
Migrating from Orbix 3.3 to 6.3
V6.3.14

Table of Contents

4Preface

4Audience

4Typographical conventions

5Keying conventions

6Introduction

6Advantages of Orbix 6.3

7Migration Resources

8Migration Options

10Migrating to Orbix 6.3

11IDL Migration

11The context Clause

11The opaque Type

12The Principal Type

13Client Migration

13Replacing the _bind() Function

16Callback Objects

17IDL-to-C++ Mapping

18System Exception Semantics

19Dynamic Invocation Interface

20Server Migration

20Function Signatures

20Object IDs versus Markers

21CORBA Objects versus Servant Objects

22BOA to POA Migration

27Migrating Proprietary Orbix 3 Features

27Orbix 3 Locator

29Filters

32Loaders

34Smart Proxies

Table of Contents

- 2/72 -

36Transformers

36I/O Callbacks

40CORBA Services

40Interface Repository

40Naming Service

41Notification Service

47SSL/TLS Toolkit

58Administration

58Orbix Daemons

58POA Names

59Command-Line Administration Tools

61Activation Modes

63Configuring for Interoperability

63Interoperability Overview

65Launch and Invoke Rights

67GIOP Versions

70Notices

70Copyright

70Trademarks

70Examples

70License agreement

71Corporate information

71Contacting Technical Support

71Country and Toll-free telephone number

Table of Contents

- 3/72 -

Preface

This document explains how to migrate applications from the Orbix 3 and OrbixWeb products, which
conform to CORBA 2.1, to Orbix 6.3, which conforms to CORBA 2.6.

Audience
This document is aimed at C++ or Java programmers who are already familiar with Orbix or OrbixWeb
products and who now want to migrate all or part of a system to use Orbix 6.3.

Parts of this document are relevant also to administrators familiar with Orbix and OrbixWeb
administration. See Administration and Configuring for Interoperability.

Typographical conventions
This guide uses the following typographical conventions:

| | | | ---------------- | ----------------a------------- | | Constant width | Constant width (courier font) in normal
text represents portions of code and literal names of items such as classes, functions, variables, and
data structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system displays on the screen.
For example:

#include <stdio.h> | | Italic | Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values you must supply, such as
arguments to commands or path names for your particular system. For example:

% cd /users/*your_name* !!! note

Preface

- 4/72 -

Keying conventions
This guide may use the following keying conventions:

some command examples may use angle brackets to represent variable values you
must supply. This is an older convention that is replaced with *italic* words
or characters.

 |

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or Windows command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in
format and syntax descriptions.

Keying conventions

- 5/72 -

Introduction

The newest generation of Orbix provides significant advances over the previous generation of products.

Advantages of Orbix 6.3
The recommended path for customers upgrading to a new version of Orbix is to move to Orbix 6.3. The
extra features offered by Orbix can be divided into the following categories:

CORBA 2.6-compliant features.

Unique features.

CORBA 2.6-compliant features
Because Orbix 6.3 contains a CORBA 2.6-compliant ORB, it offers the following advantages over Orbix
2.x (all minor versions of Orbix 2) and Orbix 3.x (all minor versions of Orbix 3):

Portable interceptor support.

Codeset negotiation support.

Value type support.

Asynchronous method invocation (AMI) support.

Persistent State Service (PSS) support.

Dynamic any support.

Unique features
Orbix 6.3 also offers some unique benefits over other commercial ORB implementations, including:

ORB extensibility using Adaptive Runtime Technology (ART).

Orbix 6.3 has a modular structure built on a micro-kernel architecture. Required ORB modules,
ORB plug-ins, are specified in a configuration file and loaded at runtime, as the application starts
up. The advantage of this approach is that new ORB functionality can be dynamically loaded into
an Orbix application without rebuilding the application.

Improved performance.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Introduction

- 6/72 -

The performance of Orbix 6.3 has been optimized, resulting in performance that is faster than
Orbix 3.x and OrbixWeb 3.x in every respect.

Advanced deployment and configuration.

Orbix 6.3 supports a flexible model for the deployment of distributed applications. Applications
can be grouped into configuration domains and organized either as file-based configuration
domains or as configuration repository-based configuration domains.

Rapid application development using the Orbix code generation toolkit.

The code generation toolkit is an extension to the IDL compiler that generates a working
application prototype—based on your application IDL—in a matter of seconds.

Migration Resources

Overview of resources
Rocket Software is committed to assisting you with your migration effort, to ensure that it proceeds as
easily and rapidly as possible. The following resources are currently available:

This migration and interoperability guide.

This technical document provides detailed guidance on converting source code to Orbix 6.3. The
document aims to provide comprehensive coverage of migration issues, and to demonstrate how
features supported in earlier Orbix versions can be mapped to Application Server Platform
features.

Rocket Software Orbix 6.x Upgrade Assessment.

For customers on Orbix 2000, Orbix E2A ASP or versions of Orbix predating Orbix 3.3 one may
consider the Orbix 6.x Upgrade Assessment, ensuring the application of best practices and access
to the latest updated functionality: https://www.microfocus.com/en-us/support/consulting-
professional-services-orbix-6-x

• •

• •

• •

• •

Migration Resources

- 7/72 -

https://www.microfocus.com/en-us/support/consulting-professional-services-orbix-6-x
https://www.microfocus.com/en-us/support/consulting-professional-services-orbix-6-x

Migration Options
The basic alternatives for migrating a distributed application to Orbix are to migrate the whole
application at once, or to perform the migration gradually, replacing parts of the application piece by
piece. For the latter option (gradual migration), you will end up with a mixed deployment consisting of
Orbix and older Orbix products.

Migrating to Orbix 6.3
The CORBA 2.6 specification, on which the Orbix 6.3 ORB is based, standardizes almost every aspect of
CORBA programming. Migrating your source code to Application Server Platform, therefore, represents
a valuable investment because your code will be based on a stable, highly standardized programming
interface.

Client side
On the client side, the main issue for migration is that the Orbix _bind() function is not supported in
Orbix 6.3. The CORBA Naming Service is now the recommended mechanism for establishing contact
with CORBA servers.

Server side
On the server side, the basic object adapter (BOA) must be replaced by the portable object adapter
(POA). This is one of the major differences between the CORBA 2.1 and the CORBA 2.6 specifications.
The POA is much more tightly specified than the old BOA; hence server code based on the POA is well
standardized.

Proprietary features
Orbix 3.x and OrbixWeb 3.x support a range of proprietary features not covered by the CORBA standard
—for example, the Orbix locator, filters, loaders, smart proxies, transformers and I/O callbacks. When
migrating to Orbix 6.3, the proprietary features must be replaced by standard CORBA 2.6 features. This
migration guide details how each of the proprietary features can be replaced by equivalent Orbix 6.3
functionality.

Further details
The details of migrating to Orbix 6.3 are discussed in Part II of this guide. See Migrating to Orbix 6.3.

Migration Options

- 8/72 -

Mixed Deployment
Mixed Deployment is appropriate when a number of CORBA applications are in deployment
simultaneously. Some applications might be upgraded to use Orbix 6.3 whilst others continue to use
Orbix 3.x and OrbixWeb 3.x. This kind of mixed environment requires on-the-wire compatibility
between the generation 3 products and Orbix 6.3. Extensive testing has been done to ensure
interoperability with Orbix 6.3.

On-the-wire interoperability
Both Orbix 3.3 and Orbix 6.3 have been modified to achieve an optimum level of on-the-wire
compatibility between the two products.

Further details
Interoperability is discussed in Interoperability.

Mixed Deployment

- 9/72 -

Migrating to Orbix 6.3

Migrating to Orbix 6.3

- 10/72 -

IDL Migration

This section discusses the Orbix 3.x IDL features that are not available in Orbix 6.3.

The context Clause

IDL Syntax
According to IDL grammar, a context clause can be added to an operation declaration, to specify extra
variables that are sent with the operation invocation. For example, the following Account::deposit()
operation has a context clause:

Migrating to Orbix 6
The context clause is not supported by Orbix 6. IDL contexts are generally regarded as type-unsafe.
Orbix clients that use them need to be migrated, to transmit their context information using another
mechanism, such as service contexts, or perhaps as normal IDL parameters.

The opaque Type

//IDL
interface Account {
void deposit(in CashAmount amount)
context("sys_time", "sys_location");
//...
};

IDL Migration

- 11/72 -

Migrating to Orbix 6.3
The object-by-value (OBV) specification, introduced in CORBA 2.3 and supported in Orbix 6.3, replaces
opaques.

The Principal Type

Principal IDL type
The CORBA specification deprecates the Principal IDL type; therefore the Principal IDL type is not
supported by Orbix 6.3.

Interoperability
Orbix 6.3 has some limited on-the-wire support for the Principal type, to support interoperability with
Orbix 3.x applications.

See Launch and Invoke Rights.

Migrating to Orbix 6.3

- 12/72 -

Client Migration

Migration of client code from Orbix 3 to Orbix 6.3 is generally straightforward, because relatively few changes
have been made to the client-side API.

Replacing the _bind() Function
The _bind() function is not supported in Orbix 6.3. All calls to _bind() must be replaced by one of the
following:

CORBA Naming Service.

CORBA Trader Service.

Object-to-string conversion.

corbaloc URL.

ORB::resolve_initial_references().

CORBA Naming Service
The naming service is the recommended replacement for _bind() in most applications. Migration to
the naming service is straightforward on the client side. The triplet of markerName , serverName , and
hostName , used by the _bind() function to locate an object, is replaced by a simple name in the naming
service.

When using the naming service, an object's name is an abstraction of the object location and the actual
location details are stored in the naming service. Object names are resolved using these steps:

An initial reference to the naming service is obtained by calling resolve_initial_references() with
NameService as its argument.

The client uses the naming service reference to resolve the names of CORBA objects, receiving object
references in return.

Orbix 6.3 supports the CORBA Interoperable Naming Service, which is backward-compatible with the
old CORBA Naming Service and adds support for stringified names.

• •

• •

• •

• •

• •

1. 1.

2. 2.

