
Orbix OTS Programming Reference Java
V6.3.14

Table of Contents

11Preface

11Audience

11Typographical Conventions

12Keying Conventions

13Transaction Service

13About Transactions

13What is a transaction?

13Transaction support in Orbix

14Example

14Properties of transactions

15Transaction Managers

15Purpose of a Transaction Manager

15Two-phase commit protocol

16One-phase-commit protocol

17OMG OTS and J2EE JTA Interfaces

17Transaction Interfaces

17Purpose

18Transaction Demarcation

18Transaction Propagation

19Resource Manager Integration

19Transaction Management

19OTS Interfaces

19Supported OTS Interfaces

20OTS Transaction Modes

21J2EE JTA Interfaces

21JTA Interfaces

21Integration with resource managers

Table of Contents

- 2/131 -

22Integration with JDBC

23Getting Started with Transactions

23Application Overview

23Funds transfer application

24Interface definition

24TransactionalObject interface deprecated

24Transferring funds

25Completing the application

25Transaction Demarcation

25Demarcation using OTS current object

26Obtain a reference to the OTS current object from the ORB

26Create a new transaction

27Perform the funds transfer

27Complete the transaction by either committing it or rolling it back

28Transaction Propagation and POA Policies

28Propagating the transaction

28POA Policies

29OTSPolicy values

30JTA Resource Manager Integration

30Process of using a JTA resource manager

30Wrapping the DataSource

31Using JDBC within a OTS/JTA transaction

32Application-Specific Resources

32Resource interface operations

33Implementing resource objects

33Configuration Issues

33Issues

33Loading the OTS plug-in

34Transaction Demarcation and Control

34The OTS Current Object

34Current Interface

Table of Contents

- 3/131 -

35Threads and transactions

36Getting a Reference to the OTS Current Object

36Creating Transactions

37Committing the Current Transaction

38Rolling Back the Current Transaction

39Nested Transactions

40Timeouts

40Suspending and Resuming Transactions

41Miscellaneous Operations

41The JTA Interfaces

41Use of UserTransaction and TransactionManager

41UserTransaction Interface

42Getting a Reference to the UserTransaction Object

43Creating a Transaction

44Committing the current Transaction

44Rolling Back the Current Transaction

45Timeouts

45Direct Transaction Demarcation

45Using the transaction factory to create transactions

45Example

46Example of a commit

47Propagation and Transaction Policies

47Implicit Propagation Policies

47Implicit and Explicit Propagation

47Policies for implicit propagation

48Shared and Unshared Transactions

48InvocationPolicy transaction models

48Shared model

48Unshared model

49Policy Meanings

49The three standard OTSPolicy values

Table of Contents

- 4/131 -

49The two NonTxTargetPolicy values

50Setting the policies

50The three InvocationPolicy values

51Steps to create an object with an OTSPolicy

51Example

52Example Use of a NonTxTargetPolicy

52Steps to use a NonTxTargetPolicy

53Example

53Specifying the default NonTxTargetPolicy

54Use of the ADAPTS OTSPolicy

54Using the ADAPTS OTSPolicy

54Example

55Orbix-Specific OTSPolicies

55The two proprietary OTSPolicy values

56Automatic Transactions

56Just-In-Time Transaction Creation

57Enabling JIT Transaction Creation

58Migrating from TransactionPolicies

58Mapping from TransactionPolicy values

59Combining Policy Types

59Explicit Propagation

59Altering the IDL to propagate explicitly

60Example

61Using the Java Transaction API

61JTA Features

61What is JTA

61Features of the JTA

62JTA API Overview

62UserTransaction

62TransactionManager

63Transaction

Table of Contents

- 5/131 -

63XAResource

63Synchronization

63Managing Transactions and Resources

63Enlisting transactional resources

64Delisting transactional resources

64Transaction manager interactions

64DataSources

65Managing transactional resources in Orbix

65Example

66Implementing a client with Orbix JTA and OTS

68DataSource Configuration

68Configuring JNDI

68Retrieving a reference to TransactionManager

69Retrieving a reference via JNDI

69Retrieving a reference using resolve_initial_references()

70Using a standard DataSource

71JTA Configuration

71Specifying plug-ins

72Registering a persistent POA

73Transaction Management

73Synchronization Objects

73Synchronization interface

73before_completion()

74after_completion()

74register_synchronization()

75Transaction Identity Operations

75Coordinator interface identity operations

Table of Contents

- 6/131 -

76Maintaining information in individual transactions

76Transaction Status

76Coordinator interface status operations

78Transaction Relationships

78Coordinator interface relationship operations

79Example

79Recreating Transactions

79TransactionFactory interface

80Example

82Writing Recoverable Resources

82The Resource Interface

82Resource interface transaction operations

83Overview of the use of resource objects

85Creating and Registering Resource Objects

85Implementing servants for resource objects

86Creating resource objects

87Tracking resource objects

87Registering resource objects

88Resource Protocols

88Protocols supported by resource objects

89Transaction Rollbacks

89The 2-Phase-Commit Protocol

91Read-Only Resources

91The 1-Phase-Commit Protocol

92Heuristic Outcomes

93Failure and Recovery

94Failure of the Resource

94Failure of the Transaction Coordinator

96Responsibilities and Lifecycle of a Resource Object

96prepare()

97commit()

Table of Contents

- 7/131 -

98rollback()

99commit_one_phase()

99forget()

100Resource Object Checklist

101Interoperability

101Use of InvocationPolicies

101Deprecated policies

102Use of the TransactionalObject Interface

102Enabling support for the TransactionalObject interface

103Interoperability with Orbix 3 OTS Applications

103Orbix 3 OTS Interoperability

104Using otstf as transaction manager

104Summary

105Using the Orbix 3 otstf with Orbix Applications

105Using Orbix 3 otstf transaction manager

106OTS Plug-Ins and Deployment Options

106OTS Plug-ins

106OTS Lite

106OTS Encina

107Features in OTS

108The OTS Plug-In

108Purpose of the OTS plug-in

108Loading the OTS plug-in

109Deployment scenarios

109The OTS Lite Plug-In

110Loading the OTS Lite plug-in

110The Encina Transaction Manager

110Configuring the OTS Encina Plug-In

112The itotstm Transaction Manager Service

112Using itconfigure

112Example client/server deployment

Table of Contents

- 8/131 -

113Configuring itotstm

114Configuring the OTS plug-in

115OTS Management

115Introduction to OTS Management

115OTS Management Model

116OTS Managed Entities

116Administrator

117Example Managed Entity

118TransactionManager Entity

118TransactionManager Attributes

119Encina TransactionManager Attributes

120Encina TransactionManager Operations

120Transaction Entity

121Transaction Attributes

121Encina Transaction Attributes

121Transaction Operations

122Encina Transaction Log Entity

122Encina Transaction Log Attributes

123Encina Transaction Log Operations

124Encina Volume Entity

124Encina Volume Attributes

124Encina Volume Operations

125Management Events

126Glossary

129Notices

129Copyright

129Trademarks

129Examples

129License agreement

130Corporate information

130Contacting Technical Support

Table of Contents

- 9/131 -

130Country and Toll-free telephone number

Table of Contents

- 10/131 -

Preface

Orbix OTS is a full implementation from Micro Focus of the interoperable transaction service as
specified by the Object Management Group. Orbix OTS complies with the following specifications:

CORBA 2.6

OTS 1.2

GIOP 1.2 (default), 1.1, and 1.0

Audience
This guide is intended to help you become familiar with the transaction service, and shows how to
develop applications with it. This guide assumes that you are familiar with CORBA concepts, and with
Java.

This guide does not discuss every interface and its operations in detail, but gives a general overview of
the capabilities of the transaction service and how various components fit together. For detailed
information about individual operations, refer to the CORBA Programmer’s Reference.

Typographical Conventions
This guide uses the following typographical conventions:

• •

• •

• •

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Preface

- 11/131 -

Keying Conventions
This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
Some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS, Windows NT, Windows 95, or Windows 98
command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in
format and syntax descriptions.

Keying Conventions

- 12/131 -

Transaction Service

This chapter describes the transaction processing capabilities of Orbix, showing how to use the Object
Transaction Service (OTS) for transaction demarcation, propagation and integration with resource managers.
The Java Transaction API (JTA) interfaces and integration with JTA compliant resource managers is also
discussed.

About Transactions

What is a transaction?
Orbix gives separate software objects the power to interact freely even if they are on different
platforms or written in different languages. Orbix adds to this power by permitting those interactions
to be transactions.

What is a transaction? Ordinary, non-transactional software processes can sometimes proceed and
sometimes fail, and sometimes fail after only half completing their task. This can be a disaster for
certain applications. The most common example is a bank fund transfer: imagine a failed software call
that debited one account but failed to credit another. A transactional process, on the other hand, is
secure and reliable as it is guaranteed to succeed or fail in a completely controlled way.

Transaction support in Orbix
To support the development of object-oriented, distributed, transaction-processing applications, Orbix
offers:

An implementation of the Object Management Group’s Object Transaction Service (OMG OTS).

An implementation of the J2EE Java Transaction API (JTA) providing integration with resource
managers.

A pluggable architecture that supports both a lightweight OTS implementation and a full
recoverable two-phase-commit (2PC) implementation.

• •

• •

• •

Transaction Service

- 13/131 -

Example
The classical illustration of a transaction is that of funds transfer in a banking application. This involves
two operations: a debit of one account and a credit of another (perhaps after extracting an appropriate
fee). To combine these operations into a single unit of work, the following properties are required:

If the debit operation fails, the credit operation should fail, and vice-versa; that is, they should
both work or both fail.

The system goes through an inconsistent state during the process (between the debit and the
credit). This inconsistent state should be hidden from other parts of the application.

It is implicit that committed results of the whole operation are permanently stored.

Properties of transactions
The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one persistent, consistent state to
another.

• •

• •

• •

Atomic A transaction is an all or nothing procedure – individual updates are assembled
and either committed or aborted (rolled back) simultaneously when the
transaction completes.

Consistent A transaction is a unit of work that takes a system from one consistent state to
another.

Isolated While a transaction is executing, its partial results are hidden from other entities
accessing the transaction.

Durable The results of a transaction are persistent.

Example

- 14/131 -

Transaction Managers

Purpose of a Transaction Manager
Most resource managers, for example databases and message queues, provide support for native
transactions. However, when an application wants two or more resource managers to be part of the
same transaction some third party must provide the necessary coordination to ensure the ACID
properties are guaranteed for the distributed transaction. This is where the concept of an transaction
manager that is independent of the individual resource manager comes in.

The application uses the transaction manager to create the transaction. Each resource manager
accessed during the transaction becomes a participant in the transaction. Then when the application
completes the transaction, either with a commit or rollback request, the transaction manager
communicates with each resource manager.

Two-phase commit protocol
When there are two of more participants involved in a transaction the transaction manager uses a two-
phase-commit (2PC) protocol to ensure that all participants agree on the final outcome of the
transaction despite any failures that may occur. Briefly the 2PC protocol works as follows:

In the first phase, the transaction manager sends a “prepare” message to each participant. Each
participant responds to this message with a vote indicating whether the transaction should be
committed or rolled back.

The transaction manager collects all the prepare votes and makes a decision on the outcome of
the transaction. If all participants voted to commit the transaction may commit. However if a least
one participant voted to rollback the transaction is rolled back. This completes the first phase.

In the second phase the transaction manager sends either commit or rollback messages to each
participant.

The 2PC protocol guarantees the ACID properties despite any failures that may occur. Usually the
transaction manager uses a log to record the progress of the 2PC protocol so that messages can
be replayed during recovery.

• •

• •

• •

Transaction Managers

- 15/131 -

One-phase-commit protocol
If there is only one participant in the transaction the transaction manager can use a one-phase-commit
(1PC) protocol instead of the 2PC protocol which can be expensive in terms or the number of messages
sent and the data that must be logged. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Orbix supports this 1PC protocol which allows developers
to make use of the Orbix transaction manager without suffering the overheads associated with the 2PC
protocol. By making use of the OTS and JTA interfaces an application can be easily extended to support
multiple resource managers within a transaction easily.

One-phase-commit protocol

- 16/131 -

OMG OTS and J2EE JTA Interfaces

The OMG OTS provides interfaces to manage the demarcation of transactions and the propagation of
transaction contexts. The J2EE JTA interfaces provide an alternative means of transaction demarcation and
integration with compliant resource managers such as databases and message queues.

Transaction Interfaces

Purpose
The OMG OTS provides interfaces to manage the demarcation of transactions (creation and
completion), the propagation of transaction contexts to the participants of the transaction and
interfaces to allow applications to participate in the transaction.

The J2EE JTA interfaces provide an alternative means of transaction demarcation and integration with
compliant resource managers such as databases and message queues.

Figure 1 shows these areas of transaction management.

Figure 1 OTS and JTA

OMG OTS and J2EE JTA Interfaces

- 17/131 -

Transaction Demarcation
Transaction demarcation is where the application sets the boundaries of the transaction. Typically this
is done using the OTS Current interface; invoking the begin() operation at the start of the transaction
and either commit() or rollback() at the end of the transaction. The JTA interfaces may also be used to
demarcate the transaction using either the UserTransaction or TransactionManager interfaces. An
alternative to using the Current interface is to create transactions directly using the TransactionFactory
interface and commit or rollback the transactions using the Terminator interface.

Transaction Propagation
Propagation refers to the passing of information related to the transaction to the application objects
that are participants in the transaction. When the Current interface is used for transaction demarcation
this propagation takes place transparently and is controlled by a number of POA policies. If the
transaction is created using the JTA interfaces propagation is also done transparently. Transactions
created using the TransactionFactory interface must be propagated by adding an extra parameter to
the operation.

Transaction Demarcation

- 18/131 -

Resource Manager Integration
Integration with resource managers such as databases is done using the JTA interface. Alternatively an
application may use the OTS Resource interface to provide integration with proprietary resource
managers.

Transaction Management
The OTS interfaces also provide operations for general transaction management. These include, setting
timeouts, registering resource objects and synchronization objects, comparing transactions and
getting transaction names

OTS Interfaces

Supported OTS Interfaces
The following is a list of the main interfaces supported by the OTS. All interfaces are part of the IDL
module CosTransactions. For more details on these interfaces, refer to the CORBA Programmer’s
Reference.

Table 1 OTS Interfaces

Interface Purpose

Control The return type of TransactionFactory::create() . It provides
access to the two controllers of the transactions, the Coordinator
and the Terminator .

Coordinator Provides operations to register objects that participate in the
transaction.

Current A local interface that provides the concept of a transaction to the
current thread of control. The Current interface supports a subset of
the operations provided by the Coordinator and Terminator
interfaces.

RecoveryCoordinator Used in certain failure cases to complete the transaction completion
protocol for a registered resource object.

Resource Manager Integration

- 19/131 -

OTS Transaction Modes
When using the OTS interfaces for transaction demarcation and propagation, there are two modes of
use:

The preferred mode for most applications is the indirect/implicit mode. The direct/explicit provides
more flexibility but is more difficult to manage (see Direct Transaction Demarcation and Explicit
Propagation) for more details.

