CORBA

Common Object Request Broker Architecture. An open standard that enables objects to communicate with one another regardless of
what programming language they are written in, or what operating system they run on.

Configuration

A specific arrangement of system elements and settings.

Controlling

The process of modifying the behavior of running software components, without stopping them.

Details Pane

The display pane on the right hand side of the Administrator Web Console user interface.

Deployment

The process of distributing a configuration or system element into an environment.

Domain

An abstract grouping of managed server processes and hosts within a physical location. Processes within a domain share the same
configuration and distributed application infrastructure. A domain is equivalent to an Orbix configuration domain.

Event

An occurrence of interest, which is emitted from a managed entity.

Host

Generic term used to describe a computer, which runs parts of a distributed application.

Installation

The placement of software on a computer. Installation does not include Configuration unless a default configuration is supplied.

Glossary

- 81/87 -

Instrumentation

Code instructions that monitor specific components in a system (for example, instructions that output logging information on
screen.) When an application contains instrumentation code, it can be managed using a management tool such as Administrator.

Invocation

A request issued on an already active software component.

JRE

Java Runtime Environment. A subset of the Java Development Kit required to run Java programs. The JRE consists of the Java Virtual
Machine, the Java platform core classes and supporting files. It does not include the compiler or debugger.

JMX

Java Management Extensions. Sun’s standard for distributed management solutions. JMX provides tools for building distributed,
Web-based solutions for managing devices, applications and service-driven networks.

Managed Application

An abstract description of a distributed application, which does not rely on the physical layout of its components.

Managed Entity

A generic manageable component (C++ or Java). Managed entities include managed domains, servers, containers, modules, and
beans.

A managed entity acts as a handle to your application object, and enables the object to be managed.
The terms managed entity and MBean are used interchangeably in this document.

Managed Server

A set of replicated managed processes. A managed process is a physical process which contains an ORB and which has loaded the
management plugin. The managed server can be an EJB application server, CORBA server, or any other instrumented server that can
be managed by Administrator.

Managed Process.

A physical process which contains an ORB and which has loaded the management plugin.

Management

To direct or control the use of a system or component. Sometimes used in a more general way meaning the same as Administration.

MBean

A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables the object to be managed. The terms
managed entity and MBean are used interchangeably in this document.

Monitoring

Observing characteristics of running instances of software components. Monitoring does not change a system.

Glossary

- 82/87 -

Navigation Tree

The tree on the left hand side of the Administrator Web Console.

Node

A node represents a host machine on which the product is installed. The management service and managed servers are deployed on
nodes.

ORB

CORBA Object Request Broker. This is the key component in the CORBA architecture model. It acts as the middleware between clients
and servers.

Process

This is the operating system execution environment in which system and application programs execute. A Java Virtual Machine
(JVM) is a special type of process that runs Java programs. A process that is not running Java programs is referred to as a standard or
C++ process.

Process MBean

The is the first-level MBean that is exposed for management of an application. It is the starting point for navigation through an
application in the Administrator Web Console

Resource

This represents shared data or services provided by a server. Examples of J2EE resources include JDBC, JNDI, JMS, JCA, and so on.
Examples of CORBA resources include naming service, implementation repository, trading service, notification service, etc.

Server

This is a collection of one or more processes on the same or different nodes that execute the same programs. The processes in a
server are tightly coupled, and provide equivalent service. This means that the calling client does not care which process ends up
servicing the request.

Runtime Administration, Runtime Management

Encompasses the running, monitoring, controlling and stopping of software components.

SNMP

Simple Network Management Protocol. The Internet standard protocol developed to manage nodes on an IP network. It can be used
to manage and monitor all sorts of devices (for example, computers, routers, and hubs)

Starting

The process of activating an instance of a deployed software component.

Stopping

The process of deactivating a running instance of a software component.

Web Services

Web services are XML-based information exchange systems that use the Internet for direct application-to-application interaction.
These systems can include programs, objects, messages, or documents.