Client Migration

- 13/72 -

CORBA Trader Service
The Orbix 6.3 trader service provides advanced capabilities for object location and discovery. Unlike the
Orbix Naming Service where an object is located by name, an object in the Trading Service does not
have a name. Rather, a server advertises an object in the Trading Service based on the kind of service
provided by the object. A client locates objects of interest by asking the Trading Service to find all
objects that provide a particular service. The client can further restrict the search to select only those
objects with particular characteristics.

Object-to-string conversion
CORBA offers two CORBA-compliant conversion functions:

These functions allow you to convert an object reference to and from the stringified interoperable
object reference (stringified IOR) format. These functions enable a CORBA object to be located as
follows:

A server generates a stringified IOR by calling CORBA::ORB::object_to_string() .

The server passes the stringified IOR to the client (for example, by writing the string to a file).

The client reads the stringified IOR from the file and converts it back to an object reference, using
CORBA::ORB::string_to_object() .

Because they are not scalable, these functions are generally not useful in a large-scale CORBA system.
Use them only to build initial prototypes or proof-of-concept applications.

corbaloc URL
A corbaloc URL is a form of human-readable stringified object reference. If you are migrating your
clients to Orbix 6.3 but leaving your servers as Orbix 3.3 applications, the corbaloc URL offers a
convenient replacement for _bind() .

To access an object in an Orbix 3.3 server from an Orbix 6.3 client using a corbaloc URL, perform the
following steps:

Obtain the object key, ObjectKey, for the object in question, as follows:

Get the Orbix 3.3 server to print out the stringified IOR using, for example, the
CORBA::ORB::object_to_string() operation. The result is a string of the form IOR:00...

CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

1. 1.

2. 2.

3. 3.

1. 1.

CORBA Trader Service

- 14/72 -

Use the Orbix 6.3 iordump utility to parse the stringified IOR. Copy the string that represents the
object key field, ObjectKey.

Construct a corbaloc URL of the following form:

Where DaemonHost and DaemonPort are the Orbix daemon’s host and port respectively. A null
character, %00 , is appended to the end of the ObjectKey string because Orbix 3.3 applications expect
object key strings to be terminated by a null character.

In the source code of the Orbix3 client, use the CORBA::ORB::string_to_object() operation to convert
the corbaloc URL to an object reference.

The general form of a corbaloc URL for this case is as follows:

Where the components of the corbaloc URL are:

GIOPVersion—The maximum GIOP version acceptable to the server. Can be either 1.0 or 1.1 .

Host and Port—The daemon’s (or server’s) host and port. The Host can either be a DNS host name
or an IP address in dotted decimal format.

The Orbix3ObjectKey has the following general form:

Where the components of the Orbix 3 object key are:

Host—The server host. The Host can either be a DNS host name or an IP address in dotted decimal
format.

SvrName—The server name of the Orbix 3.3 server.

Marker—The CORBA object’s marker.

IFRSvrName—Can be either IR or IFR .

InterfaceName—The object’s IDL interface name.

2. 2.

corbaloc:iiop:1.0@*DaemonHost*:*DaemonPort*/*ObjectKey*%00

3. 3.

corbaloc:iiop:*GIOPVersion*@*Host*:*Port*/*Orbix3ObjectKey*%00

• •

• •

:*Host*:*SvrName*:*Marker*::*IFRSvrName*:*InterfaceName*%00

• •

• •

• •

• •

• •

corbaloc URL

- 15/72 -

Constructing an Orbix 3.3 object key directly based on the preceding format does not always
work because some versions of Orbix impose extra restrictions on the object key format.
Extracting the object key from the server-generated IOR is a more reliable approach.

If you encounter any difficulties with using corbaloc URLs, please contact https://
www.microfocus.com/en-us/support/.

ORB::resolve_initial_references()
The CORBA::ORB::resolve_initial_references() operation provides a mechanism for obtaining references
to basic CORBA objects (for example, the naming service, the interface repository, and so on).

Orbix 6.3 allows the resolve_initial_references() mechanism to be extended. For example, to access the
BankApplication service using resolve_initial_references() , simply add the following variable to the
Orbix 6.3 configuration:

Use this mechanism sparingly. The OMG defines the intended behavior of resolve_initial_references()
and the arguments that can be passed to it. A name that you choose now might later be reserved by the
OMG. It is generally better to use the naming service to obtain initial object references for application-
level objects.

Callback Objects

POA policies for callback objects
Callback objects must live in a POA, like any other CORBA object; hence, there are certain similarities
between a server and a client with callbacks. The most sensible POA policies for a POA that manages
callback objects are shown in Table 1.

Table 1 POA Policies for Callback Objects

Warning

Orbix 6.3 Configuration File
initial_references:BankApplication:reference = "IOR:010347923849..."

ORB::resolve_initial_references()

- 16/72 -

https://www.microfocus.com/en-us/support/
https://www.microfocus.com/en-us/support/

These policies allow for easy management of callback objects and an easy upgrade path. Callback
objects offer one of the few cases where the root POA has reasonable policies, provided the client is
multi-threaded (as it normally is for callbacks).

1 a.By choosing a TRANSIENT lifespan policy, you remove the need to register the client with an Orbix 6.3
locator daemon.

IDL-to-C++ Mapping
The definition of the IDL-to-C++ mapping has changed little going from Orbix 3.x to Orbix 6.3 (apart
from some extensions to support valuetypes). Two notable changes are:

The CORBA::Any Type.

The CORBA::Environment Parameter.

The CORBA::Any Type
In Orbix 6.3, it is not necessary to use the type-unsafe interface to Any . Recent revisions to the CORBA
specification have filled the gaps in the IDL-to-C++ mapping that made these functions necessary. That
is, the following functions are deprecated in Orbix 6.3:

Policy Type Policy Value

Lifespan TRANSIENT1

ID Assignment SYSTEM_ID

Servant Retention RETAIN

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

• •

• •

IDL-to-C++ Mapping

- 17/72 -

The CORBA::Environment Parameter
The signatures of IDL calls no longer contain the CORBA::Environment parameter. This parameter was
needed for languages that did not support native exception handling. However, Orbix applications also
use it for operation timeouts.

System Exception Semantics
Orbix and OrbixWeb clients that catch specific system exceptions might need to change the exceptions
they handle when they are migrated to Orbix.

System exceptions
Orbix 6.3 follows the latest CORBA standards for exception semantics. Table 2 shows the two system
exceptions most likely to affect existing code.

Table 2 Migrated System Exceptions

// C++
// CORBA::Any Constructor.
Any(
CORBA::TypeCode_ptr tc,
void* value,
CORBA::Boolean release = 0
);
// CORBA::Any::replace() function.
void replace(
CORBA::TypeCode_ptr,
void* value,
CORBA::Boolean release = 0
);

When This Happens Orbix 3 and OrbixWeb Raise Orbix 6.3 Raises

Server object does not exist INV_OBJREF OBJECT_NOT_EXIST

The CORBA::Environment Parameter

- 18/72 -

Minor codes
System exception minor codes are completely different between OrbixWeb 3.2 and Orbix 6.3 for Java.
Applications that examine minor codes need to be modified to use Orbix 6.3 for Java minor codes.

Dynamic Invocation Interface

Proprietary dynamic invocation interface
Orbix-proprietary dynamic invocation interface (DII) functions are not available in Orbix 6.3. Code that
uses CORBA::Request::operator<<() operators and overloads must be changed to use CORBA-compliant
DII functions.

Orbix 6.3-generated stub code consists of sets of statically generated CORBA-compliant DII calls.

When This Happens Orbix 3 and OrbixWeb Raise Orbix 6.3 Raises

Cannot connect to server COMM_FAILURE TRANSIENT

Note

Minor codes

- 19/72 -

Server Migration

Server code typically requires many more changes than client code. The main issue for server code migration
is the changeover from the basic object adapter (BOA) to the portable object adapter (POA).

Function Signatures

Changes to the signature
In Orbix 6.3, two significant changes have been made to C++ function signatures:

The CORBA::Environment parameter has been dropped.

New types are used for out parameters. An out parameter of T type is now passed as a T_out
type.

Consequently, when migrating C++ implementation classes you must replace the function
signatures that represent IDL operations and attributes.

Object IDs versus Markers

C++ conversion functions
Orbix 6.3 uses a sequence of octets to compose an object's ID, while Orbix 3 uses string markers.
CORBA provides the following helper methods to convert between the two types; hence migration from
marker dependencies to Object IDs is straightforward.

• •

• •

Server Migration

- 20/72 -

Java conversion functions
In Java, an object ID is represented as a byte array, byte[] . Hence the following native Java methods
can be used to convert between string and object ID formats:

CORBA Objects versus Servant Objects

Orbix 3
In Orbix 3 there is no need to distinguish between a CORBA object and a servant object. When you
create an instance of an implementation class in Orbix 3, the instance already has a unique identity
(represented by a marker) and therefore represents a unique CORBA object.

// C++
// Converting string marker -----> ObjectId
PortableServer::ObjectId *
PortableServer::string_to_ObjectId(const char *);
// Converting ObjectId -----> string marker
char *
PortableServer::ObjectId_to_string(
const PortableServer::ObjectId&
);

// Java
// Converting string marker -----> ObjectId
byte[]
java.lang.String.getBytes();
// Converting ObjectId -----> string marker
// String constructor method:
java.lang.String.String(byte[]);

Java conversion functions

- 21/72 -

Orbix 6.3
In Orbix 6.3, a distinction is made between the identity of a CORBA object (its object ID) and its
implementation (a servant). When you create an instance of an implementation class in Orbix 6.3, the
instance is a servant object, which has no identity. The identity of the CORBA object (represented by an
object ID) must be grafted on to the servant at a later stage, in one of the following ways:

The servant becomes associated with a unique identity. This makes it a CORBA object, in a similar
sense to an object in a BOA-based implementation.

The servant becomes associated with multiple identities. This case has no parallel in a BOA-based
implementation.

The mapping between object IDs and servant objects is controlled by the POA and governed by
POA policies.

BOA to POA Migration
It is relatively easy to migrate a BOA-based server by putting all objects in a simple POA that uses an
active object map; however, this approach is unable to exploit most of the functionality that a POA-
based server offers. It is worth while redesigning and rewriting servers so they benefit fully from the
POA.