Interface Purpose

Resource Represents a recoverable participant in a transaction. Objects
supporting this interface are registered with a transaction’s
coordinator, and are then invoked at key points in the transaction’s
completion.

SubtransactionAware

Resource

Represents a participant that is aware of nested transactions. Nested
transactions are not supported in this release.

Synchronization Represents a non-recoverable object allowing application specific
operations to occur both before and after transaction completion.

Terminator Provides a means of directly committing or rolling back a transaction.

TransactionalObject This interface has been deprecated and replaced with transaction
policies (see Propagation and Transaction Policies).

TransactionFactory Provides a means of directly creating top-level transactions.

Indirect/
Implicit

In the indirect/implicit mode transaction are created, committed and rolled
back using the Current interface. Propagation takes place automatically
depending on the policies in the target object’s POA.

Direct/
Explicit

In the direct/explicit mode transactions are created using the TransactionFa
ctory and committed or rolled back using the Terminator object.

Propagation is done by adding a parameter (for example, the transaction’s
control object) to each IDL operation.

OTS Transaction Modes

- 20/131 -

J2EE JTA Interfaces

JTA Interfaces
The Java Transaction API (JTA) is a set of high-level interfaces for transaction management for J2EE
based applications. It provides interfaces both for transaction demarcation and control and interfaces
for integrating resource managers such as JDBC databases and message queues. The JTA interfaces are
provided for use in CORBA applications.

Interfaces for transaction demarcation and control are provided in the javax.transaction package. The
interfaces are:

Table 2 JTA javax.transaction package interfaces

Integration with resource managers
Integration with resource managers is provided by interfaces in the javax.transaction.xa package. Most
applications do not deal directly with these interfaces; rather JTA compliant resource managers provide
implementations of the interfaces that are called by the OTS during transaction completion. These
interfaces are:

Table 3 JTA javax.transaction.xa package interfaces

Interface Purpose

Status Definitions of transaction status codes.

Synchronization Interface to allow applications to be notified before and after a
transaction completes.

Transaction Represents a transaction and allows operations to be performed on the
transaction.

TransactionManager Provides transaction demarcation and control (intended for use in J2EE
application servers).

UserTransaction Provides transaction demarcation and control (intended for use by the
client application).

Interface Purpose

XAResource A Java mapping of the X/Open XA interface.

J2EE JTA Interfaces

- 21/131 -

Integration with JDBC
The JDBC 4.x specification supports JTA though the use of the interface javax.sql.XADataSource.
Integration between a JTA compliant JDBC driver and the OTS is supported by two classes in the
package com.iona.datasource:

Table 4 JTA com.iona.datasource package classes

Applications must use wrap an instance of either the IT_XADataSource or IT_NonXADataSource around
the resource managers’s equivalent objects.

Interface Purpose

Xid A Java mapping of the X/Open XID structure.

Interface Purpose

IT_XADataSource A wrapper around a resource manager’s javax.sql.XADataSource
object.

IT_NonXADataSource A wrapper around a resource manager’s javax.sql.DataSource object.

Integration with JDBC

- 22/131 -

Getting Started with Transactions

This chapter illustrates the Object Transaction Service (OTS) by way of an example application. It includes the
basic steps needed to develop an application with the OTS.

Application Overview

Funds transfer application
The example application is that of funds transfer between two bank accounts. Figure 2 shows the
application. The client has a reference to two objects representing two accounts. The account objects
are implemented directly on top of an JTA-compliant database and use JDBC to access the database.
This example shows the source and destination accounts using different databases, however they
could both be using the same database.

Figure 2 Example OTS Application – Funds Transfer

Getting Started with Transactions

- 23/131 -

Interface definition
The interface for the account objects is defined in IDL as follows:

TransactionalObject interface deprecated
Readers familiar with version 1.1 of the OTS specification (used by OrbixOTM and Orbix 3) will notice
that the Account interface does not inherit from the CosTransactions::TransactionalObject interface. The
use of that interface to mark objects as transactional has been deprecated in favor of using POA
policies in version 1.2 of the specification. The TransactionalObject interface is still supported for
backward compatibility with the OTS in OrbixOTM and Orbix 3. See Use of the TransactionalObject
Interface for more details.

Since the TransactionalObject interface is deprecated, application developers no longer have to change
the IDL used by their applications when adding transactional capabilities.

Transferring funds
Given a source and destination account, the funds transfer is performed by invoking the withdraw()
operation on the source account followed by invoking the deposit() operation on the destination
account. The application will look something like the following:

// IDL
module Bank
{
typedef float CashAmount;
interface Account
{
exception InsufficientFunds {};
void deposit(in CashAmount amt);
void withdraw(in CashAmount amt)
raises (InsufficientFunds);
};
...
};

Interface definition

- 24/131 -

Completing the application
To make this a transactional application we need three more steps:

The funds transfer application needs to be wrapped in a transaction to ensure the ACID properties.
This is covered in Transaction Demarcation.

The application must make sure the transaction is propagated to the two account objects during the
invocations of the deposit() and withdraw() operations. This is covered in Transaction Propagation
and POA Policies

The implementation of the account objects must be integrated with a JTA compliant database. This is
covered in JTA Resource Manager Integration.

Transaction Demarcation

Demarcation using OTS current object
Transaction demarcation refers to setting the boundaries of the transaction. The simplest way to do
this is to use the OTS current object. The following are the steps involved:

Obtain a reference to the OTS current object from the ORB.

Create a new transaction.

Perform the funds transfer.

Complete the transaction by either committing it or rolling it back.

More information on transaction demarcation including other ways of creating, committing and rolling
back transactions is covered in Transaction Demarcation and Control.

// Java
Bank.Account src_acc = ...
Bank.Account dest_acc = ...
float amount = 100.0;
src_acc.withdraw(amount);
dest_acc.deposit(amount);

1. 1.

2. 2.

3. 3.

1. 1.

2. 2.

3. 3.

4. 4.

Completing the application

- 25/131 -

Obtain a reference to the OTS current object from the ORB
The OTS current object supports the CosTransactions::Current interface and a reference to the object is
obtained by calling the ORB operation resolve_initial_references(“TransactionCurrent”) .

The interfaces in the CosTransactions module are in the package org.omg.CosTransactions. Error
handling has been omitted for clarity:

Create a new transaction
The next step is the creation of a new top-level transaction. This is done by invoking begin() on the OTS
current object:

If the begin() succeeds, a new transaction is associated with the current thread of control.

// Java
...
import org.omg.*;
import org.omg.CosTransactions.*;
...
public static void main(String[] args)
{
ORB orb = ORB.init(args, null);
Object obj =
orb.resolve_initial_references(“TransactionCurrent”);
Current tx_current = CurrentHelper.narrow(obj);
...
}

// Java
tx_current.begin();

Obtain a reference to the OTS current object from the ORB

- 26/131 -

Perform the funds transfer
The funds transfer is the same as shown in the application overview. There are no changes for
transaction management. The code is reproduced here for completeness:

Complete the transaction by either committing it or rolling it back
Once the work has been done, we need to complete the transaction. Most of the time the application
simply wants to attempt to commit the changes made: this is done by invoking the commit() operation
on the OTS current object:

The commit() operation only attempts to commit the transaction. It may happen that due to system
failures or other reasons the transaction cannot be committed; in this case the TRANSACTION_ROLLEDBACK
system exception is raised.

The parameter passed to commit() is a boolean specifying whether heuristics outcomes should be
reported to the client (see Heuristic Outcomes for details on heuristic outcomes). In this example we do
not wait for heuristic outcomes.

If instead of attempting a commit the application wants to roll back the changes made, the operation
rollback() is invoked on the OTS current object:

// Java
Bank.Account src_acc = ...
Bank.Account dest_acc = ...
float amount = 100.0;
src_acc.withdraw(amount);
dest_acc.deposit(amount);

// Java
try {
tx_current.commit(false)
} catch (TRANSACTION_ROLLEDBACK) {
// Transaction has been rolled back.
}

Perform the funds transfer

- 27/131 -

Transaction Propagation and POA Policies

Propagating the transaction
The funds transfer application invokes the withdraw() and deposit() operations within the context of a
transaction associated with the current thread of control. However the transaction needs to be
propagated to the target objects to ensure that any updates they make are done in the context of the
application’s transaction.

POA Policies
To ensure propagation of transaction contexts the target objects must be placed in a POA with specific
OTS POA policies. In particular the POA must use one of the OTSPolicy values REQUIRES or ADAPTS . The
following code shows the creation of a POA with the REQUIRES OTSPolicy and the activation of an
account object in the POA.

// Java
tx_current.rollback()

Transaction Propagation and POA Policies

- 28/131 -

OTSPolicy values
There are three OTSPolicy values: REQURIES , ADAPTS and FORBIDS . REQUIRES specifies that the object must
be invoked within a transaction; ADAPTS allows the object to be invoked both within and without a
transaction; FORBIDS specifies that the object must not be invoked within a transaction. See
Propagation and Transaction Policies for a full discussion of POA and client policies relating to
transaction propagation. Support for the deprecated TransactionalObject interface is discussed in Use
of the TransactionalObject Interface.

The create_resource_manager() operation is passed the resource manager's name, XA switch (xaosw is
Oracle's XA switch), open-string and close string as well as flags that affect the behavior of the resource
manager. It returns a reference to the ResourceManager object and a reference to the
CurrentConnection object (as an out parameter).

// Java
ORB orb = ...
// Create a policy object for the REQURIES OTS Policy.
Any policy_val = orb.create_any();
OTSPolicyValueHelper.insert(policy_val, REQUIRES.value);
Policy tx_policy =
orb.create_policy(OTS_POLICY_TYPE.value,
policy_val);
// Add OTS policy to policy list (just 1 policy in this case).
Policy[] policies = new Policy[1];
policies[0] = tx_policy;
// Get a reference to the root POA.
Object obj = orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(obj);
// Create a new POA with the OTS Policy.
POA tx_poa = root_poa.create_POA("REQUIRES TX",
root_poa.the_POAManager(),
policies);
// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object
//
// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl servant = new AccountImpl(...);
byte[] id = tx_poa.activate_object(servant);
obj = tx_poa.servant_to_reference(servant);
Account account = AccountHelper.narrow(obj);

OTSPolicy values

- 29/131 -

JTA Resource Manager Integration

Process of using a JTA resource manager
Integrating an OTS or JTA created transaction with a JTA compliant resource manager involves two
steps:

First, the datasource object provided by the resource manager (in this case a database) must be
wrapped by an Orbix 2000 datasource object.

The normal JDBC code must take account of the wrapped datasource object and the OTS/JTA
transaction.

Wrapping the DataSource
The JDBC drivers provide XA compliant datasource objects for use within a distributed transaction.
However these object cannot be used directly; instead they must be wrapped by an instance of the
com.iona.datasource.IT_XADataSource class. This ensures that database connections created through
the wrapper datasource are fully integrated into the current JTA or OTS transaction.

For example, the following code shows how an database’s datasource object is wrapped by the
IT_XADataSource object.

Refer to your JDBC driver documentation for information on obtaining their XA compliant datasource
object.

1. 1.

2. 2.

// Java
DataSource db_ds = ...
ORB orb = ...
IT_XADataSource ds = new IT_XADataSource(orb);
ds.setXADataSource(db_ds, “”);

JTA Resource Manager Integration

- 30/131 -

Using JDBC within a OTS/JTA transaction
The JDBC code used to read and write to the database is the same as for a normal application with the
following exceptions:

Before each access to the database a connection must be obtained using the getConnection()
operation on the “wrapper” DataSource object.

After the database access the connection must be closed.

The JDBC java.sql.Connection operations that control transaction such as commit(), setAutoCommit()
and

rollback() cannot be used. Instead the equivalent OTS or JTA operations must be used.

The following shows how integration with a JTA compliant JDBC 4.x database is achieved:

1. 1.

2. 2.

3. 3.

Using JDBC within a OTS/JTA transaction

- 31/131 -

Application-Specific Resources

Resource interface operations
The CosTransactions::Resource interface provides a mechanism for applications to become involved in
the commit and rollback protocol of a transaction. The Resource interface provides five operations that
are called at key points during the commit or rollback protocols:

prepare()

commit()

rollback()

commit_one_phase()

forget()

// Java (in class AccountImpl)
public void deposit(float amt)
{
// The “wrapper” datasource object.
DataSource ds = ...
try {
Connection con = ds.getConnection();
Statement stmt = con.createStatement();
// Get current balance.
String sql = “SELECT BALANCE FROM ACCOUNTS” +
“ WHERE ACC_ID = ” + m_accId;
ResultSet rs = stmt.executeQuery(sql);
float balance = results.getFloat(“BALANCE”);
// Update balance.
balance += amt;
sql = “UPDATE ACCOUNTS SET BALANCE = ” + balance +
“ WHERE ACC_ID = ” + m_accId;
stmt.executeUpdate(sql);
stml.close();
con.close();
} catch (java.lang.Exception ex) {
...
}
}

• •

• •

• •

• •

• •

Application-Specific Resources

- 32/131 -

Implementing resource objects
An application implements a resource object that supports the Resource interface and registers an
instance of the object with a transaction using the register_resource() operation provided by the
Coordinator interface. Resource object implementations are responsible for cooperating with the OTS
to ensure the ACID properties for the whole transaction. In particular resource objects must be able to
recover from failures.

The implementation of resource objects is discussed in detail in Writing Recoverable Resources.

Configuration Issues

Issues
Before an application using OTS can run there are a number of configuration issues. These are
concerned with loading the appropriate plug-ins and setting up the client and server bindings to
enable implicit propagation of transactions.

Loading the OTS plug-in
For server applications, the OTS plug-in must be loaded explicitly by including it in the orb_plugins
configuration variable. For example:

The client and server bindings are controlled with the configuration variables
binding:client_binding_list and binding:server_binding_list respectively. The settings for both variables
need to take account of the OTS for potential bindings. For example, to be considered for the IIOP/GIOP
and collocated-POA bindings the variables must be set as follows:

Other configuration variables can be used to alter the characteristics of your application. These are
covered in .

orb_plugins = [..., “ots”];

binding:client_binding_list = [“OTS+POA_Coloc”,
“OTS+GIOP+IIOP”,
“POA_Coloc”,
“GIOP+IIOP”];
binding:server_binding_list = [“OTS”, “”];

Implementing resource objects

- 33/131 -

Transaction Demarcation and Control

The most convenient means of demarcating transactions is to use the OTS Current object. The JTA
UserTransaction and TransactionManager interfaces provide similar functionality. Direct transaction
demarcation using the TransactionFactory and Terminator interfaces provide more flexibility but is more
difficult to manage.

The OTS Current Object

Current Interface
The OTS Current object maintains associations between the current thread of control and transactions.
The Current interface is defined as follows:

Transaction Demarcation and Control

- 34/131 -

Threads and transactions
The OTS Current object maintains the association between threads and transactions. This means the
same OTS Current object can be used by several threads. Figure 3 shows the relationship between
threads, the OTS Current object, and the three objects that represent a transaction (Control ,
Coordinator and Terminator).