Glossary

- 83/87 -

XML

Extensible Markup Language. XML is a simpler but restricted form of Standard General Markup Language (SGML). The markup
describes the meaning of the text. XML enables the separation of content from data. XML was created so that richly structured
documents could be used over the web. See http://www.w3.org/XML/

Glossary

- 84/87 -

http://www.w3.org/XML/

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 85/87 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 86/87 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 87/87 -

	Orbix Management Programme Guide
	V6.3.14

	Preface
	Audience
	Related documentation
	Typographical conventions
	Keying conventions

	Introduction to Application Management
	Introduction to Orbix Management Tools
	Administrator Web Console
	Orbix Management Service
	Orbix Configuration Explorer
	Orbix Configuration Authority
	Integrating with Enterprise Management Systems
	Further information

	Introduction to Java Management Extensions
	MBeans
	The MBean server
	Management instrumentation
	Standard and Dynamic MBeans
	Further information

	Introduction to the Orbix management API
	The IIOP adaptor
	Defining MBean relationships
	C++ Instrumentation

	Overview of Management Programming Tasks
	Identifying tasks to be managed
	Writing your MBeans
	Registering your MBeans with the MBean server
	During application initialization.
	During normal application runtime.

	Unregistering your MBeans
	Defining relationships between MBeans
	Further information

	CORBA Java Management
	Instrumenting CORBA Java Applications
	Step 1—Identifying Tasks to be Managed
	Existing user tasks
	New management tasks for administrators
	Planning your Programming Steps

	Step 2—Defining your MBeans
	Rules for MBean interfaces
	Example MBeans
	AccountMgrMBean interface
	CreditCardMBean interface
	BusinessSessionManagerMBean interface
	BusinessSessionMBean interface
	MBean object names
	Further information

	Step 3—Implementing your MBeans
	Example MBean implementation
	The management wrapper class
	Management wrapper implementation
	Identifying MBeans
	Further information

	Step 4—Gaining Access to an MBean Server
	Loading the Orbix management plugin
	Accessing the MBean server
	IT_IIOPAdaptorServer object
	Specifying an MBean object name
	The Process MBean

	Step 5—Registering your MBeans
	Example MBean registration
	addMBean() implementation
	Registering MBeans
	Creating parent-child relationships

	Step 6—Unregistering your MBeans
	Example MBean unregistration
	The unregisterMBean() method

	Step 7—Connecting MBeans Together
	Connecting MBeans using a get() method
	Connecting MBeans using the createParentChildRelation() method

	Monitoring MBean Statistics
	MBean monitoring
	Configuration steps
	Programming steps
	Further information

	Displaying CORBA Java Applications
	Displaying MBeans
	Administrator Web Console
	The Process MBean
	Example Process MBean

	Adding Application MBeans to the Tree
	Creating a parent-child relationship
	The createParentChildRelation() method

	Customizing your Application MBean Icons
	Changing the admin.war file

	Updating your image mapping file
	Accessing your custom icons

	CORBA C++ Management
	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Existing functionality
	New management tasks
	Planning your programming steps
	Location of the management code
	Instrumented plugin overview

	Step 2—Defining your MBeans
	Managed Entities and MBeans
	Rules for MBean declarations
	Example MBean declaration
	Example private description
	Further information

	Step 3—Implementing your MBeans
	Write the MBean constructor and destructor
	Get the managed entity ID and entity type
	Get the managed attributes
	Permitted types

	Set the managed attributes
	Invoke the managed operations
	Throw the managed exceptions
	Custom exception messages

	Get the MBean description

	Step 4—Initializing the Management Plugin
	Example management initialization

	Step 5—Creating your MBeans
	Creating an example MBean
	Removing your MBeans
	Further information

	Step 6—Connecting MBeans Together
	The Process MBean
	Creating parent–child relationships

	Monitoring MBean Statistics
	MBean monitoring
	Programming steps
	Further information
	MBean Document Type Definition

	The MBean Document Type Definition File
	mbean.dtd contents

	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