Creating an Object Adapter

Creating a BOA in Orbix 3.x
In Orbix 3, a single BOA instance is used. All CORBA objects in a server are implicitly associated with
this single BOA instance.

Creating a POA in Orbix 6.3
In Orbix 6.3, an application can create multiple POA instances (using the
PortableServer::POA::create_POA() operation in C++ and the org.omg.PortableServer.create_POA()
operation in Java). Each POA instance can be individually configured, using POA policies, to manage
CORBA objects in different ways. When migrating to Orbix 6.3, you should give careful consideration to
the choice of POA policies, to obtain the maximum benefit from the POA's flexibility.

• •

• •

Orbix 6.3

- 22/72 -

Defining an Implementation Class
There are two approaches to defining an implementation class in CORBA:

The inheritance approach.

The tie approach.

The inheritance approach
The most common approach to implementing an IDL interface in Orbix is to use the inheritance
approach. Consider the following IDL fragment:

The BankSimple::Account IDL interface can be implemented by defining a class that inherits from a
standard base class. The name of this standard base class for Orbix 3 and Orbix 6.3 is shown in Table 3.

Table 3 Standard Base Classes for the Inheritance Approach

Consider a legacy Orbix 3 application that implements BankSimple::Account in C++ as the
BankSimple_Account_i class. The BankSimple_Account_i class might be declared as follows:

• •

• •

//IDL
module BankSimple {
Account {
//...
};
};

Application Type Implementation Base Class Name

Orbix 3, C++ (BOA) BankSimple::AccountBOAImpl

Orbix 6.3, C++ (POA) POA_BankSimple::Account

Orbix 3, Java (BOA) BankSimple._AccountImplBase

Orbix 6.3, Java (POA) BankSimple.AccountPOA

Defining an Implementation Class

- 23/72 -

When this implementation class is migrated to Orbix 6.3, the BankSimple::AccountBOAImpl base class is
replaced by the POA_BankSimple::Account base class, as follows:

The tie approach
The tie approach is an alternative mechanism for implementing IDL interfaces. It allows you to
associate an implementation class with an IDL interface using a delegation approach rather than an
inheritance approach.

In Application Server Platform (C++) the tie classes are generated using C++ templates. When migrating
from Orbix 3 to Orbix 6.3, all DEF_TIE and TIE preprocessor macros must be replaced by the equivalent
template syntax.

In Orbix 6.3 (Java) the tie approach is essentially the same as in Orbix 3. However, the names of the
relevant Java classes and interfaces are different. For example, given an IDL interface, Foo , an Orbix 6.3
servant class implements the FooOperations Java interface and the associated Java tie class is called
FooPOATie .

// C++
// Orbix 3 Version
// Inheritance Approach
class BankSimple_Account_i : BankSimple::AccountBOAImpl {
public:
// Declare IDL operation and attribute functions...
};

// C++
// Orbix 6.3 Version
// Inheritance Approach
class BankSimple_Account_i : POA_BankSimple::Account {
public:
// Declare IDL operation and attribute functions...
};

The tie approach

- 24/72 -

Creating and Activating a CORBA Object
To make a CORBA object available to clients, you should:

Create an implementation object. An implementation object is an instance of the class that
implements the operations and attributes of an IDL interface. In Orbix 3, an implementation object is
the same thing as a CORBA object. In Orbix3, an implementation object is a servant object, which is
not the same thing as a CORBA object.

Activate the servant object. Activating a servant object attaches an identity to the object (a marker in
Orbix 3 or an object ID in Orbix3) and associates the object with a particular object adapter.

Orbix 3
In Orbix 3, creating and activating an object are rolled into a single step. For example, in C++ you might
instantiate a BankSimple::Account CORBA object using the following code:

This step creates the CORBA object and attaches the ObjectID identity to it (initializing the object's
marker). The constructor automatically activates the CORBA object.

Orbix 6.3
In Orbix 6.3, creating and activating an object are performed as separate steps. For example, in C++
you might instantiate a BankSimple::Account CORBA object using the following code:

1. 1.

2. 2.

// C++
// Orbix 3
// Create and activate a new 'Account' object.
BankSimple_Account_i * acc1 =
new BankSimple_Account_i("*ObjectID*");

Creating and Activating a CORBA Object

- 25/72 -

Activation is performed as an explicit step in Orbix 6.3. The call to
PortableServer::POA::activate_object_with_id() attaches the ObjectID identity to the object and associates
the persistent_poa object adapter with the object.

// C++
// Orbix 6.3
// Step 1: Create a new 'Account' object.
BankSimple_Account_i * acc1 = new BankSimple_Account_i();
// Step 2: Activate the new 'Account' object.
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("*ObjectID*");
// persistent_poa created previously
persistent_poa->activate_object_with_id(oid, acc1);

Orbix 6.3

- 26/72 -

Migrating Proprietary Orbix 3 Features

Proprietary Orbix 3 feature are replaced by a range of standards-compliant Orbix 6.3 features.

Orbix 3 Locator
The Orbix 3 locator is an Orbix-specific feature that is used in combination with _bind() to locate server
processes. Because Orbix 6.3 does not support _bind() , it cannot use the Orbix 3 style locator.

Orbix 6.3 has a feature called a locator, which is not related in any way to the Orbix 3 locator. The
Orbix 6.3 locator is a daemon process, itlocator , that locates server processes for clients.

If your legacy code uses the Orbix 3 locator, you must replace it with one of the following Orbix 6.3
features:

High availability.

The CORBA Naming Service.

The CORBA Initialization Service.

High availability
The Orbix 6.3’s high availability feature provides fault tolerance—that is, a mechanism that avoids
having a single point of failure in a distributed application. With the enterprise edition of Orbix 6.3, you
can protect your system from single points of failure through clustered servers.

A clustered server comprises multiple instances, or replicas, of the same server; together, these act as a
single logical server. Clients invoke requests on the clustered server and Orbix routes the requests to
one of the replicas. The actual routing to any replica is transparent to the client.

Note

• •

• •

• •

Migrating Proprietary Orbix 3 Features

- 27/72 -

The CORBA Naming Service
If your legacy code uses the load-balancing feature of the Orbix 3 locator, you can replace this by the
ObjectGroup feature of the Orbix 6.3’s naming service. Object groups are an Orbix-specific extension to
the naming service that allow you to register a number of servers under a single name.

Table 4 shows how the Orbix 3 locator maps to the equivalent naming service functionality.

Table 4 Replacing the Orbix 3 Locator by the Naming Service

The naming service is the preferred way to locate objects in Orbix 6.3. It is a standard service and is
highly scalable.

The CORBA Initialization Service
The initialization service uses the CORBA::ORB::resolve_initial_references() operation to retrieve an
object reference from an Orbix 6.3 configuration file, DomainName.cfg .

Table 5 shows how the Orbix 3 locator maps to the equivalent initialization service functionality.

Table 5 Replacing the Orbix 3 Locator by the Initialization Service

Orbix 3-Locator Orbix 6.3-Naming Service

Entry in the locator file, mapping the server
name, SrvName , to a single server host, Host
Name:

SrvName:HostName:

Object binding in the naming service,
mapping a name to a single object
reference.

Entry in the locator file, mapping the server
name, SrvName , to multiple host names:

SrvName:Host1 , Host2 , Host3:

Object group in the naming service,
mapping a name to multiple object
references.

Overriding functionality of CORBA::LocatorC
lass .

Custom implementation of the IT_LoadBa
lancing::ObjectGroup interface.

The CORBA Naming Service

- 28/72 -

The initialization service can only be used as a replacement for the Orbix 3 locator when a simple object
lookup is needed.

Filters
Filters are a proprietary Orbix 3 mechanism that allow you to intercept invocation requests on the
server and the client side.

Orbix 6.3 does not support the filter mechanism. Instead, a variety of Orbix 6.3 features replace Orbix 3
filter functionality.

Equivalents
Table 6 summarizes the typical uses of Orbix 3 filters alongside the equivalent features supported by
Orbix 6.3.

Table 6 Orbix 6.3 Alternatives to Filter Features

Orbix 3-Locator Orbix 6.3-Initialization Service

Entry in the locator file, mapping the server
name, SrvName , to a single server host, Hos
tName :

SrvName:HostName:

Entry in the DomainName.cfg file,
mapping an ObjectId to a single object
reference:

initial_references:ObjectId: refe
rence = "IOR:00...";

Entry in the locator file, mapping the server
name, SrvName , to multiple host names:

SrvName:Host1,Host2,Host3:

No Equivalent

Override functionality of CORBA::LocatorCl
ass .

No Equivalent

Orbix 3 Filter Feature Orbix 6.3 Equivalent

Request logging Use portable interceptors.

Filters

- 29/72 -

Request Logging

Using portable interceptors
In Orbix 6.3, request logging is supported by the new portable interceptor feature. Interceptors allow
you to access a CORBA request at any stage of the marshaling process, offering greater flexibility than
Orbix filters. You can use them to add and examine service contexts. You can also use them to examine
the request arguments.

Piggybacking Data on a Request

Piggybacking in Orbix 3
In Orbix 3, filters support a piggybacking feature that enables you to add and remove extra arguments
to a request message.

Orbix 3 Filter Feature Orbix 6.3 Equivalent

Piggybacking data on a
Request

Use portable interceptors.

Multi-threaded request
processing

Use a multi-threaded POA and (optionally) a proprietary Wo
rkQueue POA policy.

Accessing the client's TCP/IP
details

Not supported.

Security using an
authentication filter

Full security support is provided in the Orbix 6.3 enterprise
edition.

Request Logging

- 30/72 -

Piggybacking in Orbix 6.3
In Orbix 6.3, piggybacking is replaced by the CORBA-compliant approach using service contexts. A
service context is an optional block of data that can be appended to a request message, as specified in
the IIOP 1.1 standard. The content of a service context can be arbitrary and multiple service contexts
can be added to a request.

Multi-Threaded Request Processing

Orbix 3
In Orbix 3, concurrent request processing is supported using an Orbix thread filter. The mechanism is
flexible because it gives the developer control over the assignment of requests to threads.

Orbix 6.3
In Orbix 6.3, request processing conforms to the CORBA 2.6 specification. Each POA can have its own
threading policy:

SINGLE_THREAD_MODEL ensures that all servant objects in that POA have their functions called in a
serial manner. In Orbix 6.3, servant code is called only by the main thread, therefore no locking or
concurrency-protection mechanisms need to be used.