Figure 3 Thread and Transaction Associations

// IDL (in module CosTransactions)
local interface Current : CORBA::Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(NoTransaction, HeuristicMixed,
HeuristicHazard);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);
Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
unsigned long get_timeout();
Control get_control();
Control suspend();
void resume(in Control which)
raises(InvalidControl);
};

Threads and transactions

- 35/131 -

Getting a Reference to the OTS Current Object
A reference to the OTS Current object is obtained by calling resolve_initial_references() passing
“TransactionCurrent” as the parameter and narrowing the result to CosTransactions::Current . For
example:

The Current interface is declared as local which means references to the Current object cannot be
passed as parameters to IDL operations or passed to operations such as object_to_string() .

Creating Transactions
The begin() operation is used to create a new transaction and associate the new transaction with the
current thread of control. If there is no current transaction a top-level transaction is created; otherwise
a nested transaction is created (see Nested Transactions).

The following code creates a new transaction:

// Java
Current tx_current;
try {
ORB orb = ...
Object obj =
orb.resolve_initial_references("TransactionCurrent");
tx_current = CurrentHelper.narrow(obj);
}
catch (SystemException ex)
{
// Error handling.
...
}

Getting a Reference to the OTS Current Object

- 36/131 -

Committing the Current Transaction
The commit() operation attempts to commit the current transaction, if any, and removes the current
thread/transaction association. If the commit() operation returns normally the transaction was
successfully committed. However if the TRANSACTION_ROLLEDBACK system

For example, the following code attempts to commit the current transaction:

// Java
Current tx_current = ...
try
{
tx_current.begin();
}
catch (SubtransactionsUnavailable ex)
{
// Already in a transaction and nested transaction are not
// supported.
}
catch (SystemException ex)
{
// Error handling...
}

Committing the Current Transaction

- 37/131 -

If there is no current transaction the CosTransactions::NoTransaction exception is raised.

The commit() operation takes a boolean parameter that indicates whether reporting of heuristic
exceptions is permitted. Heuristic exceptions occur when a there is a conflict or potential conflict
between the outcome decided by the transaction coordinator and the outcome performed by one or
more resource managers (see Heuristic Outcomes for more details). If a value of true is passed, the
application must be prepared to catch the HeuristicMixed and HeuristicHazard exceptions; if a value of
false is passed these exceptions are never raised.

Rolling Back the Current Transaction
The rollback() operation rolls back the current transaction, if any, and removes the current thread/
transaction association. For example, the following code rolls back the current transaction:

// Java
Current tx_current = ...
try
{
// Attempt to commit the current transaction.
tx_current.commit(false);
}
catch (TRANSACTION_ROLLEDBACK)
{
// The transaction was rolled back.
}
catch (SystemException ex)
{
// Error handling...
}
catch (NoTransaction)
{
// There was no transaction to commit.
}

Rolling Back the Current Transaction

- 38/131 -

If there is no current transaction the CosTransactions::NoTransaction exception is raised.

The rollback_only() operation may also be used to mark a transaction to be rolled back. This operation
does not actively rollback the transaction, but instead prevents it from ever being committed. This can
be useful, for example, to ensure the current transaction will be rolled back during a remote operation.
Again, the NoTransaction exception is raised if there is no current transaction.

Nested Transactions
Nested transactions, also known as sub-transactions, provide a way of composing applications from a
set of transactions each of which can fail independently of each other. Nested transactions form a
hierarchy known as a transaction family. No updates are made permanent until the top-level
transaction commits.

When using the Current object, a nested transaction is created by calling begin() when there is already
a transaction associated with the current thread of control. When nested transaction is committed or
rolled back, the thread transaction association reverts back to the parent transaction.

Nested transactions are not supported in this release of Orbix.

// Java
Current tx_current = ...
try
{
tx_current.rollback();
}
catch (SystemException ex)
{
// Error handling...
}
catch (NoTransaction)
{
// There was no transaction to commit.
}

Note

Nested Transactions

- 39/131 -

Timeouts
The set_timeout() operation sets the timeout in seconds for subsequent top-level transactions. It does
not set the timeout for the current transaction. Passing a value of 0 means subsequent top-level
transactions will never timeout.

If set_timeout() is not called the default timeout is taken from the
plugins:ots:default_transaction_timeout configuration variable.

The get_timeout() operation returns the current timeout in seconds for subsequent top-level
transactions. It does not return the timeout for the current transaction.

For example, the following code sets the timeout for subsequent top level transactions to 30 seconds:

Suspending and Resuming Transactions
The suspend() operation temporarily removes the association between the current thread of control
and the current transaction if any. Calling suspend() returns a reference to a control object for the
transaction. The transaction can be resumed later by calling the resume() operation passing in the
reference to the control object.

Suspending a transaction is useful if it is necessary to perform work outside of the current transaction.
For example:

The resume() operation raises the CosTransactions::InvalidControl exception if the transaction
represented by the control object cannot be resumed.

// Java
Current tx_current = ...
tx_current.set_timeout(30);

// Java
Current tx_current = ...
tx_current.begin();
account.deposit(100.0);
// Suspend the current transaction.
Control control = tx_current.suspend();
// Do some non-transactional work.
...
// Resume the transaction.
tx_current.resume(control);
tx_current.commit(true);

Timeouts

- 40/131 -

Sometimes the work done during the transaction’s suspend state can be work on a different
transaction. Thus, suspend() and resume() give you a way to work on multiple transactions within the
same thread of control.

Miscellaneous Operations
The get_status() and get_transaction_name() operations provide information on the current transaction.
The get_control() operations returns the Control object for the current transaction or nil if there is no
current transaction. This is used to provide access to the Coordinator and Terminator objects for more
advanced control. See Transaction Management for more details

The JTA Interfaces

Use of UserTransaction and TransactionManager
The JTA interfaces UserTransaction and TransactionManager can be used as an alternative to the OTS
Current object for transaction demarcation. The UserTransaction interface is for use within client
applications while the TransactionManager interface provides some additional operations for use
within server applications. This section deals only with the UserTransaction interface; full details on the
remainder of the JTA interfaces are available in Using the Java Transaction API.

UserTransaction Interface
The UserTransaction interface is part of the javax.transaction package an is defined as follows:

Miscellaneous Operations

- 41/131 -

All of the UserTransaction operations are supported in the TransactionManager interface.

Getting a Reference to the UserTransaction Object
A reference to the UserTransaction object is obtained by passing “UserTransaction” to
resolve_initial_references() and casting the result to UserTransaction. For example:

public interface UserTransaction
{
public abstract void begin()
throws NotSupportedException, SystemException;
public abstract void commit()
throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException;
public abstract int getStatus();
throws SystemException;
public abstract void rollback();
throws IllegalStateException, SecurityException,
SystemException;
public abstract void setRollbackOnly();
throws IllegalStateException, SystemException;
public abstract void setTransactionTimeout(int seconds);
throws SystemException;
}

Getting a Reference to the UserTransaction Object

- 42/131 -

Creating a Transaction
The operation begin() is used to create a new transaction and associate the transaction with the current
thread of control. For example:

The NotSupportedException exception is raised if there is already a transaction associated with the
current thread of control and nested transaction are not supported.

// Java
...
import javax.transaction.*;
import org.omg.*;
...
public class BankTeller {
public static void main(String[] args) {
try {
ORB orb = ORB.init(args, null)
Object obj =
orb.resolve_initial_reference(“UserTransaction”);
UserTransaction utx =
(UserTransaction) obj;
...
} catch (Exception ex) {
...
}
}
}

// Java
UserTransaction utx = ...
try {
utx.begin();
} catch (NotSupportedException ex) {
// Nested transaction not supported.
} catch (Exception ex) {
...
}

Creating a Transaction

- 43/131 -

Committing the current Transaction
To attempt to commit the current transaction the operation commit() is used. If this operation returns
successfully the transaction was committed. However if the RollbackException is raised if the
transaction was rolled back. For example:

The IllegalStateException exception is raised if there is no transaction associated with the current
thread of control. The exception HeuristicMixedException and HeuristicRollbackException are raised if
heuristic outcomes occurred.

Rolling Back the Current Transaction
To rollback the current transaction the operation rollback() is used. For example:

The IllegalStateException exception is raised if there is no transaction associated with the current
thread of control.

Alternatively the opertation setRollbackOnly() may be used to mark the transaction to be rolled back
without actively rolling back the transaction. Once this operation has been called the transaction cannot
be committed.

The IllegalStateException exception is raised if there is no transaction associated with the current
thread of control for both of these operations.

// Java
UserTransaction utx = ...
try {
utx.commit();
} catch (RollbackException) {
// Transaction has been rolled back.
} catch (Exception) {
...
}

// Java
UserTransaction utx = ...
try {
utx.rollback();
} catch (Exception) {
...
}

Committing the current Transaction

- 44/131 -

Timeouts
The operation

Direct Transaction Demarcation

Using the transaction factory to create transactions
The alternative to using the OTS Current object or the JTA UserTransaction and TransactionManager
interfaces is to use the transaction factory directly to create transactions.

Example
The following code shows the creation of a new top-level transaction:

The first step is to obtain a reference to the transaction factory object. This is done by calling
resolve_initial_references() passing a value of “TransactionFactory” and narrowing the result to
CosTransactions::TransactionFactory .

// Java
UserTransaction utx = ...
try {
utx.setTransactionTimeout(30);
utx.begin();
} catch (Exception) {
...
}

// Java
//
// Get a reference to the transaction factory.
ORB orb = ...
Object obj =
orb.resolve_initial_references("TransactionFactory");
TransactionFactory tx_factory =
TransactionFactoryHelper.narrow(obj);
// Create a transaction with a timeout of 60 seconds.
Control control = tx_factory.create(60);

Timeouts

- 45/131 -

The create() operation creates a new top-level transaction and returns a control object representing the
new transaction. create() is passed the timeout in seconds for the transaction. A value of 0 means
there is no timeout.

To complete a transaction created using the transaction factory, the terminator object is used. The
terminator object is obtained by calling get_terminator() on the control object. The Terminator interface
provides the commit() and rollback() operations. These are the same as the ones provided by the
Current interface except they do not raise the NoTransaction exception.

Example of a commit
The following shows the attempted commit of a transaction using the direct approach:

// Java
//
try {
Terminator term = control.get_terminator();
term.commit(true);
} catch (TRANSACTION_ROLLEDBACK){
// Transaction has been rolled back.
}

Example of a commit

- 46/131 -

Propagation and Transaction Policies

This chapter describes how to control transfer of the transaction to the target object using POA policies or
explicitly.

Implicit Propagation Policies

Implicit and Explicit Propagation
Propagation refers to the transfer of the transaction to the target object during an invocation.

For transactions created using the OTS Current object or the JTA UserTransaction and
TransactionManager interfaces, propagation is implicit. That is, the application does not have to change
the way the object is invoked in order for the transaction to be propagated. Implicit propagation is
controlled using POA policies.

For transactions created directly via the TransactionFactory reference, explicit propagation must be
used.

Policies for implicit propagation
For implicit propagation, there are two POA policies and one client policy that affect the behavior of
invocations with respect to transactions.

The POA policies are:

OTSPolicy

InvocationPolicy

Both policies allow an object to set requirements on whether the object is invoked in the context
of a transaction and transaction model being used.

The client OTS policy is:

NonTxTargetPolicy

This alters the client’s behavior when invoking on objects that do not permit transactions.

• •

• •

• •

Propagation and Transaction Policies

- 47/131 -

These three policies replace the deprecated TransactionPolicy and the use of the deprecated
TransactionalObject interface both of which are still supported in this release. See Migrating from
TransactionPolicies and Use of the TransactionalObject Interface for more details.

Shared and Unshared Transactions

InvocationPolicy transaction models
The InvocationPolicy deals with the transaction model supported by the target object. There are two
transaction models:

shared

unshared

Shared model
The shared model is the familiar end-to-end transaction where the client and the target object both
share the same transaction. That is, an invocation on an object within a shared transaction is
performed within the context of the transaction associated with the client.

Unshared model
An unshared transaction is used for asynchronous messaging where different transactions are used
along the invocation path between the client and the target object. Here, the target object invocation is
performed within the context of a different transaction than the transaction associated with the client.
Hence, the client and target object does not share the same transaction. This model is required since
with asynchronous messaging it is not guaranteed that the client and server are active at the same
time.

Orbix does not support unshared transactions in this release. They are included in the following
discussion for completeness only.

Note

• •

• •

Shared and Unshared Transactions

- 48/131 -

Policy Meanings

The three standard OTSPolicy values
The OTSPolicy has three possible standard values plus additional two values specific to Orbix. The
Orbix-specific values are discussed in Orbix-Specific OTSPolicies; the standard values and their
meanings are:

Objects with the REQUIRES or ADAPTS OTSPolicy are also known as transactional objects since they
support invocations within transactions; objects with the FORBIDS OTSPolicy or no OTSPolicy at all are
known as non-transactional objects since they do not support invocations within transactions.

For an example of using an OTSPolicy see Example Use of an OTSPolicy below.

The two NonTxTargetPolicy values
The default behavior for a client that invokes on an object within a transaction where the target object
has the FORBIDS OTSPolicy (or where the object does not have any OTSPolicy, since FORBIDS is the
default) is for the INVALID_TRANSACTION exception to be raised. This behavior can be altered with the
NonTxTargetPolicy . The policy values and their meanings are:

REQUIRES This policy is used when the target object always expects to be invoked within
the context of a transaction. If there is no transaction the TRANSACTION_REQUI
RED system exception is raised. This policy guarantees that the target object is

always invoked within a transaction.

FORBIDS This policy is used when the target object does not permit invocations
performed within the context of a transaction. If a transaction is present the IN
VALID_TRANSACTION system exception is raised. This policy guarantees that

the target object is never invoked within a transaction. This is the default policy.

ADAPTS This policy is used when the target object can accept both the presence and
absence of a transaction. If the client is associated with a transaction, the target
object is invoked in the context of the transaction; otherwise the target object is
invoked without a transaction. This policy guarantees that the target object is
invoked regardless of whether there is a transaction or not. Here, the target
object adapts to the presence or not of a transaction.

PREVENT The invocation is prevented from proceeding and the INVALID_TRANSACTION
system exception is raised. This is the default behavior

Policy Meanings

- 49/131 -

Setting the policies
As with all client policies, there are four ways in which they may be set:

Using configuration. For the NonTxTargetPolicy the variable to set is policies:non_tx_target_policy .

Set the policy on the ORB using the CORBA::PolicyManager interface.

Set the policy for the current invocation using the CORBA::PolicyCurrent interface.

Set the policy on the target object using the CORBA::Object::_set_policy_overrides() operation.

For more information on client policies see the chapter “Using Policies” in the CORBA Programmer’s
Guide. For an example of using a NonTxTargetPolicy see Example Use of a NonTxTargetPolicy below.

Note that since the default OTSPolicy is FORBIDS , using the PREVENT NonTxTargetPolicy could result in
previously working code becoming unworkable due to invocations been denied. The PREVENT policy
should be used with care.

The three InvocationPolicy values
Finally, the choice of which transaction model (shared or unshared) that an object supports is done
using the InvocationPolicy. This has three values:

Note that the UNSHARED and EITHER InvocationPolicies cannot be used in combination with the FORBIDS
and ADAPTS OTSPolicies. Attempting to create a POA with these policy combinations results in the
PortableServer::InvalidPolicy exception being raised.

PERMIT The invocation proceeds but the target object is not invoked within the context
of the transaction. This satisfies the target object’s requirements and allows the
client to make invocations on non-transactional objects within a transaction.

1. 1.

2. 2.

3. 3.

4. 4.

SHARED The target object supports only shared transactions. This is the default. An
asynchronous invocation results in the TRANSACTION_MODE system exception
being raised.

UNSHARED The target object supports only unshared transactions. A synchronous
invocation results in the TRANSACTION_MODE system exception begin raised.

EITHER The target object supports both shared and unshared transactions.

Setting the policies

- 50/131 -

Steps to create an object with an OTSPolicy
The following are the steps to create an object with a particular OTS policy:

Create a CORBA Policy object that represents the desired OTS policy. This is done by calling the ORB
operation create_policy() passing in the value CosTransactions::OTS_POLICY_VALUE as the first
parameter and the policy value (encoded as an any) as the second parameter.

Create a POA that includes the OTSPolicy in its policy list. This is done by calling create_POA() .

Create an object using the new POA.

Example
The following code sample shows an object being created in a POA that uses the ADAPTS OTSPolicy. For
clarity, the POA is created off the root POA and only one new policy is added.

1. 1.

2. 2.

3. 3.

Steps to create an object with an OTSPolicy

- 51/131 -

Example Use of a NonTxTargetPolicy

Steps to use a NonTxTargetPolicy
The following are the steps for a client to use a NonTxTargetPolicy when invoking on a non-transactional
object:

Get a reference to the PolicyCurrent or PolicyManager object.

Create a CORBA Policy object that represents the desired NonTxTargetPolicy . This is done by calling
the CORBA::ORB::create_policy() operation passing in the value
CosTransactions::NON_TX_TARGET_POLICY_TYPE as the first parameter and the policy value (encoded as an
any) as the second parameter.

Call the set_policy_overrides() operation on the PolicyCurrent or PolicyManager object passing in a
policy list containing the NonTxTargetPolicy . Alternatively call the _set_policy_overrides() operation on
the target object itself.

Invoke on the non-transaction object (from within a transaction).

// Java
//
// Create CORBA policy object for ADAPTS OTSPolicy.
ORB orb = ...
Any tx_policy_value = orb.create_any();
OTSPolicyHelper.insert(tx_policy_value, ADAPTS.value);
// Create a POA using the transactional policy.
Policy[] policies = new Policy[1];
policies[0] = orb.create_policy(OTS_POLICY_TYPE.value,
tx_policy_value);
// Get a reference to the root POA.
Object obj = orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(obj);
POA tx_poa = root_poa.create_POA("TX ADAPTS", null, policies);
// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object
// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl servant = new AccountImpl(...);
ObjectId id = tx_poa.activate_object(servant);
obj = tx_poa.servant_to_reference(servant);
Account account = AccountHelper.narrow(obj);

1. 1.

2. 2.

3. 3.

4. 4.

Example Use of a NonTxTargetPolicy

- 52/131 -

Example
The following code shows a client using the PERMIT NonTxTargetPolicy to invoke on a non-transactional
object within a transaction. The client uses the PolicyCurrent object to set the policy. Assume that the
Account object is using the REQUIRES or ADAPTS OTSPolicy and the AuditLog object is using the FORBIDS
OTSPolicy or no OTSPolicy at all:

Specifying the default NonTxTargetPolicy
The default NonTxTargetPolicy value is taken from the policies:non_tx_target_policy configuration
variable, which can be set to “prevent” and “permit” to represent the PREVENT and PERMIT policy values.
If this configuration variable is not set, the default is PREVENT .

// Java
//
// Get reference to PolicyCurrent object.
ORB orb = ...
Object obj = orb.resolve_initial_references(“PolicyCurrent”);
PolicyCurrent policy_current =
PolicyCurrentHelper.narrow(obj);
// Create PERMIT NonTxTarget policy.
Any tx_policy_value = orb.create_any();
NonTxTargetPolicyHelper.insert(tx_policy_value, PERMIT);
Policy[] policy_list = new Policy[1];
policy_list[0] = orb.create_policy(NON_TX_TARGET_POLICY_TYPE,
tx_policy_value);
// Set policy overrides.
policy_current.set_policy_overrides(policy_list,
SetOverrideType.ADD_OVERRIDE);
// Invoke on target object
Current tx_current = ...
Account account = ...
AuditLog log = ...
tx_current.begin();
account.deposit(100.00);
log.append(“User ... deposited 100 to account ...”);
tx_current.commit(true);

Example

- 53/131 -

Use of the ADAPTS OTSPolicy

Using the ADAPTS OTSPolicy
The ADAPTS OTSPolicy is useful for implementing services that must work whether or not the client is
using OTS transactions. If the client is using transactions, the target object simply executes in the same
transaction context and its work will be either committed or rolled back when the client completes the
transaction.

However, if there is no transaction the target object can choose to create a local transaction for the
duration of the invocation.

Example
The following code shows how a servant might be implemented to take advantage of the ADAPTS
OTSPolicy (error handling has been omitted):

This approach allows clients to selectively bracket operations with transactions based on how much
work is done. For example, if only a single server operation is performed then no client transaction
needs to be created. However, if more than one operation is performed the client creates a transaction
to ensure ACID properties for all of the operations.

// Java (in class AccountImpl)
public static void deposit(float amount)
{
Current tx_current = ...
// Test if a transaction was propagated from the client.
Control control = tx_current.get_control();
if (control == null)
{
// No current transaction, so create one.
tx_current.begin();
}
// Do the transactional work
...
// If a local transaction was created, commit it.
if (control == null)
{
tx_current.commit(true);
}
}

Use of the ADAPTS OTSPolicy

- 54/131 -

For example (error handling omitted):

For this example the servant created an OTS transaction. However, it could just create a local database
transaction instead or not create any transaction at all.

Orbix-Specific OTSPolicies

The two proprietary OTSPolicy values
Orbix extends the set of OTSPolicies with two proprietary values to support automatically created
transactions and optimizations. The values and their meanings are:

// Java
// Deposit money into a single account (no transaction
// needed).
Account acc = ...
acc.deposit(100.00);
// Transfer money between two account (this requires a
// transaction)
Account src_acc = ...
Account dest_acc = ...
Current tx_current = ...
tx_current.begin();
src_acc.withdraw(200.00);
dest_acc.deposit(200.00);
tx_current.commit(true);

AUTOMATIC This policy is used when the target object always expects to be invoked within
the context of a transaction. If there is no transaction a transaction is created
for the duration of the invocation. This policy guarantees that the target object
is always invoked within a transaction. See Automatic Transactions.

Orbix-Specific OTSPolicies

- 55/131 -

Automatic Transactions
The ADAPTS OTSPolicy (see Use of the ADAPTS OTSPolicy) is useful for implementing servants that can
be invoked both with and without transactions. A useful pattern to use is for the servant to check for
the existence of a transaction and create one for the duration of the invocation if there is none. The
AUTOMATIC OTSPolicy provides this functionality without having to code it into the servant
implementation.

From the target object’s point of view the AUTOMATIC OTSPolicy is the same as REQUIRES since the target
object is always invoked in the context of a transaction. However, from the clients point of view, the
AUTOMATIC policy is the same as ADAPTS since the client can choose whether to invoke on the object
within a transaction or not. In fact, object references created in a POA with the AUTOMATIC OTSPolicy
contain the ADAPTS policy so they can be used by other OTS implementations that do not support the
AUTOMATIC OTSPolicy.

For the case were the client does not use a transaction and the automatically created transaction fails to
commit, the standard TRANSACTION_ROLLEDBACK system exception is raised. Reporting of heuristic
exceptions is not supported.

Just-In-Time Transaction Creation
Orbix provides three extensions to support the concept of just-in-time (JIT) transaction creation to
eliminate network messages in special conditions. These extensions are:

A configuration option to enable JIT transaction creation, which allows the creation of a transaction to
be delayed until it is really needed.

The SERVER_SIDE OTSPolicy which allows a transaction to be created just before a target object is
invoked.

A additional operation commit_on_completion_of_next_call() that allows the next invocation on an
object to also commit the transaction.

The use of JIT transaction creation is useful when invocations between a client and an object involve
using a network connection. This is because it can reduce the number of network messages that are
exchanged to create, propagate and commit a transaction.

SERVER_SIDE This policy is used in conjunction with just-in-time transaction creation to
optimize the number of network messages in special cases. See Just-In-Time
Transaction Creation.

1. 1.

2. 2.

3. 3.

Automatic Transactions

- 56/131 -

Enabling JIT Transaction Creation
JIT transaction creation is enabled by setting the plugins:ots:jit_transactions configuration variable to
“true” . When enabled a call to Current::begin() does not create a transaction; instead, it remembers
that the client requested to create one. The client is said to be in the context of an empty transaction.
At this stage a call to Current::get_status() would return StatusActive event though a real transaction
has not been created. Likewise, calls to Current::commit() and Current::rollback() would succeed. A real
transaction is only created at the following points:

When any of the following CosTransactions::Current operations are invoked: rollback_only() ,
get_control() , get_transaction_name() or suspend() .

When an object with any of the standard OTSPolicies is invoked.

If the target object’s OTSPolicy is SERVER_SIDE , a real transaction is not created until the invocation has
reached the object’s POA. Note that unlike the AUTOMATIC OTSPolicy, this transaction it not terminated
when the invocation has completed. Instead, the client adopts the newly created transaction.

When JIT transactions are not enabled, the SERVER_SIDE OTSPolicybehaves the same as the ADAPTS
OTSPolicy, except that unlike the AUTOMATIC policy, other OTS implementations will not recognize the
new policy.

A final optimization is possible when JIT transaction creation and the SERVER_SIDE OTSPolicy are used.
The OTS current object in Orbix provides an additional operation that allows a transaction to be
committed within the context of the target object rather than by the client:

The commit_on_completion_of_next_call() operation causes the current transaction to be committed after
the completion of the next object invocation (so long as the target object is using the SERVER_SIDE
OTSPolicy). The transaction commit is performed by the target object’s POA, which means that the
transaction will have been created and committed in the context of the target object rather than by the
client.

1. 1.

2. 2.

// IDL
module IT_CosTransactions
{
interface Current : CosTransactions::Current
{
void
commit_on_completion_of_next_call()
raises (CosTransactions::NoTransaction)
};
};

Enabling JIT Transaction Creation

- 57/131 -

To use the operation, the client must narrow the OTS current object to the IT_CosTransactions::Current
interface (located in the com.iona.corba package).

Note that the client still must call the commit() operation, though this will not result in any network
messages.

Migrating from TransactionPolicies

Mapping from TransactionPolicy values
Previous releases of Orbix used the deprecated CosTransaction::TransactionPolicy which provided seven
standard policy values and two Orbix extensions. Below is a table that provides the mapping from
TransactionPolicy values to their OTSPolicy and InvocationPolicy equivalent.

Table 5 Mapping from TransactionPolicy values

// Java
Current tx_current = ...
IT_CosTransactions.Current it_tx_current =
IT_CosTransactions.CurrentHelper.narrow(tx_current);
Account account = ...
it_tx_current.begin();
account.deposit(100.00);
it_tx_current.commit_on_completion_of_next_call();
account.deposit(50.00);
it_tx_current.commit(true);

TransactionPolicy

Value

OTSPolicy

Value

InvocationPolicy Value

Allows_shared ADAPTS SHARED

Allows_none FORBIDS SHARED

Requires_shared REQUIRES SHARED

Allows_unshared ADAPTS Not supported

Allows_either ADAPTS Not supported

Migrating from TransactionPolicies

- 58/131 -

Combining Policy Types
It is possible to create a POA that combines all three policy types to support interoperability with earlier
versions of Orbix. However, invalid combinations result in the PortableServer::InvalidPolicy exception
being raised when PortableServer::POA::create_POA() is called. An invalid combination is any
combination not in Table 5; for example combining Requires_shared with ADAPTS and SHARED .

The mappings for the Allows_unshared and Allows_either TransactionPolicies are not supported since
this would lead to an invalid combination of OTSPolicies and InvocationPolicies.

Support for the TransactionPolicy type may be discontinued in a future Orbix release. It is
recommended that only OTSPolicies and InvocationPolicies be used.

Explicit Propagation

Altering the IDL to propagate explicitly
When a transaction is created directly using the TransactionFactory interface the transaction must be
propagated explicitly to target objects. This means altering the IDL for the application to add an extra
parameter for the transaction’s Control object.

TransactionPolicy

Value

OTSPolicy

Value

InvocationPolicy Value

Requires_unshared REQUIRES UNSHARED

Requires_either REQUIRES EITHER or none

Automatic_shared AUTOMATIC SHARED

Server_side_shared SERVER_SIDE SHARED

Note

Combining Policy Types

- 59/131 -

Example
The following is the Account IDL interface modified to support explicit propagation:

Each invocation on the account object must now take a reference to a transaction control as its last
parameter:

It is also possible to pass a reference to the transaction’s coordinator object instead of its control object.

// IDL (in module Bank)
#include <CosTransactions.idl>
...
interface Account
{
exception InsufficientFunds {};
void deposit(in CashAmount amt.
in CosTransactions::Control ctrl);
void withdraw(in CashAmount amt,
in CosTransactions::Control ctrl)
raises (InsufficientFunds);
};

// Java
TransactionFactory tx_factory = ...
Control control = tx_factory.create(60);
Bank.Account src_acc = ...
Bank.Account dest_acc = ...
float amount = 100.0;
src_acc.withdraw(amount, control);
dest_acc.deposit(amount, control);
Terminator term = control.get_terminator();
term.commit(true);

Example

- 60/131 -

Using the Java Transaction API

This chapter describes the local Java interfaces that constitute the JTA package. These interfaces sit between a
transaction manager on one hand and the application, application server and resource manager on the
other.

JTA Features

What is JTA
The Java2 Platform, Enterprise Edition (J2EE) includes support for distributed transactions through the
Java Transaction API (JTA) specification. The Java Transaction API (JTA) is a high level, implementation-
independent, protocol-independent API that allows applications and application servers to manage
transactions.

Features of the JTA
The JTA provides:

An application level interface that allows for transaction boundary demarcation.

An application server level interface that allows the application server to provide transaction
demarcation, propagation, and resource management on behalf of an application.

A Java mapping of the X/Open XA protocol to allow a resource manager to participate in a global
transaction. It must do this by implementing a transactional resource interface, which will be used
by the transaction manager to indicate transaction association, completion and recovery. A JDBC
XADataSource is a typical transactional resource manager.

Figure 4 illustrates interaction between the Application, Application Server,Resource Manager and
Transaction Manager components via JTA.