ORB_CTRL_MODEL leaves the ORB free to dispatch CORBA invocations to servants in any order and
from any thread it chooses.

Orbix 6.3 request processing extensions
Because the CORBA 2.6 specification does not specify exactly what happens when the ORB_CTRL_MODEL
policy is chosen, Orbix 6.3 makes some proprietary extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix 6.3 work queue feature. Two
kinds of work queue are provided by Orbix 6.3:

Automatic Work Queue: A work queue that feeds a thread pool. When a POA uses an automatic
work queue, request events are automatically dequeued and processed by threads. The size of the
thread pool is configurable.

Manual Work Queue: A work queue that requires the developer to explicitly dequeue and process
events.

• •

• •

• •

• •

Piggybacking in Orbix 6.3

- 31/72 -

Manual work queues give developers greater flexibility when it comes to multi-threaded request
processing. For example, prioritized processing of requests could be implemented by assigning
high-priority CORBA objects to one POA instance and low-priority CORBA objects to a second POA
instance. Given that both POAs are associated with manual work queues, the developer can write
threading code that preferentially processes requests from the high-priority POA.

Accessing the Client's TCP/IP Details

Recommendations for Orbix 6.3
Some Orbix 3 applications use Orbix-specific extensions to access socket-level information, such as the
caller's IP address, in order to implement proprietary security features. These features are not available
in Orbix 6.3, because providing access to low-level sockets would considerably restrict the flexibility of
CORBA invocation dispatch.

To provide security for your applications, it is recommended that you use an implementation of the
security service provided with the Orbix 6.3 Enterprise Edition instead.

Security Using an Authentication Filter

Recommendations for Orbix 6.3
Some Orbix 3 applications use authentication filters to implement security features. In Orbix 6.3, it is
recommended that you use the security service that is made available with the Orbix 6.3 Enterprise
Edition.

Loaders

Accessing the Client's TCP/IP Details

- 32/72 -

Orbix 3 loader
The Orbix 3 loader provides support for the automatic saving and restoration of persistent objects. The
loader provides a mechanism that loads CORBA objects automatically into memory, triggered in
response to incoming invocations.

Servant manager
The Orbix 3 loader is replaced by equivalent features of the Portable Object Adapter (POA) in Orbix 6.3.
The POA can be combined with a servant manager to provide functionality equivalent to the Orbix 3
loader. There are two different kinds of servant manager:

Servant activator: Triggered only when the target CORBA object cannot be found in memory.

Servant locator: Triggered for every invocation.

Servant activator
Taking the PortableServer::ServantActivator class as an example, the member functions of
CORBA::LoaderClass correspond approximately as shown in Table 7.

Table 7 Comparison of Loader with Servant Activator Class

• •

• •

CORBA::LoaderClass
Member Function

ServantActivator Member Function

save() etherealize()

load() incarnate()

record() No equivalent function.

An Orbix 6.3 object ID (equivalent to an Orbix 3 marker) can be
specified at the time a CORBA object is created. This gives
sufficient control over object IDs.

Orbix 3 loader

- 33/72 -

Servant locator
A servant locator can also be used to replace the Orbix 3 loader. In general, the servant locator is more
flexible than the servant activator and offers greater scope for implementing sophisticated loader
algorithms.

Smart Proxies

Orbix 3
The Orbix 3 smart proxies feature is a proprietary mechanism for overriding the default
implementation of the proxy class. This allows applications to intercept outbound client invocations
and handle them within the local client process address space, rather than using the default proxy
behavior of making a remote invocation on the target object. Smart proxies can be used for such
purposes as client-side caching, logging, load-balancing, or fault-tolerance.

Orbix 6.3
Orbix 6.3 does not support smart proxies. The primary difficulty is that, in the general case, it is not
possible for the client-side ORB to determine if two object references denote the same server object.
The CORBA standard restricts the client-side ORB from interpreting the object key or making any
assumptions about it. Orbix 3 was able to avoid this limitation by making assumptions about the
structure of the object key. This is neither CORBA-compliant nor interoperable with other ORBs.

At best, the ORB can only determine that two object references are equivalent if they have exactly the
same server location (host and port in IIOP) and object key. Unfortunately, this can be an unreliable
indicator if object references pass through bridges, concentrators, or firewalls that change the server
location or object key.

CORBA::LoaderClass
Member Function

ServantActivator Member Function

rename() No equivalent function.

An Orbix 6.3 object ID (equivalent to an Orbix 3 marker) cannot
be changed after a CORBA object has been created.

Servant locator

- 34/72 -

In this case, it is possible for two object references denoting the same CORBA object to appear different
to the ORB, and thus have two different smart proxy instances. Since smart proxies are commonly used
for caching, having two smart proxy instances for a single CORBA object is unacceptable.

Replacing smart proxies
Table 8 shows how smart proxy tasks can be mapped to equivalent features in Orbix 6.3.

Table 8 Orbix 6.3 Alternatives to Smart Proxy Features

Fault tolerance
Fault tolerance is provided by the high availability feature of the Orbix 6.3’s locator. See High
availability.

Logging
For logging that requires access to request parameters, portable interceptors can be used in Orbix 6.3.
Portable interceptors are similar to Orbix 3 filters, but they are more flexible in that they allow you to
read request parameters.

Caching
A smart proxy that implements client-side caching of data cannot be mimicked by a standard Orbix 6.3
feature. In this case, you have no option but to implement smart proxy-like functionality in Orbix 6.3,
and this can be done as follows:

Create a local implementation of the object to be proxified, by writing a class that derives from the
client-side stub class.

Every time the client receives an object reference of the appropriate type, wrap the object reference
with a corresponding smart proxy object. Before wrapping the object reference, however, you must
determine the target object's identity by making an invocation on the remote target object, asking it

Orbix 3 Smart Proxy Task Orbix 6.3 Equivalent Feature

Fault tolerance Orbix 6.3 high availability, based on server clusters.

Logging Orbix 6.3 built-in logging facility or portable interceptors

Caching Implement smart proxy-like functionality by hand.

1. 1.

2. 2.

Replacing smart proxies

- 35/72 -

for a system-wide unique identifying name. This is the key step that avoids the object identity
problem described in Orbix 6.3.

Based on the system-wide unique identifying name, the application can then either create a new smart
proxy, or reuse the target object's existing smart proxy. The client application should consistently use
the smart proxy in place of the regular proxy throughout the application.

Transformers

Orbix 3
Transformers are a deprecated feature of Orbix 3 that allow you to apply customized encryption to
CORBA request messages. This could be used to implement a primitive substitute for a security service.

Orbix 6.3
In Orbix 6.3, transformers are not supported. It is recommended, instead, that you use the security
service that is made available with the enterprise edition of Orbix 6.3.

I/O Callbacks
Orbix 6.3 does not allow access to TCP/IP sockets or transport-level information. This is incompatible
with the Orbix 6.3 architecture, which features a pluggable transport layer. Using Orbix 6.3, you can
replace TCP/IP with another transport plug-in such as IP multicast (which is connectionless), simple
object access protocol (SOAP), hypertext transfer protocol (HTTP), asynchronous transfer mode (ATM),
and so on. For example, the shared memory transport (SHMIOP) does not use file descriptors or
sockets.

Transformers

- 36/72 -

Purposes for using I/O callbacks
Orbix 3 I/O Callback functionality is generally used for two main purposes:

Connection Management—the number of TCP/IP connections that can be made to a single process
is typically subject to an operating system limit. Some form of connection management is
required if this limit is likely to be reached in a deployed system.

Session Management—I/O Callback functionality can be used to implement an elementary session-
tracking mechanism. The opening of a connection from a client defines the beginning of a session
and the closing of the connection defines the end of the session.

Because Orbix 6.3 has no equivalent to the Orbix 3 I/O Callback functionality, you must migrate any
code that uses it.

Connection Management

Active connection management
Orbix 6.3 provides an active connection manager (ACM) that allows the ORB to reclaim connections
automatically, and thereby increases the number of clients that can use a server beyond the limit of
available file descriptors.

ACM configuration variables
IIOP connection management is controlled by four configuration variables:

plugins:iiop:incoming_connections:hard_limit sets the maximum number of incoming (server-side)
connections allowed to IIOP. IIOP refuses new connections above this limit.

plugins:iiop:

plugins:iiop:outgoing_connections:hard_limit sets the maximum number of outgoing (client-side)
connections allowed to IIOP. IIOP refuses new outgoing connections above this limit.

plugins:iiop:outgoing_connections:soft_limit specifies the number of connections at which IIOP
begins closing outgoing (client-side) connections.

• •

• •

• •

• •

• •

• •

Purposes for using I/O callbacks

- 37/72 -

Closing client connections
The ORB first tries to close idle connections in least-recently-used order. If there are no idle
connections, the ORB closes busy connections in least-recently-opened order.

Active connection management effectively remedies file descriptor limits that has constrained past
Orbix applications. If a client is idle for a while and the server ORB reaches its connection limit, it sends
a GIOP CloseConnection message to the client and closes the connection. Later, the same client can
transparently reestablish its connection, to send a request without throwing a CORBA exception.

In Orbix 3, Orbix tended to throw a COMM_FAILURE on the first attempt at reconnection; server code
that anticipates this exception should be reevaluated against current functionality.

Default file descriptor limits
Orbix 6.3 is configured to use the largest upper file descriptor limit on each supported operating
system. On UNIX, it is typically possible to rebuild the kernel to obtain a larger number. However, active
connection management should make this unnecessary.

Session Management
Because Orbix 6.3 features a pluggable transport layer, it is not appropriate to relate the duration of a
client session to the opening and closing of TCP/IP connections from clients. This type of session
management, which is typically implemented using I/O callbacks in Orbix 3, has to be migrated to an
alternative model.

Session management in Orbix 6.3
Support for session management in Orbix 6.3 is provided by a lease plug-in. The lease plug-in
implements a scheme for automatically tracking client sessions, based on the idea that a client obtains
a lease from the server for the duration of a client session.