Figure 4 Application and Resource Manager Interaction using JTA

• •

• •

• •

Using the Java Transaction API

- 61/131 -

JTA API Overview

UserTransaction
The javax.transaction.UserTransaction interface is a client-side application-level interface that allows for
transaction boundary demarcation. All global transactions created using this interface are associated
with the calling thread. Transaction context propagation and thread-transaction association are
managed by the transaction manager implementation underlying JTA and is transparent to the
application. The underlying transaction manager for the Orbix implementation of JTA is OTS.

TransactionManager
The javax.transaction.TransactionManager interface is an application server-level interface that allows the
application server to provide transaction demarcation, propagation, and resource management on
behalf of an application. Each global transaction created via this interface will be associated with the
calling thread and represented by a javax.transaction.Transaction object. By obtaining a reference to a
particular transaction, the application can perform operations upon the represented transaction
without regard to the calling thread. The javax.transaction.TransactionManager interface also provides a
mechanism to disassociate a transaction from a calling thread and thereafter resume the association.

JTA API Overview

- 62/131 -

Transaction
Every global transaction that is created is associated with a javax.transaction.Transaction object. The
Transaction interface provides functionality for enlisting resources into the global transaction,
registering Synchronization objects and ending the transaction.

XAResource
The javax.transaction.xa.XAResource interface is a Java mapping of the X/Open XA protocol. It exists to
allow interaction between a resource manager and transaction manager by associating a global
transaction with a transactional resource.

Synchronization
Transaction synchronization allows the application to be notified by the transaction manager prior to
and after completion of the global transaction. Specifically the Synchronization object is notified prior to
the start of and after the 2PC protocol. The first notification will be within the context of the transaction
being committed.

Managing Transactions and Resources
For a transaction manager to be able to coordinate work performed on behalf of a global transaction by
a resource manager, a transactional resource must be enlisted into the global transaction and delisted
prior to the end of the transaction.

Enlisting transactional resources
For each resource that will be used within the context of a transaction the Transaction.enlistResource()
method must be invoked specifying the particular XAResource object. This allows the transaction
manager to inform the resource manager to associate all work performed through that resource with
the associated transaction. The transaction manager does this by invoking the XA Resource.start()

method.

It is the responsibility of the transaction manager to ensure that all resources representing the same
resource manager are grouped accordingly. This must be done to ensure that the same resource
manager is not asked by the transaction manager to commit on behalf of the same transaction more
that once. The transaction manager can determine whether two XAResource objects represent the same
resource manager by invoking the XAResource.isSameRM() method.

Transaction

- 63/131 -

Delisting transactional resources
Transactional resources must be delisted prior to the end of a transaction; that is, before either commit
or rollback is invoked. This is done via the XAResource.delistResource() method thus informing the
resource manager to end the transaction–resource association.

Transaction manager interactions
The following sequence diagram shows the interaction between the transaction manager, resource
manager and application.

Figure 5 A JTA Transaction

DataSources
JDBC provides native database transactions through the JDBC Connection API. These are independent of
JTA. If you want to use JTA to manage your own 2PC transactions, you must ensure that the datasources
you use understand distributed transactions.

Delisting transactional resources

- 64/131 -

Managing transactional resources in Orbix
The Orbix solution for managing transactional resources; that is, an XAResource, within a global
transaction is to provide two proprietary java.sql.DataSource implementations:

com.iona.datasource.IT_XADataSource allows developers to manage javax.sql.XAConnection’s within
a global transaction.

com.iona.datasource.IT_NonXADataSource allows standard java.sql.Connection’s to become involved in
a global transaction.

Both of these datasources are essentially wrappers around real datasources; for example,
Cloudscape, Merant or Oracle datasources. Requesting a connection via either of these
datasources in the com.iona.datasource package results in the return of a connection from the
underlying datasource, which has been transparently associated with a JTA transaction.

The JDBC 4.x XA specification dictates how this works for distributed transactions. In the non-
distributed case a normal datasource can be used in the same way with one exception. That is
that commit and rollback scenarios are initiated by the JTA rather than the application or, in other
words, through the transaction and not the connection.

Example
The following example shows a business method on the server-side that accesses a database within the
context of a propagated transaction:

Example 6: Accessing a database through a propagated transaction

• •

• •

// Java
//
public class Client
{
public void updateDatabase(...)
{
javax.transaction.UserTransaction ut;
DataAccessExampleImpl dataAccess;

1 // Lookup the UserTransaction reference
org.omg.CORBA.Object obj =
orb.resolve_initial_references("UserTransaction");
ut = (javax.transaction.UserTransaction) obj;

Managing transactional resources in Orbix

- 65/131 -

The steps are:

Look up the UserTransaction reference.

Look up the IOR for the server-side IDL implementation object. The IOR must have been created from
a POA with a transactional policy to allow the transaction to be propagated.

Begin a transaction.

Do some work on the server side. The transaction will be propagated with the request.

If no exceptions have been raised, commit the transaction.

Implementing a client with Orbix JTA and OTS
The Orbix JTA and OTS implementations are fully interoperable. Users can build a client that uses the
CosTransactions::Current interface to control the creation of transactions, and a server that performs
work on a database via connections from one of the datasources in the com.iona.datasource package.

Or users can build a client that uses the javax.transaction.UserTransaction interface to manage
transactions, and a server that uses only interfaces from the CosTransaction module. The latter case will
not be able to support implicitly enlisting database operations into the global transaction.

2 // Lookup the DataAccessExample IOR
dataAccess =;

3 // Begin a transaction.
ut.begin();

4 // Perform some work on the server-side.
dataAccess.accessDataSource(...);

5 // Commit the Transaction.
ut.commit();
}
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Implementing a client with Orbix JTA and OTS

- 66/131 -

The steps are:

Setup the Orbix datasource wrapper.

Tell the datasource not to use XA if only a single resource is involved in the transaction.

Get a database connection from the datasource. The datasource will obtain a reference to the
propagated transaction and transparently enlist the connection into the transaction. You can access
the propagated transaction by calling getTransaction() on a TransactionManager reference.

Do some work on the database.

Close the connection. When the request returns, the client will commit the transaction and the
changes will be committed to the database.

// Java
//
public class DataAccessExample
{
public void accessDatasource(...)
{
javax.sql.DataSource ds;
java.sql.Connection con;
java.sql.Statement stmt;
InitialContext initCtx = ...;

1 // Set up the IONA DataSource (see below)
...

2 ((com.iona.datasource.IT_XADataSource)ds).setOnePhase(true)

3 // Get connection from datasource.
con = ds.getConnection();
stmt = con.createStatement();

4 // Perform some work on the Database.
stmt.executeQuery(...);
stmt.executeUpdate(...);

5 // Close the connection.
stmt.close();
con.close();
}
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Implementing a client with Orbix JTA and OTS

- 67/131 -

DataSource Configuration
The JTA plug-in and datasource implementations require some configuration information concerning
your use of JNDI. (You should familiarize yourself with the concepts behind JNDI before continuing.)

Configuring JNDI
Within your application code you must set all system properties that are required by the specific JNDI
implementation that you are using. For example, to use the Sun J2EE reference implementation you
need two pieces of information:

The location of the InitialContext factory that you want to use; and

The location where the JNDI stores its binding information.

Thus your application code should contain the following lines of code:

Retrieving a reference to TransactionManager
The com.iona.datasource datasources must be able to retrieve a reference to the TransactionManager
interface, which it will need to enlist its connections to any active transactions. It can do this in two
ways:

via JNDI; or

resolve_initial_references() .

• •

• •

// Java
String initialContextFactory =
"com.sun.jndi.fscontext.RefFSContextFactory";
String providerURL =
new File(System.getProperty("user.home")).toURL().toString();
System.setProperty(Context.INITIAL_CONTEXT_FACTORY,
initialContextFactory);
System.setProperty(Context.PROVIDER_URL,
providerURL);

• •

• •

DataSource Configuration

- 68/131 -

Retrieving a reference via JNDI
If the datasource is constructed using the null parameter constructor it will attempt to obtain the
TransactionManager reference from JNDI. Therefore you must obtain a reference to the
TransactionManager interface and register this with JNDI as shown below:

Note that the reference must be bound under the name "TransactionManager" .

Retrieving a reference using resolve_initial_references()
If you create the datasource using the constructor that takes an ORB reference as a parameter, it will
obtain a TransactionManager reference via resolve_initial_references() .

The following code example demonstrates the preparatory work required to include your XADataSource
in a JTA transaction:

// Java
org.omg.CORBA.Object obj =
orb.resolve_initial_references("TransactionManager");
TransactionManager tx_manager = (TransactionManager) obj;
Context jta_jndi_context = new InitialContext();
jta_jndi_context.bind("TransactionManager", tx_manager);

Retrieving a reference via JNDI

- 69/131 -

Using a standard DataSource
If you do not want to use an XADataSource , it is also possible to include a standard DataSource in a JTA
transaction by using the Orbix supplied com.iona.datasource.IT_NonXADataSource class. As before you
must set up a JNDI context, but then the code becomes:

// Java
// Set the JNDI System Properties...
// See above...
// Create a JNDI Initial Context ...
InitialContext initCtx = new InitialContext();
// Lookup the underlying datasource i.e. Merant, Oracle
javax.sql.XADataSource underlying_ds =
(javax.sql.XADataSource) initCtx.lookup("jdbcXADataSource");
// To enable the underlying datasource to become
// involved in a transaction it must be wrapped in the
// supplied Orbix datasource via the setXADataSource()
// method. Also to enable recovery you must also supply
// the full path name with which the underlying datasource
// is registered through JNDI.
com.iona.datasource.IT_XADataSource xa_ds =
new com.iona.datasource.IT_XADataSource();
// Note that you need only specify a jndi name
// for you datasource for 2PC scenarios, otherwise
// a null string will suffice. Binding the Orbix
// datasource wrapper with jndi also becomes
// irrelevant in a 1PC scenario.
xa_ds.setXADataSource(underlying_ds, "jdbcXADataSource");
initCtx.bind("ionaDataSource", xa_ds);
// Should the application require only a single resource
// to be registered for any given transaction or should
// recovery not be required, we can optimize performance
// of the Orbix datasource by informing it that XA
// is not required.
xa_ds.setOnePhase(true);

Using a standard DataSource

- 70/131 -

Now that you have a data source registered with JNDI under the name "ionaDataSource" or
"ionaXADataSource" , it is this data source that your application must retrieve. It is from this data source
that it will acquire connections to the database, upon which it will perform work. Each connection will
be associated with the transaction that associated with the current thread, making it transparent to the
user.

JTA Configuration
Some configuration issues that must be addressed before an application can use either one of the JTA
plug-ins. Before proceeding you should read OTS Plug-Ins and Deployment Options, because the JTA
plug-in uses the OTS plug-in.

Specifying plug-ins
The orb_plugins configuration variable should specify the JTA plug-ins. This is required for either plug-in
to successfully register itself with JNDI. For example:

or

// Java
//
// Lookup the underlying non xa datasource, e.g., Merant,
// Oracle.
javax.sql.DataSource underlying_ds = (javax.sql.DataSource)
initCtx.lookup("jdbcDataSource");
com.iona.datasource.IT_NonXADataSource non_xa_ds =
new com.iona.datasource.IT_NonXADataSource();
non_xa_ds.setDataSource(underlying_ds, "jdbcDataSource");
initCtx.bind("ionaDataSource", non_xa_ds);

orb_plugins = [..., "jta_manager"]

JTA Configuration

- 71/131 -

Registering a persistent POA
The com.iona.transaction.manager plug-in can support recovery when using an XADataSource and when
configured to use a 2PC transaction service; for example, the Encina OTS transaction manager. To allow
recovery it uses a persistent POA, the name of which must be registered in conjunction with the ORB
name in the locator. The default behavior is that a transient POA named "iJTA" is created by the plug-in
(simply as a namespace) and a persistent POA named "resource" is created from the namespace POA.
For example, using the default names with an ORB called JTA_Manager , you should execute the following
commands:

The POA names are configurable through the following variables:

This persistent POA is only required if you have configured the JTA to enable recovery, which is done by
setting the following configuration variable:

orb_plugins = [..., "jta_user"]

itadmin orbname create JTA_Manager
itadmin poa create -transient iJTA
itadmin poa create -orbname JTA_Manager iJTA/resource

plugins:jta:poa_namespace = "iJTA";
plugins:jta:resource_poa_name = "resource";

plugins:jta:enable_recovery = "true";

Registering a persistent POA

- 72/131 -

Transaction Management

This chapter covers some additional areas of transaction management. This includes Synchronization objects,
transaction identity and status operations, relationships between transactions and recreating transactions.

Synchronization Objects

Synchronization interface
The transaction service provides a Synchronization interface to allow an object to be notified before the
start of a transaction's completion and after it is finished. This is useful, for example, for applications
integrated with a JTA compliant resource manager where the data is cached inside the application. By
registering a synchronization object with the transaction the cache can be flushed to the resource
manager before the transaction starts to commit. Without the synchronization object any updates
made by the application could not be moved from the cache to the resource manager. The
Synchronization interface is as follows:

before_completion()
This operation is invoked during the commit protocol before any 2PC or 1PC operations have been
called, that is before any JTA or Resource prepare operations.

An implementation may flush all modified data to the resource manager to ensure that when the
commit protocol begins, the data in the resource is up to date.

Raising a system exception causes the transaction to be rolled back as does invoking the rollback_only()

operation on the Current or Coordinator interfaces.

The before_completion() operation is only called if the transaction is to be committed. If the transaction
is being rolled back for any reason this operation is not called.

// IDL (in module CosTransactions)
interface Synchronization : CosTransactions::TransactionalObject {
void before_completion();
void (in Status s);
};

Transaction Management

- 73/131 -

after_completion()
This operation is invoked after the transaction has completed, that is after all JTA or Resource commit
or rollback operations have been called. The operation is passed the status of the transaction so it is
possible to determine the outcome. It is possible that before_completion() has not been called, so the
implementation must be able to deal with this possibility.

An implementation can use this operation to release locks that were held on behalf of the transaction or
to clean up caches. Raising an exception in this operation has no effect on the outcome of the
transaction as this has already been determined. All system exceptions are silently ignored.

register_synchronization()
A synchronization object is registered with a transaction by calling the register_synchronization()
operation on the transaction’s coordinator. Assuming the SynchronizationImpl class supports the
Synchronization interface the following code may be used:

The register_synchronization() operation raises the Inactive exception if the transaction has started
completion or has already been prepared. A synchronization object must only be registered once per
transaction, this is the application’s responsibility.

// Java
//
// Get the control and coordinator object for the
// current transaction.
//
Current tx_current = ...
Control control = tx_current.get_control();
Coordinator coordinator = control.get_coordinator();
//
// Create a synchronization servant and activate it in a
// transactional POA. The OTS Policy should be ADAPTS.
//
SynchronizationImpl servant = new SynchronizationImpl();
POA allows_shared_poa = ...
Synchronization obj = servant.activate(poa);
//
// Register the synchronization once with the transaction.
//
coordinator.register_synchronization(sync);

after_completion()

- 74/131 -

Unlike resource objects, synchronization objects are not recoverable. The transaction service does
not guarantee that either operation on the interface will be called in the event of a failure. It is
imperative that applications use a resource object if they need guarantees in these situations (to
release persistent locks for example).

Transaction Identity Operations

Coordinator interface identity operations
The Coordinator interface provides a number of operations related to the identify of transactions. Some
of these operations are also available in the Current interface:

Table 1 Coordinator interface identity operations

Note

// IDL (in module CosTransactions)
interface Coordinator {
boolean is_same_transaction(in Coordinator tc);
unsigned long hash_transaction();
unsigned long hash_top_level_tran();
string get_transaction_name();
PropagationContext get_txcontext();
...
};

Operation Description

is_same_transaction() Takes a transaction coordinator as a parameters and returns true if
both coordinator objects represent the same transaction; otherwise
returns false.

hash_transaction() Returns a hash code for the transaction represented by the target
coordinator obejct. Hash codes are uniformly distributed over the
range of a CORBA unsigned long and are not guaranteed to be
unique for each transaction.

Transaction Identity Operations

- 75/131 -

Maintaining information in individual transactions
The is_same_transaction() and hash_transaction() operations are useful when it is necessary for an
application to maintain data on a per transaction basis (for example, for keeping track of whether a
particular transaction has visited the application before to determine whether a Resource or
Synchronization object needs to be registered). The hash_transation() operation can be used to
implement an efficient hash table while the is_same_transaction() operation can be used for
comparison within the hash table.

For nested transaction families the hash_top_level_transaction() is provided. This returns the hash code
for the top level transaction.

Transaction Status

Coordinator interface status operations
The Coordinator::get_status() operation returns the current status of a transaction. This operation is
also provided by Current::get_status() for the current transaction. The status returned may be one of
the following values:

Operation Description

get_transaction_name

()

Returns a string representation of the transaction’s identify. This
string is not guaranteed to be unique for each transaction so it is only
useful for display and debugging purposes. This operation is also
available on the Current interface.

get_txcontext() Returns the PropagationContext structure for the transaction
represented by the target coordinator object. Amongst other
information, the PropagationContext structure contains the
transaction identifier in the current.otid field. See Recreating
Transactions for more information on the structure of the
PropagationContext.

StatusActive The transaction is active. This is the case after the transaction has
started and before the transaction has started to be committed or
rolled back.

StatusCommitted The transaction has successfully completed its commit protocol.

Maintaining information in individual transactions

- 76/131 -

The following code shows how to obtain the status of a transaction from the transaction’s coordinator
object:

There are two additional status operations for use within nested transaction families:

get_top_level_status() returns the status of the top-level transaction.

get_parent_status() returns the status of a transaction’s parent.

StatusCommitting The transaction is in the process of committing.

StatusMarkedRollback The transaction has been marked to be rolled back.

StatusNoTransaction There is no transaction. This can only be returned from the
Current::get_status() operation and occurs when there is no

transaction associated with the current thread of control.

StatusPrepared The transaction has completed the first phase of the 2PC protocol.

StatusPreparing The transaction is in the process of the first phase of the 2PC
protocol.

StatusRolledBack The transaction has completed rolling back.

StatusRollingBack The transaction is in the process of being rolled back.

The exact status of the transaction is unknown at this point.

// Java
Coordinator coord = ...
Status status = coord.get_status();
if (status == StatusActive)
{
...
} else if (status == StatusRollingBack)
{
...
} else if ...

• •

• •

Coordinator interface status operations

- 77/131 -

Transaction Relationships

Coordinator interface relationship operations
The Coordinator interface provides several operations to test the relationship between transactions.
Each operation takes as a parameter a reference to another transaction’s coordinator object:

Table 2 Coordinator interface relationship operations

// IDL (in module CosTransactions)
interface Coordinator {
boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();
...
};

Operation Description

is_same_transaction() Returns true if both coordinator objects represent the same
transaction; otherwise returns false.

is_related_transaction() Returns true if both coordinator objects represent transactions
in the same nested transaction family; otherwise returns false.

is_ancestor_transaction() Returns true if the transaction represented by the target
coordinator object is an ancestor of the transaction represented
by the coordinator parameter; otherwise returns false. A
transaction is an ancestor to itself and a parent transaction is an
ancestor to its child transactions.

is_descendant_transaction() Returns true if the transaction represented by the target
coordinator object is a descendant of the transaction
represented by the coordinator parameter; otherwise returns
false. A transaction is a descendant of itself and is a descendent
of its parent.

Transaction Relationships

- 78/131 -

Example
The following code tests if the transaction represented by the coordinator c1 is an ancestor of the
transaction represented by the coordinator c2:

Recreating Transactions

TransactionFactory interface
The TransactionFactory interface provides the create() operation for creating new top-level
transactions. The interface also provides a recreate() operation to import an existing transaction into
the local context. The recreate() is passed a PropagationContext structure and returns a Control object
representing the recreated transaction. The interfaces and types are declared as follows:

Operation Description

is_top_level_transaction() Returns true if the transaction represented by the target
coordinator object is a top-level transaction; otherwise returns
false.

// Java
Coordinator c1 = ...
Coordinator c2 = ...
if (c1.is_ancestor_transaction(c2))
{
// c1 is an ancestor of c2
}
else
{
// c1 is not an ancestor of c2
}

Example

- 79/131 -

The PropagationContext is a structure that encodes sufficient information about the transaction to
successfully recreate it. To get the PropagationContext for a transaction use the get_txcontext()
operation provided by the Coordinator interface.

Example
The following code shows how to use the get_txcontext() and recreate() operations to explicitly import
a transaction given a reference to the Control object for a foreign transaction:

// IDL (in module CosTransactions)
struct otid_t {
long formatID;
long bqual_length;
sequence <octet> tid;
};
struct TransIdentity {
Coordinator coord;
Terminator term;
otid_t otid;
};
struct PropagationContext {
unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;
};
interface TransactionFactory
{
Control recreate(in PropagationContext ctx);
...
};
interface Coordinator
{
PropagationContext get_txcontext();
raises (Unavailable);
...
};

Example

- 80/131 -

The PropagationContext structure contains the transaction’s global identifier in the current.otid field.
This is essentially a sequence of octets divided into two parts: a global transaction identifier and a
branch qualifier. This structure is indented to match the XID transaction identifier format for the X/Open
XA specification.

// Java
Control foreign_control = ...
Coordinator foreign_coord =
foreign_control.get_coordinator();
PropagationContext ctx = foreign_coord.get_txcontext();
TransactionFactory tx_factory = ...
Control control = tx_factory.recreate(ctx);

Example

- 81/131 -

Writing Recoverable Resources

The OTS supports resource objects to allow applications to participate in transactions. For example, an
application might maintain some data for which ACID properties are required. This chapter describes the
CosTransactions::Resource interface; how resource objects participate in the transaction protocols and the
requirements for implementing resource objects.

The Resource Interface

Resource interface transaction operations
The CosTransactions::Resource interface provides a means for applications to participate in an OTS
transaction. The interface is defined as follows:

Writing Recoverable Resources

- 82/131 -

Resource object implementations cooperate with the OTS, through these five operations, to ensure the
ACID properties are satisfied for the whole transaction. Each resource object represents a single
participant in a transaction and throughout the lifecycle of the resource it must respond to the
invocations by the OTS until the resource object is no longer needed. This may include surviving the
failure of the process or node hosting the resource object or the failure of the process or node hosting
the OTS implementation.

Overview of the use of resource objects
Figure 7 shows a high level picture of how clients, applications, the OTS and resource objects
interoperate to achieve the ACID properties.

Figure 7 Relationship between resources and transactions

// IDL (in module CosTransactions)
interface Resource
{
void commit_one_phase()
raises (HeuristicHazard);
Vote prepare()
raises (HeuristicMixed,
HeuristicHazard);
void rollback()
 raises (HeuristicCommit,
HeuristicMixed,
HeuristicHazard);
void commit()
raises (NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard);
void forget();
};

Overview of the use of resource objects

- 83/131 -

The steps involved are:

The client contacts the OTS implementation and creates a transaction.

The client makes invocations on the application within the context of the transaction and updates
some data.

The application detects that the data is being updated and creates a resource object. The resource
object is registered with the transaction.

The client completes by contacting the OTS implementation and attempting to commit the
transaction.

The transaction initiates the commit protocol. The choice of which protocol to use (either 1PC or 2PC)
depends on the number of resource objects registered with the transaction and whether the OTS
supports the 1PC optimization.

Assuming the 2PC protocol is being used, the OTS sends a prepare message to the resource. The
resource stably stores enough information to recover in case of a crash (for example, by writing the
changes to a log file). The resource object votes to commit the transaction.

The OTS gathers the votes of all resource objects and decides the outcome of the transaction. This
decision is send to all registered resource objects.

The resource object upon receiving the commit or rollback message makes the necessary changes
and saves the decision to the log.

The OTS returns the outcome to the client.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

Overview of the use of resource objects

- 84/131 -

Creating and Registering Resource Objects

Implementing servants for resource objects
Implementing servants for resource objects is similar to any servant implementation. The resource
servant class needs to inherit from the POA_CosTransactions::Resource class to extend the ResourcePOA
class and provide implementations for the five resource operations. For example, the following class
can be used to implement a resource servant:

Creating and Registering Resource Objects

- 85/131 -

Creating resource objects
Resource objects, once prepared, must survive failures until the 2PC protocol has completed. During
recovery any resource objects requiring completion must be recreated using the same identifier so the
transaction coordinator can deliver the outcome. This means that resource objects must be created
within a POA with a PERSISTENT lifespan policy and a USER_ID ID assignment policy. See the sections
“Setting Object Lifespan” and “Assigning Object IDs” in the chapter "Managing Server Objects" in the
CORBA Programmer’s Guide for more details.

// Java
public class ResourceImpl extends ResourcePOA
{
public ResourceImpl() { ... }
public Vote
prepare()
throws HeuristicMixed, HeuristicHazard
{ ... }
public void
rollback()
throws HeuristicCommit, HeuristicMixed, HeuristicHazard
{ ... }
public void
commit()
throws NotPrepared, HeuristicRollback, HeuristicMixed,
HeuristicHazard
{ ... }
public void
commit_one_phase()
throws HeuristicHazard
{ ... }
public void
forget()
{ ... }
}

Creating resource objects

- 86/131 -

Tracking resource objects
Each resource object can only be used once and may only be registered with one transaction. It is up to
the application to keep track of whether it has seen a particular transaction before. This can be done
efficiently using the hash_transaction() and is_same_transaction() operations provided by the
Coordinator interface to implement a hash map (see Transaction Identity Operations for details).

Some form of unique identifier must be used for the resource object’s ObjectId . One possibility is to use
the transaction identifier (obtained from the otid field in the transaction’s propagation context).

Registering resource objects
Registration of a resource object with a transaction is done by the register_resource() operation
provided by the transaction’s coordinator object. For example, the following code sample shows a
resource servant and object being created and registered with a transaction:

The register_resource() operation returns a reference to a recovery coordinator object:

// Java
Current tx_current = ...
// Get the transaction’s coordinator object.
Control control = tx_current.get_control();
Coordinator coord = control.get_coordinator();
// Create resource servant.
ResourceImpl servant = new ResourceImpl();
// Create resource object. The POA referenced by resource_poa
// has the PERSISTENT lifespan policy and the USER_ID ID
// assignment policy.
POA resource_poa = ...
ObjectId oid = ...
resource_poa.activate_object_with_id(oid, servant);
Object obj = resource_poa.servant_to_reference(servant);
Resource resource = ResourceHelper.narrow(obj);
// Register the resource with the transaction coordinator.
RecoveryCoordinator rec_coord =
coord.register_resource(resource);

Tracking resource objects

- 87/131 -

The recovery coordinator object supports a single operation, replay_completion() , that is used for
certain failure scenarios (see Failure of the Transaction Coordinator). Resource objects must hold onto
the recovery coordinator reference.

The register_resource() operation raises the Inactive exception if the transaction is no longer active.

Resource Protocols

Protocols supported by resource objects
Resource object implementations cooperate with the transaction coordinator to achieve the ACID
properties. This section examines the protocols that resource objects are required to support:

Rolling back a transaction.

The 2-phase-commit protocol.

Read-only resources.

The 1-phase-commit protocol.

Heuristic outcomes.

Failure and recovery

// IDL (in module CosTransactions)
interface Coordinator
{
RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);
...
};
interface RecoveryCoordinator
{
Status replay_completion(in Resource r)
raises(NotPrepared);
};

• •

• •

• •

• •

• •

• •

Resource Protocols

- 88/131 -

Transaction Rollbacks
Up until the time the coordinator makes the decision to commit a transaction, the transaction may be
rolled back for a number of reasons. These include:

A client calling the rollback() operation.

Attempting to commit the transaction after the transaction has been marked to be rolled-back
with the rollback_only() operation.

The transaction being timed-out.

The failure of any participant in the transaction.

When the transaction is rolled-back all registered resource are rolled-back via the rollback() operation.
Figure 8 shows a transaction with two registered resource objects being rolled back after a timeout.

Figure 8 Rollback after a timeout

Rollbacks may also occur during the 2PC protocol (see below).

The 2-Phase-Commit Protocol
The 2-phase-commit (2PC) protocol is designed so that all participants within a transaction know the
final outcome of the transaction. The final outcome is decided by the transaction coordinator but each
resource object participating can influence this decision.

During the first phase, the transaction coordinator invokes the prepare() operation on each resource
asking it to prepare to commit the transaction. Each resource object returns a vote which may be one of
three possible values: VoteCommit indicates the resource is prepared to commit its part of the
transaction; VoteRollback indicates the transaction must be rolled-back; and VoteReadOnly indicates the
resource is no longer interested in the outcome of the transaction (see Read-Only Resources).

• •

• •

• •

• •

Transaction Rollbacks

- 89/131 -

The coordinator makes a decision on whether to commit or rollback the transaction based on the votes
of the resource objects. Once a decision has been reached the second phase commences where the
resource objects are informed of the transaction outcome.

In order for the coordinator to decide to commit the transaction, each resource object must have either
voted to commit the transaction or indicated that it is no longer interested in the outcome. Once a
resource has voted to commit, it must wait for the outcome to be delivered via either the commit() or
rollback() operation. The resource must also survive failures. This means that sufficient information
must be stable stored so that during recovery the resource object and its associated state can be
reconstructed. Figure 9 shows a successful 2PC protocol with two resources objects. Both resources
return VoteCommit from the prepare() operation and the coordinator decides to commit the
transaction resulting in the commit() operations being invoked on the resources.

Figure 9 Successful 2PC protocol with two resources

If one resource returns VoteRollback the whole transaction is rolled back. Resources which have already
been prepared and which voted to commit and resources which have not yet been prepared are told to
rollback via the rollback() operation. Figure 10 shows VoteRollback being returned by one resource
which results in the other resource being told to rollback.

Figure 10 Voting to rollback the transaction.