Note

Closing client connections

- 38/72 -

Client migration
Client applications can easily be modified to use session management. Just edit the Orbix 6.3
configuration to make the client load the lease plug-in. No changes to the client source code are
required.

Server migration
On the server side, the following changes are required to use session management in Orbix 6.3:

Edit the Orbix 6.3 configuration to make the server load the lease plug-in.

Modify the server source code so that it uses the lease plug-in to track client sessions.

Further details
See the CORBA Session Management Guide for details of how to program and configure the lease plug-in
for session management.

Demonstration code for the lease plug-in is also provided with the Orbix 6.3 product.

• •

• •

Client migration

- 39/72 -

CORBA Services

Orbix includes several CORBA services, such as the interface repository, the naming service, the notification
service, and the security service. Because these service are based mainly on the CORBA standard, there are not
many changes between Orbix 3 and Orbix 6.3.

Interface Repository

Migration
Migrating source code that uses the Interface Repository (IFR) to Orbix 6.3 is straightforward. Link the
migrated application against the stub code derived from the Orbix 6.3 version of the interface
repository. No further changes should be necessary.

Naming Service

Backward compatibility
The Orbix 6.3’s naming service is backward compatible with Orbix 3.x in two respects:

Source code backward compatibility: source code that is written to use the standard naming service
interfaces can be migrated to Orbix 6.3 without modification.

On-the-wire backward compatibility: Orbix 3.x applications can interoperate with the Orbix 6.3
naming service. If you need to interoperate Orbix 3.x applications, it is recommended that you
recompile the naming stub code from the Orbix 6.3 IDL files.

• •

• •

CORBA Services

- 40/72 -

New interface
Orbix 6.3 adds a new interface, CosNaming::NamingContextExt , which is defined by the CORBA
Interoperable Naming Service specification. This interface adds support for using names in stringified
format.

Load balancing
The naming service load-balancing extensions provided in Orbix 3 are also present in Orbix 6.3. The
Orbix 6.3 load-balancing interfaces are only slightly different from Orbix 3, requiring small
modifications to your source code.

Notification Service
The Orbix 6.3 notification service has undergone significant modifications since the OrbixNotification 3
generation of the notification service.

Many of the changes that impact application migration reflect changes in the CORBA standard and
require minimal changes to legacy OrbixNotification 3 application code.

CORBA Specification Updates
The Orbix 6.3 notification service complies with both the CORBA 2.6 specification and the OMG’s
Notification Service Specification, approved in June of 2000. To achieve compliance with these
specifications several changes were made to the notification services IDL and APIs.

These changes require that any applications that use generation 3 code need to be recompiled and re-
linked, at the very least. Other minor changes might also need to be made to generation 3 code to
accommodate the changes in the APIs. Compiler warnings warn you of most changes that need to be
made.

New interface

- 41/72 -

_bind()
The Orbix 6.3 notification service clients do not use _bind() to contact the notification service. Instead,
clients should call resolve_initial_references("NotificationService") to obtain an object reference to the
notification service. See Replacing the _bind() Function for more information.

Subscription and publication notification
Orbix 6.3 provides notification service clients greater flexibility over how they receive subscription and
publication details from the notification channel. To accomplish this, an input parameter has been
added to obtain_offered_types() and obtain_subscription_types() .

The Orbix 6.3 operation signatures are:

The new parameter is of type ObtainInfoMode which is an enum defined in CosNotifyChannelAdmin as:

Any generation 3 clients that call obtain_offered_types() or obtain_subscription_types() need to add the
parameter. ALL_NOW_UPDATES_OFF mimics generation 3 functionality. For more information on the other
values, see the CORBA Notification Service Guide.

// IDL
CosNotification::EventTypeSeq obtain_subscription_types(
in ObtainInfoMode mode);
CosNotification::EventTypeSeq obtain_offered_types(
in ObtainInfoMode mode);

// IDL
enum ObtainInfoMode
{
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON
};

_bind()

- 42/72 -

Unstructured event clients
Orbix 6.3 introduces unstructured event, any-style, client interfaces into the CosNotifyComm module. This
allows any-style clients to support the enhanced subscription features and it standardizes notification
service client development. Any-style clients developed for OrbixNotification 3 use the interfaces from
CosEventComm .

In addition, the Orbix 6.3 any-style proxy interfaces, defined in CosNotifyChannelAdmin , inherit their client
interfaces directly from CosNotifyComm . In OrbixNotification 3 any-style proxies inherit client interfaces
from CosNotifyComm:NotifyPublish and CosEventComm::PushConsumer .

The connect() operation’s parameter is still an interface defined in CosEventComm .

Not updating legacy code does not generate any compiler errors. However, at runtime any-style clients
using legacy code are not able to contact the notification service.

TimeBase::TimeT
Orbix 6.3 supports the new OMG standard definition of TimeBase::TimeT . In OrbixNotification 3
TimeBase::TimeT is defined as a structure containing two unsigned longs . In Orbix 6.3 it is defined as a
CORBA::ULongLong .

Any generation 3 clients that use the timing features of the service need to be updated to support the
new definition of TimeBase::TimeT . If they are not, the Orbix 6.3 notification service generates mashalling
errors at runtime.

Quality of Service Properties
Orbix 6.3 notification service uses new several new Quality-of-Service (QoS) properties and has
reimplemented others.

Note

Unstructured event clients

- 43/72 -

PacingInterval
PacingInterval is re-implemented as a TimeBase::TimeT in Orbix 6.3 and is specified in units of 10-7
seconds. In Orbix 3 it is a TimeBase:UtcT and is specified in milliseconds.

Orbix 6.3 QoS properties
Table 9 lists the new Orbix 6.3 QoS properties. For more detailed information on Orbix 6.3 QoS
properties, see the CORBA Notification Service Guide.

Table 9 Orbix 6.3 QoS Properties

QoS Property Description

MaxEventsP
erConsumer

Specifies the maximum number of undelivered events that a channel will
queue for a consumer. It is set with a long and is valid for supplier proxies,
consumer admins, and notification channels.

MaxRetries Specifies the maximum number of times a proxy push supplier calls push()
on its consumer before giving up, or the maximum number of times a proxy
pull consumer calls pull() or try_pull() on its supplier before giving
up. It is set with a CORBA::Ulong and is valid for consumer admins and
notification channels.

RetryTimeo
ut

Specifies the amount of time that elapses between attempts by a proxy push
supplier to call push() on its consumer. It is set with a TimeBase::TimeT
and defaults to 1 second.

MaxRetryTi
meout

Sets the ceiling for the calculated value of RetryTimeout . It is set with a T
imeBase::TimeT and defaults to 60 seconds.

RequestTim
eout

Specifies the amount of time a channel object has to perform an operation
on a client. It is set using a TimeBase::TimeT .

PullInterv
al

Specifies the amount of time that elapses between attempts by a proxy pull
consumer to call pull() or try_pull() on its consumer. It is specifies
with a long and defaults to 1 second.

PacingInterval

- 44/72 -

Channel administration properties
Orbix 6.3 has introduced two properties to control the administration of a notification channel. These
properties can only be set on a notification channel. For more information, see the CORBA Notification
Service Guide.

Table 10 describes the new properties.

Table 10 Orbix 6.3 Administration Properties

Configuration/Administration Changes

Centralized configuration
Orbix 6.3 has a centralized configuration mechanism. This means that the notification service is
configured using the standard Orbix 6.3 configuration tools and the information is stored in the
common Orbix 6.3 database.

QoS Property Description

RetryMulti
plier

Specifies the number used to calculate the amount of time between attempts
by a proxy push supplier to call push() on its consumer. It is set with a COR
BA::double and defaults to 1.0.

Property Description

MaxConsum
ers

Specifies the maximum number of consumers that can be connected to a
channel at a given time. It is set using a long and defaults to 0 (unlimited).

MaxSuppli
ers

Specifies the maximum number of suppliers that can be connected to a
channel at a given time. It is set using a long and defaults to 0 (unlimited).

Channel administration properties

- 45/72 -

Starting the notification service
The Orbix 6.3 notification service can be configured to start on system boot, on demand, or from the
command line.

To start the notification service from the command line use:

The -background flag is optional and starts the notification service to run as a background process.

Managing the notification service
The Orbix 6.3 notification service can be managed in one of two ways.

The Orbix 6.3 itadmin tool. For more information, see the CORBA Administrator’s Guide.

The Orbix 6.3 notification console, itnotifyconsole . For more information on using the console,
see the CORBA Notification Service Guide.

Configuration variables
The Orbix 6.3 notification service uses a new set of configuration variables. See the CORBA
Administrator’s Guide for a detailed listing of the new configuration variables.

Deprecated Features
Orbix 6.3 has deprecated some proprietary features from OrbixNotification 3. Any notification clients
that make use of these features need to be updated.

HealthCheck
The OrbixNotification 3 HealthCheck feature allows notification channels, and optionally notification
clients, to monitor their connections. In Orbix 6.3 this feature is no longer supported.

Code Modification

To find code using the HealthCheck feature search for the following strings:

DO_HEALTHCHECK

itnotify run [-backround]

• •

• •

• •

Starting the notification service

- 46/72 -

DO_GL_HEALTHCHECK

initializeHealthCheck

startHealthCheck

stopHealthCheck

HealthCheck.h

This code must be removed before the clients can be compiled using the Orbix 6.3 libraries.

Simulating HealthCheck in Orbix 6.3

HealthCheck-like functionality is implemented in Orbix 6.3, using the MaxRetries QoS property. If a
ProxyPushSupplier or a ProxyPullConsumer fails to communicate with its associated client in
MaxRetries attempts, the notification channel forces a disconnect and destroys all of the resources
used to support the client.

String events
Orbix 6.3 no longer supports string events. All generation 3 clients using string events must be
rewritten to use a valid event type.

SSL/TLS Toolkit
This section describes how to migrate from OrbixSSL or Orbix 3.3 security to the Orbix 6.3 SSL/TLS
security service. Orbix 6.3 SSL/TLS has a very similar set of features to Orbix 3.3 security and it supports
interoperability with legacy Orbix applications (see SSL/TLS Toolkit Interoperability).

The programming interfaces and administration of security have, however, changed significantly
between Orbix 3.3 and Orbix 6.3. This section provides an overview of these changes.

Changes to the Programming Interfaces

• •

• •

• •

• •

• •

String events

- 47/72 -

Support for security level 2
The APIs for Orbix 6.3 SSL/TLS are based on the CORBA security level 2 interfaces. The programming
interface is, therefore, based on the following standard IDL modules:

Security

SecurityLevel1

SecurityLevel2

Orbix 6.3 SSL/TLS does not implement every interface in the SecurityLevel1 and SecurityLevel2
modules. The CORBA security API is a mechanism-neutral API that can be layered over a variety
of security toolkits. Some of the standard interfaces are more appropriately implemented by a
higher level security layer.

CORBA policy-based API
In contrast to OrbixSSL 3.x, the Orbix 6.3 SSL/TLS product supports a CORBA policy-based approach to
setting security properties. This represents a significant enhancement over OrbixSSL 3.x, because the
policy-based approach lets you set properties at a finer granularity than before.

For example, client policies can be set at the following levels:

ORB

Thread

Object reference

Server policies can be set at the following levels:

ORB

POA

• •

• •

• •

Note

• •

• •

• •

• •

• •

Support for security level 2

- 48/72 -

No support for certificate revocation lists
Orbix 6.3 SSL/TLS has no support for certificate revocation lists (CRL). Therefore, the following OrbixSSL
3.x interfaces have no Orbix 6.3 equivalent:

If you require certificate revocation in Orbix 6.3, you can programmatically implement any required
revocation checks by registering a certificate validator policy, IT_TLS_API::CertValidatorPolicy .

Mechanism-specific API
Orbix 6.3 SSL/TLS provides a number of value-added APIs that deal with the mechanism-specific
aspects of the SSL/TLS toolkit. The extra IDL interfaces provide the facility to parse X.509 certificates
and set Orbix-specific security policies.

The mechanism-specific API is defined by the following IDL modules:

IT_Certificate

IT_TLS

IT_TLS_API

Migrating OrbixSSL 3.x classes and data types
When migrating to Orbix 6.3, most of the old C++ and Java classes from OrbixSSL 3.x are replaced by
equivalent IDL interfaces. Table 11 shows which OrbixSSL classes and data types to replace by the
equivalent Orbix 6.3 SSL/TLS types.

Table 11 Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS

IT_CRL_List
IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

• •

• •

• •

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent

IT_AVA IT_Certificate::AVA

IT_AVAList IT_Certificate::AVAList

IT_CertError IT_Certificate::CertError

IT_CRL_List No equivalent

No support for certificate revocation lists

- 49/72 -

Configuration and Administration

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent

IT_Extension IT_Certificate::Extension

IT_ExtensionLi
st

IT_Certificate::ExtensionList

IT_OID IT_Certificate::ASN_OID

IT_OIDTag IT_Certificate::OIDTag

IT_SSL Equivalent functionality provided by the Security ,
SecurityLevel1 , SecurityLevel2 , and IT_TLS_API IDL

modules.

IT_UTCTime IT_Certificate::UTCTime

IT_ValidateX509
CertCB

Use a combination of the IT_TLS::CertValidator interface and the
IT_TLS_API::CertValidatorPolicy interface.

IT_X509_CRL_In
fo

No equivalent

IT_X509_Revoked No equivalent

IT_X509_Revoke
dList

No equivalent

IT_X509Cert IT_Certificate::X509Cert

IT_X509CertCha
in

IT_Certificate::X509CertChain

Configuration and Administration

- 50/72 -

Enabling security in Orbix 6.3
Security in Orbix 6.3 is enabled by configuring an application to load the security plug-in, iiop_tls .This
is a relatively simple procedure involving just a few changes in the Orbix 6.3 configuration file; although
advanced applications might also need to use security APIs.

Because application security is controlled by editing the configuration file, you must ensure that access
to the configuration file is restricted.

External configuration granularity
The external configuration granularity refers to the effective scope of security configuration settings
that are made in a configuration file. The external configuration granularity is mapped as follows:

In OrbixSSL 3.x, it is identified with a process.

In Orbix 6.3 SSL/TLS, it is identified with a single ORB instance.

KDM support
The key distribution management (KDM) is a framework that enables automatic activation of secure
servers. Both OrbixSSL 3.x and Orbix 6.3 SSL/TLS provide a KDM and the functionality is similar in each.

There is one significant difference between the OrbixSSL 3.x KDM and the Orbix 6.3 KDM. Protection
against server impostors implemented differently in the two products:

In OrbixSSL 3.x, a binary checksum is calculated from the contents of the server executable file.
The server is launched only if the calculated checksum matches the cached value.

In Orbix 6.3 SSL/TLS, the node daemon relies on the server executables being stored in a secured
directory to prevent tampering. A different sort of checksum is calculated (based on the contents
of the server activation record) to ensure that the node daemon cannot be fooled into launching a
server from an insecure directory.

• •

• •

• •

• •

Enabling security in Orbix 6.3

- 51/72 -

No CRL support
Orbix 6.3 SSL/TLS does not support certificate revocation lists. Hence, there are no equivalents for the
corresponding OrbixSSL 3.x configuration variables. See also No support for certificate revocation lists.

Migrating OrbixSSL 3.x configuration
Most of the OrbixSSL 3.x configuration variables have direct equivalents in Orbix 6.3, as shown in Table
12. In addition, many of the properties listed in Table 12 can also be set programmatically in Orbix 6.3.

Table 12 Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent

IT_CA_LIST_FILE policies:trusted_ca_list_policy

IT_AUTHENTICATE_CLIENTS policies:target_secure_invocation_pol
icy

IT_SERVERS_MUST_AUTHENTICATE_CLI
ENTS.

policies:target_secure_invocation_pol
icy

IT_INVOCATION_POLICY policies:target_secure_invocation_pol
icy
policies:client_secure_invocation_pol
icy

IT_SECURE_REMOTE_INTERFACES IT_S
ECURE_SERVERS
IT_INSECURE_REMOTE_INTERFACES
IT_INSECURE_SERVERS

These properties cannot currently be specified in
the Orbix 6.3 configuration file.

You can, however, set the properties
programmatically using the following interfaces:

SecurityLevel2::EstablishTrustPolicy
SecurityLevel2::QOPPolicy

IT_CIPHERSUITES policies:mechanism_policy

IT_ALLOWED_CIPHERSUITES No equivalent in Orbix 6.3.

IT_CERTIFICATE_FILE IT_CERTIFICA
TE_PATH

Equivalent functionality provided by:

principal_sponsor:auth_method_data

IT_BIDIRECTIONAL_IIOP_BY_DEFAULT No equivalent in Orbix 6.3.

No CRL support

- 52/72 -

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent

IT_CACHE_OPTIONS policies:session_caching_policy plugi
ns:atli_tls_tcp:session_cache_validit
y_period
plugins:atli_tls_tcp:session_cache_si
ze

IT_DEFAULT_MAX_CHAIN_DEPTH policies:max_chain_length

IT_MAX_ALLOWED_CHAIN_DEPTH. No equivalent in Orbix 6.3.

IT_DAEMON_POLICY IT_DAEMON_UNRES
TRICTED_METHODS IT_DAEMON_AUTHEN
TICATES_CLIENTS IT_ORBIX_BIN_SER
VER_POLICY

In Orbix 6.3, the services are configured using
standard Orbix 6.3 configuration variables such
as the secure invocation policies.

IT_DAEMON_UNRESTRICTED_METHODS No equivalent in Orbix 6.3.

There is currently no concept of service
authorization in Orbix 6.3.

IT_FILTER_BAD_CONNECTS_BY_DEFAU
LT

Not needed in Orbix 6.3.

IT_ENABLE_DEFAULT_CERT Not needed in Orbix 6.3.

There is no need for this option because Orbix
6.3 supports security unaware applications.

IT_DISABLE_SSL Not needed in Orbix 6.3.

Configure your application not to load the
security plug-in.

IT_KDM_CLIENT_COMMON_NAMES IT_KD
M_ENABLED IT_KDM_PIPES_ENABLED
IT_KDM_REPOSITORY IT_KDM_SERVER_
PORT

Equivalent functionality is provided by the KDM
in Orbix 6.3.

See the CORBA SSL/TLS Guide.

Migrating OrbixSSL 3.x configuration

- 53/72 -

Migrating Certificate and Private Key Files
In OrbixSSL 3.x, a variety of certificate and private key formats are used in different parts of the
product. Orbix 6.3 SSL/TLS is based on a unified certificate file format, the industry standard PKCS#12
format, and the PEM format for storing trusted CA certificates. This subsection describes how to
convert each of the legacy formats to PKCS#12.

Certificate file formats
The following certificate file formats are used by OrbixSSL 3.x and Orbix 6.3 SSL/TLS:

Privacy enhanced mail (PEM) format—A PEM file typically contains a single certificate. OrbixSSL 3.x
can use this format to hold peer certificates. Orbix 6.3 SSL/TLS cannot use this format for peer
certificates.

PKCS#12 format—A PKCS#12 file contains a peer certificate chain, concatenated with a private key
at the end. Both OrbixSSL 3.x and Orbix 6.3 SSL/TLS can use this format for peer certificates.

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent

IT_CHECKSUMS_ENABLED
IT_CHECKSUM_REPOSITORY

No equivalent in Orbix 6.3.

There is no binary checksum functionality in
Orbix 6.3. Orbix 6.3 SSL/TLS relies on storing
server executables in secured directories.

IT_CRL_ENABLED IT_CRL_REPOSITORY
IT_CRL_UPDATE_INTERVAL

No equivalent in Orbix 6.3.

There is no CRL functionality in Orbix 6.3.

• •

• •

Migrating Certificate and Private Key Files

- 54/72 -

Migrating certificate files
You can migrate OrbixSSL 3.x certificate files to Orbix 6.3 SSL/TLS as shown in Table 13.

Table 13 Converting Certificate Files

Private key file formats
The following private key file formats are used by OrbixSSL 3.x and Orbix 6.3 SSL/TLS:

PKCS#1 format—An unencrypted private key format. Orbix 6.3 SSL/TLS only supports this format
programmatically.

PKCS#8 format—An encrypted private key format. Orbix 6.3 SSL/TLS only supports this format
programmatically.