The 2-Phase-Commit Protocol

- 90/131 -

Read-Only Resources
A resource can return VoteReadOnly from the prepare() operation which means the resource is no
longer interested in the outcome of the transaction. This is useful, for example, when the application
data associated with the resource was not modified during the transaction. Here it does not matter
whether the transaction is committed or rolled back. By returning VoteReadOnly the resource is opting
out of the 2PC protocol and the resource object will not be contacted again by the transaction
coordinator.

Figure 11 shows the 2PC protocol with two resource objects. In the first phase, the first resource returns
VoteReadOnly and the second resource returns VoteCommit. During the second phase only the second
resource is informed of the outcome (commit in this case).

Figure 11 A resource returning VoteReadOnly.

The 1-Phase-Commit Protocol
The 1-phase-commit (1PC) protocol is an optimization of the 2PC protocol where the transaction only
has one participant. Here the OTS can short circuit the 2PC protocol and ask the resource to commit the
transaction directly. This is done by invoking the commit_one_phase() operation rather than the prepare()
operation.

When the 1PC protocol is uses the OTS is delegating the commit decision to the resource object. If the
resource object decides to commit the transaction, the commit_one_phase() operation returns
successfully. However, if the resource decides to rollback the transaction it must raise the
TRANSACTION_ROLLEDBACK system exception. Figure 12 shows a successful 1PC protocol.

Figure 12 A successful 1PC protocol.

Read-Only Resources

- 91/131 -

Figure 13 shows a 1PC protocol resulting in the transaction being rolled-back.

Figure 13 The 1PC protocol resulting in a rollback.

It is possible for the commit_one_phase() operation to be called even when more than one resource is
registered with a transaction when resources return VoteReadOnly from prepare() . Assume for example
there are three resources registered with a transaction. If the first two resources both return
VoteReadOnly the third resource does not need to be prepared and the commit_one_phase() operation can
be used instead.

Heuristic Outcomes
Heuristics outcomes occur when at least one resource object unilaterally decides to commit or rollback
its part of the transaction and this decision is in conflict with the eventual outcome of the transaction.
For example, a resource may have a policy that, once prepared, it will decide to commit if no outcome
has been delivered within a certain period. This might be done to free up access to shared resources.

Any unilateral decisions made must be remembered by the resource. When the eventual outcome is
delivered to the resource it must reply according to the compatibility of the decisions. For example, if
the resource decides to commit its part of the transaction and the transaction is eventually rolled back,
the resource’s rollback() operation must raise the HeuristicCommit exception. The following table lists
the resource’s response for the various possible outcomes.

Table 3 Heuristic Outcomes

Resource Decision Transaction Outcome Resource’s Response

Commit Commit commit() returns successfully.

Commit Rollback rollback() raises HeuristicCommit

Rollback Rollback rollback() returns successfully

Heuristic Outcomes

- 92/131 -

Once a resource has raised a heuristic exception it must remember this until the forget() operation has
been called by the OTS (see Figure 14). For example, after a failure the OTS might invoke the rollback
operation again in which case the resource must re-raise the HeuristicCommit exception. Once the
forget() operation has been called the resource object is no longer required and can be deleted.

Figure 14 Raising the HeuristicCommit exception

Heuristic outcome are reported to the client only if true is passed to the commit() operation provided by
the OTS Current object. They are reported by raising one of the exceptions: HeuristicMixed or
HeuristicHazard . HeuristicMixed means a heuristic decision has been made resulting in some updates
being committed and some being rolled back. HeuristicHazard indicates that a heuristic decision may
have been made.

If the commit_one_phase() operation is called by the transaction coordinator, the commit decision is
delegated to the resource implementation. This means that if the operation fails (that is results in a
system exception other than TRANSACTION_ROLLEDBACK being raised) then the coordinator cannot know the
true outcome of the transaction. For this case, the OTS raises the HeuristicHazard exception.

Failure and Recovery
Resource objects need to be able to deal with the failure of the process or node hosting the resource
and the failure of the process or node hosting the OTS implementation.

Resource Decision Transaction Outcome Resource’s Response

Rollback Commit commit() raises HeuristicRollback

Failure and Recovery

- 93/131 -

Failure of the Resource
If the process or node hosting the resource object fails after the resource has been prepared, the
resource object must be recreated during recovery so that the outcome of the transaction can be
delivered to the resource. Figure 15 shows a crash occurring sometime after the resource has been
prepared but before the coordinator invokes the commit() operation. When the coordinator does
invoke the commit() operation the resource object is not active and the coordinator will attempt to
commit later. In the meantime the resource object is recreated and waits for the commit() operation to
be invoked. The next time the coordinator calls commit() the resource receives the invocation and
proceeds as normal.

Figure 15 Recovery after the failure of a resource object

If the failure occurs before the resource has been prepared, there is no need to recreate the resource
during recovery. When the 2PC protocol starts the OTS will not be able to contact the resource and the
transaction will be rolled back.

Failure of the Transaction Coordinator
If the process or node hosting the transaction coordinator fails there are two possible ways in which
the failure is resolved:

The transaction coordinator recovers and eventually sends the outcome to the resource. Here, the
resource does not need to participate in the recovery; either the commit() or rollback() operation will
be invoked as normal.

The resource detects that no outcome has been delivered and asks the transaction coordinator to
complete the transactions. This is done using the replay_completion() operation provided by the
recovery coordinator object.

1. 1.

2. 2.

Failure of the Resource

- 94/131 -

The second way of resolving the failure of the OTS is required because the OTS supports a behavior
called presumed rollback. With presumed rollback, if a transaction is rolled back the coordinator is not
required to stably store this fact. Instead, on recovery if there is no information available on a
transaction, the transaction is presumed to have rolled back. This saves on the amount of data that
must be stably stored but means the resource object must check to see if the transaction has been
rolled back.

Recall from Creating and Registering Resource Objects when a resource is registered with the
coordinator a reference to a recovery coordinator object is returned. The recovery coordinator supports
the RecoveryCoordinator interface:

The sole operation, replay_completion() , takes a resource object and returns the status of the
transaction. If the transaction has not been prepared the NotPrepared exception is raised. The
replay_completion() operation is meant to hint to the coordinator that the resource is expecting the
transaction to be completed.

To support detecting presumed rolled-back transactions, the replay_completion() operation is used to
detect if the transaction still exists. If the transaction still exists the operation will either return a valid
status or the NotPrepared exception. However, if the transaction no longer exists the OBJECT_NOT_EXIST

system exception will be raised (other system exceptions should be ignored).

By periodically calling replay_completion() and checking for the OBJECT_NOT_EXIST exception, the resource
object can detect rolled-back transactions (see Figure 16). This periodic calling of replay_completion()
must be done before the resource has been prepared, after the resource has been prepared and after
recovery of the resource due to a crash. To implement the latter, the resource object needs to stably
store the recovery coordinator reference (for example using a stringified IOR) so that after a failure, the
recovery coordinator can be contacted.

Figure 16 Use of the replay_completion() operation

// IDL (in module CosTransactions)
interface RecoveryCoordinator
{
Status replay_completion(in Resource r)
raises (NotPrepared);
};

Failure of the Transaction Coordinator

- 95/131 -

Responsibilities and Lifecycle of a Resource Object
This section details the responsibilities of a resource object for each operation and shows the lifecycle of
a resource object.

prepare()

The prepare() operation is called during the first phase of the 2PC protocol allowing the resource to
vote in the transaction’s outcome and if necessary prepare for eventual commitment.

Voting is done by returning one of the three values VoteCommit , VoteRollback and VoteReadOnly :

Vote prepare() raises (HeuristicMixed, HeuristicHazard);

VoteCommit This indicates that the resource is willing to commit its part of the transaction
and has fully prepared itself for the eventual outcome of the transaction. The
next invocation on the resource will be either commit() or rollback() .

Responsibilities and Lifecycle of a Resource Object

- 96/131 -

If a resource object returns VoteCommit it must stably store sufficient information so that in the event
of a failure, the resource object and its state can be reconstructed and continue to participate in the 2PC
protocol. The actual information that is saved depends on the application, but typically it will include the
following:

The identity of the transaction. This can be obtained from the otid field in the transaction’s
propagation context which in turn is obtained by the get_txcontext() operation on the
transaction’s coordinator.

The ObjectID for the resource.

The reference for the recovery coordinator object associated with the resource. This can be saved
as a stringified IOR obtained by the object_to_string() operation.

Sufficient information to redo or undo any modifications made to application data by the
transaction.

The prepare() operation can raise two exceptions dealing with heuristic outcomes: HeuristicMixed and
HeuristicHazard . These exceptions may be used internally in an OTS implementation; most resource
implementations do not need to raise these exceptions.

commit()

The commit() operation is called during the second phase of the 2PC protocol after the coordinator has
decided to commit the transaction. The commit() operation may be invoked multiple times due to
various failures such as a network error, failure of the OTS and failure of the application.

Typically the commit() operation does the following:

VoteRollback This indicates that the resource has decided to rollback the transaction. This
ensures that the transaction will be rolled back. The resource object can
forget about the transaction and no further operations will be invoked on the
resource object.

VoteReadOnly This indicates that the resource does not want to be further involved in the
2PC protocol. This does not affect the transaction outcome and the resource
object can forget about the transaction. No further operations will be invoked
on the resource object.

• •

• •

• •

• •

void commit() raises (NotPrepared, HeuristicRollback, HeuristicMixed,
HeuristicHazard)

commit()

- 97/131 -

Make permanent any modifications made to the data associated with the resource.

Cleans up all traces of the transaction, including information stably stored for recovery.

The commit() operation can raise one of four user exceptions: NotPrepared , HeuristicRollback ,
HeuristicMixed , HeuristicHazard . The NotPrepared exception must be raised if commit() is invoked before
the resource has been prepared (that is, returned VoteCommit from the prepare() operation).

The HeuristicRollback exception must be raised if the resource had decided to rollback its part of the
transaction after being prepared and prior to the commit() operation being invoked. If this exception is
raised it must be raised on future invocations of the commit() operation and the resource must wait for
the forget() operation to be invoked before cleaning up the transaction.

The HeuristicMixed and HeuristicHazard exceptions may be used internally in an OTS implementation;
most resource implementations do not need to raise these exceptions.

rollback()

There are two occasions when the rollback() operation is called:

During the second phase of the 2PC protocol after the coordinator has decided to commit the
transaction.

When the transaction is rolled back prior to the start of the 2PC protocol. This may occur for several
reasons including the client invoking the rollback() operation on the OTS Current object, the
transaction begin timed-out, and an attempt to commit a transaction that has been marked for
rollback.

The rollback() operation may be invoked multiple times due to various failures such as a network error,
failure of the OTS and failure of the application.

Typically the rollback() operation does the following:

Undo any modifications made to the data associated with the resource.

Cleans up all traces of the transaction, including information stably stored for recovery.

• •

• •

void rollback() raises (HeuristicCommit, HeuristicMixed, HeuristicHazard)

1. 1.

2. 2.

• •

• •

rollback()

- 98/131 -

The rollback() operation can raise one of three user exceptions: HeuristicCommit , HeuristicMixed ,
HeuristicHazard . The HeuristicCommit exception must be raised if the resource had decided to commit its
part of the transaction after being prepared and prior to the rollback() operation being invoked. If this
exception is raised it must be raised on future invocations of the rollback() operation and the resource
must wait for the forget() operation to be invoked before cleaning up the transaction. Heuristic
exceptions can only be raised if the resource has been prepared.

The HeuristicMixed and HeuristicHazard exceptions may be used internally in an OTS implementation;
most resource implementations do not need to raise these exceptions.

commit_one_phase()

The commit_one_phase() operation may be invoked when there is only one resource registered with the
transaction. The resource decides whether to commit or rollback the transaction. Typically the
commit_one_phase() operation does the following:

An attempt is made to commit any changes made to the application data. If this succeeds the
operation returns normally; otherwise the changes are undone and the TRANSACTION_ROLLEDBACK
system exception is raised.

Cleans up all traces of the transaction.

The HeuristicHazard exception must be raised if the resource cannot determine whether the commit
attempt was successful or not. If this exception is raised the resource must wait for the forget()
operation to be invoked before cleaning up the transaction.

forget()

The forget() operation is called after the resource object raised a heuristic exception from either
commit() , rollback() or commit_one_phase() . The forget() operation may be invoked multiple times due
to various failures such as a network error, failure of the OTS and failure of the application. Typically the
resource cleans up all traces of the transaction, including information stably stored for recovery.

void commit_one_phase() raises (HeuristicHazard)

• •

• •

void forget()

commit_one_phase()

- 99/131 -

Resource Object Checklist
The following is a list of things to remember when implementing recoverable resource objects:

A resource object can only be registered with one transaction. At the end of the resource’s lifecycle
the resource must be deactivated.

Resource objects need unique identifiers. This means they must be created in a POA with a
USER_ID ID assignment policy.

Resource objects must be able to be recreated after a failure. This means they must be created in
a POA with a PERSISTENT lifecycle policy.

Resource objects must implement both the 2PC operations (prepare() , commit() , rollback() and
forget()) as well as the 1PC operation (commit_one_phase()).

Only return VoteCommit from the prepare() operation if the resource can commit the transaction
and has stably stored sufficient state to be recreated after a failure.

If a resource object wants to opt out of the 2PC protocol, it should return VoteReadOnly from the
prepare() operation.

If the resource takes heuristic decisions, the decisions must be remembered and reported to the
OTS.

Periodically call the replay_completion() operation to check for presumed rollback transactions.

Resources are expensive in terms of 2PC messages and stable storage for recovery. Design your
applications to minimize the number of resources used.

• •

• •

• •

• •

• •

• •

• •

• •

• •

Resource Object Checklist

- 100/131 -

Interoperability

This chapter describes how the Orbix OTS interoperates with older releases of Orbix and with other OTS
implementations including the Orbix 3 OTS.

Orbix 3 OTS has been deprecated since Orbix 3.3.13. This section still applies when inter-operating
with older versions of Orbix 3.

Use of InvocationPolicies

Deprecated policies
This release of Orbix introduces the OTSPolicies, InvocationPolicies and NonTxTargetPolicies that
replace the deprecated TransactionPolicies. The deprecated TransactionPolicies (for example,
Requires_shared and Allows_shared) are supported allowing interoperability between different releases
of Orbix.

When creating Orbix transactional POAs that must interoperate with previous releases, the policies for
the POA must include the deprecated TransactionPolicy as well as the OTSPolicy and InvocationPolicy.
See Migrating from TransactionPolicies for more details.

Support for the TransactionPolicy type may be discontinued in a future Orbix release. It is
recommended that only OTSPolicies and InvocationPolicies be used.

Note

Note

Interoperability

- 101/131 -

Use of the TransactionalObject Interface

Enabling support for the TransactionalObject interface
Version 1.1 of the OTS specification uses inheritance from the empty
CosTransactions:TransactionalObject interface to indicate the transactional requirements of an object.
For example, the Orbix 3 OTS only supports the TransactionalObject interface and not the policies.