OpenSSL proprietary private key format—A proprietary encrypted format generated by the OpenSSL
toolkit utilities.

Proprietary KEYENC format (deprecated)—An encrypted private key format generated by the
OrbixSSL 3.x keyenc utility. This format was formerly used by OrbixSSL 3.x Java applications and is
now deprecated.

Migrating key files
You can migrate OrbixSSL 3.x private key files to Orbix 6.3 SSL/TLS as shown in Table 14.

Table 14 Converting Private Key Files

Source OrbixSSL
3.x File Format

Target Orbix 6.3 File
SSL/TLS Format

How to Convert

PEM format PKCS#12 format Use the openssl pkcs12 utility, specifying
the complete peer cert chain, private key and
pass phrase.

PKCS#12 format PKCS#12 format No conversion needed.

• •

• •

• •

• •

Migrating certificate files

- 55/72 -

Trusted CA certificate lists
In both OrbixSSL 3.x and Orbix 6.3 SSL/TLS, a trusted CA certificate list file consists of a concatenated
list of PEM certificates.

The Orbix 6.3 SSL/TLS Java Edition product currently does not accept any extraneous text (comments
and so on) in a trusted CA list file. The extra text must therefore be removed if you are using Orbix
6.3 SSL/TLS Java Edition.

Source OrbixSSL 3.x
File Format

Target Orbix 6.3
SSL/TLS File
Format

How to Convert

PKCS#1 format PKCS#12 format Use the openssl pkcs12 utility,
specifying the complete peer cert chain,
private key, and pass phrase.

OpenSSL proprietary
encrypted private key
format

PKCS#12 format Convert as follows:

1. Decrypt using the openssl rsa
command.

2. Encrypt as PKCS#12 using the
openssl pkcs12 utility, specifying the

complete peer cert chain, private key, and
pass phrase.

Proprietary keyenc
format

PKCS#12 format Convert as follows:

1. Decrypt using the keyenc -d
command:

2. Encrypt as PKCS#12 using the
openssl pkcs12 utility, specifying the

complete peer cert chain, private key, and
pass phrase.

Note

Trusted CA certificate lists

- 56/72 -

Interoperability
In a mixed system containing Orbix 3.3 Java Edition and Orbix 6.3 SSL/TLS, the PKCS#12 format can be
used for peer certificates because Orbix 3.3 Java Edition also accepts the PKCS#12 format.

Interoperability

- 57/72 -

Administration

The administration of Orbix 6.3 has changed significantly from Orbix 3. This chapter provides a brief overview
of the main changes in Orbix administration.

Orbix Daemons

Orbix 6.3 daemons
To provide greater flexibility and scaling, Orbix 6.3 replaces the Orbix 3 daemon, orbixd , with two
daemons:

The locator daemon, itlocator , helps clients to find Orbix 6.3 servers.

The node daemon, itnode_daemon , launches dormant Orbix 6.3 servers in response to a client's
request for service.

POA Names

Administering POA Names
In Orbix 3, CORBA objects were associated with a named server. In Orbix 6.3, CORBA objects are
associated with named POAs. This means that Orbix 6.3 object references include an embedded POA
name instead of a server name.

The Orbix 6.3 locator daemon locates the CORBA object using the object reference’s embedded POA
name. Hence, POA names play a major role in configuring the Orbix 6.3 locator daemon.

• •

• •

Administration

- 58/72 -

Command-Line Administration Tools
Orbix 6.3 unifies many of Orbix 3’s command-line tools under a single utility, itadmin . Also, some of the
Orbix 3 command line-tools have been deprecated.

General command-line tools
Table 15 compares the Orbix 3 general purpose command-line tools with the Orbix 6.3’s tools.

Table 15 Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools

Description Orbix 3 Orbix 6.3

Show implementation repository
(IMR) entry.

catit itadmin process show

Security commands. chownit,
chmodit

No equivalent

Show configuration. dumpconfig itadmin config dump

Associate hosts into groups. grouphosts No equivalent

C++ IDL compiler. idl idl

CodeGen toolkit. idlgen idlgen

Java IDL compiler. idlj idl

Interface Repository (IFR). ifr itifr

Kill a server process. killit itadmin process stop

List server. lsit itadmin process list

Create a sub-directory in the IMR. mkdirit No equivalent

Orbix daemon. orbixd itlocator and itnode_d
aemon

Ping the Orbix daemon. pingit No equivalent

List active servers. psit itadmin process list -
active

Add a definition to the IFR. putidl idl -R

Command-Line Administration Tools

- 59/72 -

Naming Service Command Line Tools
Table 16 compares the Orbix 3 naming service command-line tools with the Orbix 6.3 tools.

Table 16 Comparison of Orbix 3 and Orbix 6.3 Naming Service Command-Line Tools

Description Orbix 3 Orbix 6.3

Register a server in the IMR. putit itadmin process create

Show an IFR definition. readifr itadmin ifr show

Remove a sub-directory from the
IMR.

rmdirit No equivalent

Unregister a server from the IMR. rmit itadmin process remove

Remove a definition from the IFR. rmidl itadmin ifr remove

Associate servers with groups. servergroups No equivalent

Associate hosts with servers. serverhosts No equivalent

Description Orbix 3 Orbix 6.3

Add a member to an object group. add_member itadmin nsog add_member

Print the IOR of an object group. cat_group No equivalent

Print the IOR of an object group’s
member.

cat_member itadmin nsog show_member

Print the IOR of a given name. catns itadmin ns resolve

Remove an object group. del_group itadmin nsog remove

Remove a member from an object
group.

del_member itadmin nsog
remove_member

List all object groups. list_groups itadmin nsog list

List the members of an object group. list_members itadmin nsog list_member

List the bindings in a context. lsns itadmin ns list

Create an object group. new_group itadmin nsog create

Naming Service Command Line Tools

- 60/72 -

Activation Modes

Orbix 3
Orbix 3 process activation modes, shared, unshared, per-method, per-client-pid, and persistent are used
for a variety of reasons. For example, they are used to achieve multi-threaded behavior in a single-
threaded environment, to increase server reliability, and so on. The two most popular modes are:

Shared mode—which enables all clients to communicate with the same server process.

Per-client-pid mode—which enforces a 1-1 relationship between client process and server process,
is sometimes used to maximize server availability.

Orbix 6.3
Orbix 6.3 provides the following activation modes:

on_demand —the process only activates when required.

per_client —a new process is activated for each client.

Orbix 6.3 moved CORBA object association from the server to the POA. Because of this, all Orbix
6.3 processes are shared.

Description Orbix 3 Orbix 6.3

Create an unbound context. newncns itadmin ns newnc

Select a member of an object group. pick_member No equivalent

Bind a name to a context. putncns itadmin ns bind -context

Create a bound context. putnewncns itadmin ns newnc

Bind a name to an object. putns itadmin ns bind -object

Rebind a name to a context. reputncns itadmin ns bind -context

Rebind a name to an object. reputns itadmin ns bind -object

Remove a binding. rmns itadmin ns remove

• •

• •

• •

• •

Activation Modes

- 61/72 -

Migration
Migration of source code should be straightforward, because the choice of activation mode has almost
no impact on BOA or POA-based server code.

Load balancing
The additional activation modes provided by Orbix 3 are typically used to achieve some form of load-
balancing that is transparent to the client. The Enterprise Edition of Orbix 6.3 includes transparent
locator-based load balancing over a group of replica POAs. This answers the needs currently addressed
by Orbix 3 activation modes.

Migration

- 62/72 -

Configuring for Interoperability

This section describes the main configuration changes that must be made to facilitate interoperability
between Orbix 3.x and Orbix 6.3 applications.

Interoperability Overview
This Interoperability Guide describes how to configure applications that use a mixture of Orbix products
and any feature limitations that apply to such interoperating systems.

Orbix 6.3 interoperability
Because Orbix 6.3 is binary-compatible with Orbix E2A ASP v6.0, Orbix 6.3 has the same interoperability
characteristics as ASP 6.0.

Orbix E2A ASP v6.0 interoperability
The following product releases have been tested for interoperability with Orbix E2A ASP v6.0:

Orbix 3.3.4 C++ Edition

Orbix 3.3.4 Java Edition

Orbix E2A ASP v5.1 interoperability
The following product releases have been tested for interoperability with Orbix E2A ASP v5.1:

Orbix 3.0.1-82

OrbixWeb 3.2-15

Orbix 3.3.2 C++ Edition

Orbix 3.3.2 Java Edition

• •

• •

• •

• •

• •

• •

Configuring for Interoperability

- 63/72 -

The _bind() function
Orbix 6.3 does not support the _bind() function for establishing connections between clients and
servers. Neither Orbix 3.0.1-82, OrbixWeb 3.2-15, nor Orbix 3.3 clients can use the _bind() function to
establish a connection to an Orbix 6.3 server. You must use a CORBA Naming Service instead. For
example, you could use either the Orbix 3.3 naming service or the Orbix 6.3 naming service.

IDL feature support
Orbix 6.3 supports a larger set of IDL data types and features than Orbix 3.3. When developing IDL
interfaces for use with Orbix 6.3 and other products you need to restrict your IDL to a subset that is
supported by all of the interoperating products.

In particular, the following describe IDL features that are subject to limitations or require special
configuration:

Using the #pragma Prefix

Use of #pragma ID in IDL

Fixed Data Type and Interoperability

Use of wchar and wstring

C++ Keywords as Operation Names

Changed exception semantics
The semantics of some CORBA system exceptions are different in Orbix 6.3, as compared with Orbix
3.0.1-82, OrbixWeb 3.2-15, or Orbix 3.3. If you have existing code written for Orbix 3.0.1-82, OrbixWeb
3.2-15, or Orbix 3.3, you should read the following:

Orbix 3.3 C++ Edition—System Exceptions

Orbix 3.3 Java Edition—System Exceptions

These sections describe how to configure your legacy application so that it is insulated from any
differences in exception semantics.

• •

• •

• •

• •

• •

• •

• •

The _bind() function

- 64/72 -

Bidirectional GIOP
Orbix 6.3 introduces support for bidirectional GIOP, based on an OMG standard. Previously (Orbix E2A
ASP v5.x and v6.0), bidirectional GIOP was not supported, or was not based on an OMG standard (Orbix
3.x and earlier).

See Callbacks and Bidirectional GIOP for details.

Other affected features
If you want to use the Orbix 6.3 interoperable naming service as the common naming service for your
interoperating system, see The Orbix 6.3 Interoperable Naming Service.

The rest of this guide describe miscellaneous issues that might affect interoperability in a mixed
product environment.

Launch and Invoke Rights
When an Orbix 6.3 client attempts to open a connection to an Orbix 3.0.1-82, OrbixWeb 3.2-15, or Orbix
3.3 server you must make sure that the system is configured such that the Orbix 6.3 client has launch
and invoke rights.

Role of launch and invoke rights
In Orbix 3.3 the orbixd daemon process is responsible both for launching servers and for redirecting
client requests to servers. These two functions are governed by launch rights and invoke rights,
respectively.

Launch and invoke rights on Orbix 3.3 servers are based on the idea that the client userID is transmitted
along with request messages. The field of the request message that contains the user ID is known as
the Principal of the invocation.

If launch and invoke rights are not configured correctly, the Orbix 6.3 client raises a
CORBA::OBJECT_NOT_EXIST system exception.

Bidirectional GIOP

- 65/72 -

Setting launch rights
The launch rights associated with an Orbix 3.3 server specify which users are allowed to cause
automatic launching of the server. Launch rights in Orbix 3.3 are granted with the following form of
chmodit :

Setting invoke rights
The invoke rights associated with an Orbix 3.3 server are used to determine which users are allowed to
invoke on the server. Invoke rights are granted using:

Orbix 6.3 and Orbix 3.3
The configuration must be altered for an Orbix 6.3 client invoking on an Orbix 3.3 server. There are two
possible approaches to fix the launch and invoke rights:

Alter the configuration of the Orbix 6.3 Client.

Relax the security on the orbixd daemon.

Alter the configuration of the Orbix 6.3 Client
Three configuration variables must be made (or changed) in the Orbix 6.3 configuration file:

The policies:giop:interop_policy:send_locate_request option controls whether Orbix 6.3 sends
LocateRequest messages before sending initial Request messages. This option must be set to false
because LocateRequest messages do not contain a Principal field.

chmodit l+*userID ServerName*

chmodit i+*userID ServerName*

• •

• •

Orbix 6.3 Configuration File
policies:giop:interop_policy:send_locate_request = "false";
policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =
"true";

Setting launch rights

- 66/72 -

The policies:giop:interop_policy:send_principal option controls whether Orbix 6.3 sends Principal
information containing the current user name in GIOP 1.0 and GIOP 1.1 requests. The user name is
matched against the launch and invoke rights listed in the orbixd daemon, to determine the
permissions of the Orbix 6.3 client.

Relax the security on the orbixd daemon
Alternatively, you can relax the security on the orbixd daemon so that all clients have launch and invoke
rights. For example, use the chmodit command line utility to change the launch and invoke rights:

These commands give permission for any client to invoke or launch the server ServerName. Permissions
are granted even if the Principal value is left blank in the incoming requests.

GIOP Versions

GIOP version of a connection
The GIOP version used by a client-server connection is determined by the client. When a client is about
to open a connection to a CORBA object, the client examines the version information in the object’s
IOR:

If the GIOP version in the IOR is greater than or equal to the default GIOP version of the client, the
client initiates a connection using the client’s default GIOP version.

Otherwise, the client initiates a connection using the GIOP version in the IOR.

Effect of GIOP version
The GIOP version of a connection is important, because some CORBA features are not supported in
early GIOP versions. Table 17 shows the minimum GIOP version required for some CORBA features,
according to the CORBA specification.

Table 17 CORBA-Specified Minimum GIOP Versions

chmodit l+all *ServerName*
chmodit i+all *ServerName*

• •

• •

Relax the security on the orbixd daemon

- 67/72 -

Orbix-specific minimum GIOP versions
Notwithstanding the CORBA-specified minimum GIOP versions, Orbix allows some features to be used
at a lower GIOP version (in some cases requiring specific configuration variables to be set). Table 18
shows the Orbix-specific minimum GIOP versions.

Table 18 Orbix-Specific Minimum GIOP Versions

For more details on these CORBA features, see these sections:

Fixed Data Type and Interoperability.

Use of wchar and wstring.

Introduction to Codeset Negotiation.

CORBA Feature CORBA-Specified Minimum GIOP Version

fixed type 1.1

wchar and wstring types 1.1

codeset negotiation (Orbix 6.3 only) 1.1

CORBA Feature Orbix-Specific

Minimum GIOP Version

fixed type 1.0

wchar and wstring types 1.0

codeset negotiation (Orbix 6.3 only) 1.1

• •

• •

• •

Orbix-specific minimum GIOP versions

- 68/72 -

Table of default GIOP versions
Table 19 shows the default GIOP versions for different Orbix clients when opening a connection to a
server.

Table 19 Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version

Orbix 3.0.1-82 1.0

OrbixWeb 3.2-15 1.0

Orbix 3.3 C++ Edition 1.1

Orbix 3.3 Java Edition 1.0

Orbix 6.3 1.1

Table of default GIOP versions

- 69/72 -

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 70/72 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 71/72 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 72/72 -

	Migrating from Orbix 3.3 to 6.3
	V6.3.14

	Preface
	Audience
	Typographical conventions
	Keying conventions

	Introduction
	Advantages of Orbix 6.3
	CORBA 2.6-compliant features
	Unique features

	Migration Resources
	Overview of resources

	Migration Options
	Migrating to Orbix 6.3
	Client side
	Server side
	Proprietary features
	Further details

	Mixed Deployment
	On-the-wire interoperability
	Further details

	Migrating to Orbix 6.3
	IDL Migration
	The context Clause
	IDL Syntax
	Migrating to Orbix 6

	The opaque Type
	Migrating to Orbix 6.3

	The Principal Type
	Principal IDL type
	Interoperability

	Client Migration
	Replacing the _bind() Function
	CORBA Naming Service
	CORBA Trader Service
	Object-to-string conversion
	corbaloc URL
	ORB::resolve_initial_references()

	Callback Objects
	POA policies for callback objects

	IDL-to-C++ Mapping
	The CORBA::Any Type
	The CORBA::Environment Parameter

	System Exception Semantics
	System exceptions
	Minor codes

	Dynamic Invocation Interface
	Proprietary dynamic invocation interface

	Server Migration
	Function Signatures
	Changes to the signature

	Object IDs versus Markers
	C++ conversion functions
	Java conversion functions

	CORBA Objects versus Servant Objects
	Orbix 3
	Orbix 6.3

	BOA to POA Migration
	Creating an Object Adapter
	Creating a BOA in Orbix 3.x
	Creating a POA in Orbix 6.3
	Defining an Implementation Class
	The inheritance approach
	The tie approach
	Creating and Activating a CORBA Object
	Orbix 3
	Orbix 6.3

	Migrating Proprietary Orbix 3 Features
	Orbix 3 Locator
	High availability
	The CORBA Naming Service
	The CORBA Initialization Service

	Filters
	Equivalents
	Request Logging
	Using portable interceptors
	Piggybacking Data on a Request
	Piggybacking in Orbix 3
	Piggybacking in Orbix 6.3
	Multi-Threaded Request Processing
	Orbix 3
	Orbix 6.3
	Orbix 6.3 request processing extensions
	Accessing the Client's TCP/IP Details
	Recommendations for Orbix 6.3
	Security Using an Authentication Filter
	Recommendations for Orbix 6.3

	Loaders
	Orbix 3 loader
	Servant manager
	Servant activator
	Servant locator

	Smart Proxies
	Orbix 3
	Orbix 6.3
	Replacing smart proxies
	Fault tolerance
	Logging
	Caching

	Transformers
	Orbix 3
	Orbix 6.3

	I/O Callbacks
	Purposes for using I/O callbacks
	Connection Management
	Active connection management
	ACM configuration variables
	Closing client connections
	Default file descriptor limits
	Session Management
	Session management in Orbix 6.3
	Client migration
	Server migration
	Further details

	CORBA Services
	Interface Repository
	Migration

	Naming Service
	Backward compatibility
	New interface
	Load balancing

	Notification Service
	CORBA Specification Updates
	_bind()
	Subscription and publication notification
	Unstructured event clients
	TimeBase::TimeT
	Quality of Service Properties
	PacingInterval
	Orbix 6.3 QoS properties
	Channel administration properties
	Configuration/Administration Changes
	Centralized configuration
	Starting the notification service
	Managing the notification service
	Configuration variables
	Deprecated Features
	HealthCheck
	String events

	SSL/TLS Toolkit
	Changes to the Programming Interfaces
	Support for security level 2
	CORBA policy-based API
	No support for certificate revocation lists
	Mechanism-specific API
	Migrating OrbixSSL 3.x classes and data types
	Configuration and Administration
	Enabling security in Orbix 6.3
	External configuration granularity
	KDM support
	No CRL support
	Migrating OrbixSSL 3.x configuration
	Migrating Certificate and Private Key Files
	Certificate file formats
	Migrating certificate files
	Private key file formats
	Migrating key files
	Trusted CA certificate lists
	Interoperability

	Administration
	Orbix Daemons
	Orbix 6.3 daemons

	POA Names
	Administering POA Names

	Command-Line Administration Tools
	General command-line tools
	Naming Service Command Line Tools

	Activation Modes
	Orbix 3
	Orbix 6.3
	Migration
	Load balancing

	Configuring for Interoperability
	Interoperability Overview
	Orbix 6.3 interoperability
	Orbix E2A ASP v6.0 interoperability
	Orbix E2A ASP v5.1 interoperability
	The _bind() function
	IDL feature support
	Changed exception semantics
	Bidirectional GIOP
	Other affected features

	Launch and Invoke Rights
	Role of launch and invoke rights
	Setting launch rights
	Setting invoke rights
	Orbix 6.3 and Orbix 3.3
	Alter the configuration of the Orbix 6.3 Client
	Relax the security on the orbixd daemon

	GIOP Versions
	GIOP version of a connection
	Effect of GIOP version
	Orbix-specific minimum GIOP versions
	Table of default GIOP versions

	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