Orbix provides support for the TransactionalObject interface, allowing different behaviors to be
configured. This support needs to be enabled by setting the plugins:ots:support_ots_v11 configuration
variable to “true” (by default this support is not enabled). Once enabled, an object which supports the
TransactionalObject interface is interpreted as having an effective OTSPolicy which depends on the
value of the plugins:ots:ots_v11_policy configuration variable. Table 4 details this mapping:

Table 4 Mapping TransactionalObject to OTSPolicies

The default value for the plugins:ots:ots_v11_policy is “requires” since this is the default behavior for the
Orbix 3 OTS. For backward compatibility with previous Orbix releases a value of “allows” is interpreted
as “adapts”.

It is recommended that the when support for TransactionalObject is enabled, the NonTxTargetPolicy
PERMIT should be used.

If an object supports TransactionalObject and also uses OTSPolicies, the OTSPolicies take priority;
compatibility checks are not done.

To summarize, to enable support for the TransactionalObject interface the following is required:

Set the plugins:ots:support_ots_v11 configuration variable to “true” .

Set the plugins:ots:ots_v11_policy configuration variable to either “requires” (the default) or
“adapts” .

Inherits from
Transactional

Object

Value of
plugins:ots:ots_v11_policy

Effective OTSPolicy
Value

No n/a FORBIDS

Yes “requires” REQUIRES

Yes “adapts” ADAPTS

1. 1.

2. 2.

Use of the TransactionalObject Interface

- 102/131 -

Use the PERMIT NonTxTargetPolicy (for example, by setting the policies:non_tx_target_policy
configuration variable to “permit”).

Interoperability with Orbix 3 OTS Applications
This section details how an Orbix client can interoperate with an existing Orbix 3 OTS application. Since
Orbix 3 supports only the TransactionalObject interface this section is an extension of the previous
section Use of the TransactionalObject Interface

Details on using the Encina OTS are covered in The Encina Transaction Manager.

Orbix 3 OTS Interoperability
Figure 17 shows an Orbix client working with an existing Orbix 3 OTS application. The first thing to note
is that the Orbix 3 OTS always requires a full 2PC transaction manager such as that provided by the
Encina OTS (see The Encina Transaction Manager) or the otstf provided with Orbix 3. A 1PC-only
transaction created by the OTS Lite transaction manager will not be usable by the Orbix 3 OTS. This
means that the Orbix client must be configured to use an external transaction factory to create
transactions.

Figure 17 Interoperability with Orbix 3 OTS Applications

3. 3.

Interoperability with Orbix 3 OTS Applications

- 103/131 -

Using otstf as transaction manager
To get the Orbix client to use the Orbix 3 otstf server as its transaction manager, the
initial_references:TransactionFactory:reference configuration variable must be set to the reference of
the otstf’s transaction factory object. This can be done by passing the –T switch to the otstf and
copying the IOR reference output. Alternatively the otstf can publish its name to the name service
using the –t switch and a suitable corbaname URL can be used as the reference value (see the section
“Resolving Names with corbaname” in the chapter “Naming Service” in the CORBA Programmer’s Guide).

The Orbix 3 OTS application must be enabled to import standard transaction contexts. This is done by
setting the Orbix 3 OrbixOTS.INTEROP configuration variable to “TRUE” .

The final consideration is the mapping from inheritance from TransactionalObject to the effective
OTSPolicy. The Orbix 3 OTS provides a proprietary policy mechanism which mimics the behavior of the
OTSPolicies REQUIRES and ADAPTS (the default being REQUIRES). Therefore, when selecting the value for
the plugins:ots:ots_v11_policy configuration variable, make sure it matches the policy expected by the
Orbix 3 application.

Summary
The following is a checklist for enabling interoperability between Orbix clients and Orbix 3 OTS
applications.

Set the plugins:ots:support_ots_v11 configuration variable to “true” .

Set the plugins:ots:ots_v11_policy configuration variable to match the equivalent Orbix 3 OTS policy
for the TransactionalObject interface.

Use the PERMIT NonTxTargetPolicy.

Set the initial_references:TransactionFactory:reference configuration variable to refer to either the
Orbix 3 otstf’s transaction factory another transaction factory that supports 2PC.

Set the Orbix 3 OrbixOTS.INTEROP configuration variable to “TRUE” .

For more information on the use of the otstf server and setting Orbix 3 transaction policies, refer to the
Orbix 3 OTS manual.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Using otstf as transaction manager

- 104/131 -

Using the Orbix 3 otstf with Orbix Applications

Using Orbix 3 otstf transaction manager
Another possible use of Orbix 3 is to use the 2PC otstf transaction manager with an Orbix OTS
application. This setup is shown in Figure 18.

Figure 18 Using and alternative OTS Implementation

This setup is achieved by setting the initial_references:TransactionFactory:reference configuration
variable to refer to the otstf’s transaction factory.

Using the Orbix 3 otstf with Orbix Applications

- 105/131 -

OTS Plug-Ins and Deployment Options

Orbix provides a generic OTS plugin that provides an implementation of the OTS Current object including
transaction propagation. In addition there are two OTS transaction manager implementations: OTS Lite,
which provides a lightweight transaction coordinator supporting only the 1PC protocol, and OTS Encina,
which provides full recoverable 2PC support. This chapter discusses deployment options.

OTS Plug-ins
Orbix provides a generic OTS plugin that provides an implementation of the OTS Current object
including transaction propagation.

There are two OTS transaction manager implementations:

OTS Lite

OTS Encina.

OTS Lite
OTS Lite provides lightweight transaction coordinator supporting only the 1PC protocol. It is available as
an application plug-in and requires minimal configuration and administration but can only be used by
applications with only a single resource manager.

OTS Encina
OTS Encina provides full recoverable 2PC support allowing it to be used by applications that are using
one or more resource managers. It is available as a standalone service and as a application plug-in.

OTS Encina is only available in the Orbix Enterprise Edition.

OTS Encina is not supported on 64 bit windows platforms.

• •

• •

Note

•

•

OTS Plug-Ins and Deployment Options

- 106/131 -

Features in OTS
Table 5 shows the features supported by these pieces.

Table 5 Features in OTS Implementation

Feature Generic OTS OTS Lite OTS Encina

Current Object Y

Transaction Policies Y

Old Transaction Policies Y

TransactionalObject Y

1PC Protocol Y Y

2PC Protocol N Y

Resource Objects Y Y

Synchronization Objects Y Y

Nested Transactions N N

iPAC Management N Y

Orbix Administrator Management Y Y

XA Support Y Y

JTA Support Y Y Y

Application Plug-In Y Y Y

Features in OTS

- 107/131 -

The OTS Plug-In

Purpose of the OTS plug-in
Any application using the OTS Current object needs to load the OTS plug-in. This plug-in provides an
implementation of the OTS Current object which provides the thread/transaction association,
propagation of the current transaction to transactional objects and the policies OTSPolicy,
InvocationPolicy and NonTxTargetPolicy. In addition the OTS plug-in provides the client stubs for the
CosTransactions module, so applications need to load the OTS plug-in classes.

In OTS plug-in does not provide any transaction manager functionality. Instead the OTS plug-in
delegates elsewhere using the standard CosTransactions module APIs (see Figure 19). This allows
different deployment options to be easily supported through configuration.

Figure 19 The Generic OTS Plug-In

Loading the OTS plug-in
There are two ways in which the OTS plug-in can be loaded:

Explicitly adding the plug-in name “ots” to the orb_plugins configuration variable. For example:
orb_plugins = [..., “ots”];

Setting the initial_references:TransactionCurrent:plugin configuration variable to the value “ots” .
This causes the OTS plug-in to be loaded when resolve_initial_references(“TransactionCurrent”) is

Feature Generic OTS OTS Lite OTS Encina

Application Plug-In Y Y N

1. 1.

2. 2.

The OTS Plug-In

- 108/131 -

called. When using this way, resolve_initial_references() should be called immediately after
ORB_init() has been called and before any transaction POAs are created.

When the OTS plug-in is initialized it obtains a reference to a transaction factory object by calling
resolve_initial_references(“TransactionFactory”). So changing which transaction manager to use is just a
matter of using configuration to change the outcome of resolve_initial_references() .

Deployment scenarios
The remainder of this section describes two possible deployment scenarios for Java:

Using the OTS Lite plug-in when only 1PC transactions are required.

Using the itotstm service with the OTS Encina plug-in where recoverable 2PC transactions are
required.

For more information, see the Orbix Deployment Guide.

The OTS Lite Plug-In
The OTS Lite plug-in is a lightweight transaction manager that only supports the 1PC protocol. This
plug-in allows applications that only access a single transactional resource to use the OTS APIs without
incurring a large overhead, but allows them to migrate easily to the more powerful 2PC protocol by
switching to a different transaction manager. Figure 20 shows a client/server deployment that uses the
OTS Lite plug-in.

Figure 20 Deployment using the OTS Lite Plug-In

As usual both the client and server applications must load the OTS plug-in. In addition the client
application loads the OTS Lite plug-in, allowing the client to create 1PC transaction locally.

• •

• •

Deployment scenarios

- 109/131 -

When using the Orbix configuration tool, itconfigure , the OTS Lite plug-in is deployed by default.

Loading the OTS Lite plug-in
As with the OTS plug-in the OTS Lite plug-in can be loaded in two ways:

Adding the plug-in name “ots_lite” to the orb_plugins configuration variable. For example:
orb_plugins = [..., “ots”, “ots_lite”];

Setting the initial_references:TransactionFactory:plugin configuration variable to “ots_lite” . This
causes the OTS Lite plug-in to be loaded by the OTS plug-in when
resolve_initial_references(“TransactionFactory”) is called.

The server application does not need to load the OTS Lite plug-in except when standard interposition is
used (that is, when the plugins:ots:interposition_style configuration variable is set to “standard”). In
this case when the OTS plug-in imports the transaction from the client a transaction manager is
required to create the sub-coordinated transaction.

This deployment should be used when the application only accesses on transactional resource (for
example, updates a single database).

The Encina Transaction Manager
The Encina OTS Transaction Manager provides full recoverable 2PC transaction coordination
implemented on top of the industry proven Encina Toolkit from IBM/Transarc.

The Encina OTS may be used via the itotstm service.

Configuring the OTS Encina Plug-In
Whether the OTS Encina plug-in is used in the itotstm service or directly in the application, there are a
number of administration steps required to successfully use it.

If you selected Distributed Transaction services when running the Orbix configuration tool,
itconfigure , the administration steps outlined in this subsection are done automatically.

Note

1. 1.

2. 2.

Note

Loading the OTS Lite plug-in

- 110/131 -

Two transient POAs must be created. These serve as namespace POAs off which the OTS Encina plug-
in creates its persistent POAs. The first POA is called “iOTS” and the second is a child POA whose name
is set by the plugins:ots_encina:namespace_poa. The default value of this configuration variable is
“otstm” for the itotstm service and “Encina” for an application loading the plug-in. The POAs should
be created using itadmin as follows:

The Encina OTS is fully recoverable and requires a transaction log to write the state of its transactions.
Assuming the log file is to be located in “/local/logs/ots.log” the log is created and initialized using
itadmin as follows:

The effect of initializing the log is to create a restart file. This a file that contains sufficient information
for the OTS Encina plug-in to restart and includes the location of the transaction log. In this example,
the restart file is called /local/logs/ots_restart. The name of the restart file must be passed to the OTS
Encina plug-in by setting the plugins:ots_encina:restart_file configuration variable.

The minimum configuration required to load the OTS Encina plug-in into an applications is:

1. 1.

itadmin poa create –transient –allowdynamic iOTS
itadmin poa create –transient –allowdynamic iOTS/otstm

2. 2.

itadmin encinalog create /local/logs/ots.log
itadmin encinalog init /local/logs/ots.log

Configuring the OTS Encina Plug-In

- 111/131 -

The itotstm Transaction Manager Service
The itotstm program is a standalone transaction manager service which can be configured to load any
transaction manager plug-in. This section shows how it can be used along with the Encina OTS plug-in
to provide 2PC transactions for an application. The itotstm service is deployed if you select the
Distributed Transaction service when running the Orbix configuration tool, itconfigure .

Using itconfigure
If you select the Distributed Transaction service when running the Orbix configuration tool,
itconfigure , the OTS Lite plug-in and the itotstm service are deployed. By default the OTS Lite plug-in is
configured to be used by all clients and servers. To make use of the itotstm service, however, clients
need to pick up the initial_references:TransactionFactory:reference configuration variable that is set in
the iona_services.otstm client configuration scope. This can be done this by passing "-ORBname
iona_services.otstm.client" to the ORB_init() operation or by adding a copy of the variable to the
application's configuration scope.

Example client/server deployment
Figure 21 shows a client/server deployment where the itotstm in conjunction with the OTS Encina plug-
in is used to provide 2PC transaction management. Here, neither the client nor the server needs to load
any transaction manager plug-in. Instead the client OTS is configured to pick up its transaction factory
reference from the OTS Encina plug-in loaded into the itotstm standalone service.

Figure 21 Using the OTS Encina plug-in with the itotstm service

<app-scope> {
initial_references:TransactionFactory:plugin = “ots_encina”;
plugins:ots_encina:namespace_poa = “<name>”;
plugins:ots_encina:restart_file = “<path>”;
}

The itotstm Transaction Manager Service

- 112/131 -

There are two parts to setting up such a deployment.

Configuring the itotstm to load the OTS Encina plug-in.

Configuring the OTS plug-in to pickup the reference to the OTS Encina transaction factory within
the itotstm service.

Configuring itotstm
The itotstm service uses the configuration scope “otstm” by default. This can be changed by using a
different ORB name using the -ORBname command line option. Configuring itotstm to load the OTS
Encina plug-in can be done in two ways:

Adding the OTS plug-in name “ots_encina” to the orb_plugins configuration variable. For example,
orb_plugins = [..., “ots”, “ots_encina”];

Setting the initial_references:TransactionFactory:plugin configuration variable to the name of the OTS
Encina plug-in “ots_encina” .

Note that in both cases the orb_plugins configuration variable must contain “ots” since the OTS plug-in
is required for synchronization objects.

The remainder of the otstm scope should contain the configuration necessary for the OTS Encina plug-
in.

• •

• •

1. 1.

2. 2.

Configuring itotstm

- 113/131 -

Configuring the OTS plug-in
Next the OTS plug-in loaded into the applications needs to pick up the transaction factory reference of
the OTS Encina plug-in. Essentially this means setting the
initial_references:TransactionFactory:refererence configuration variable in the applications
configuration scope to any suitable reference. Three possible ways of achieving this are:

Get the OTS Encina plug-in to export its transaction factory reference to the name service and use a
corbaname style URL for the initial reference. This is done by setting the
plugins:ots_encina:transaction_factory_ns_name configuration variable to the name for the object
reference in the name service. For example, if this is set to “ots/encina” a URL of the form
“corbaname:rir:#ots/encina” can be used.

Get the itotstm to publish the transaction factory IOR to a file using the “prepare” and “-
publish_to_file” command-line switches. Then use the IOR in the file as the transaction factory
reference.

The deployment should be used when the application requires or might require full recoverable 2PC
transactions. For example, the application make use of ore or more resource managers.

1. 1.

2. 2.

Configuring the OTS plug-in

- 114/131 -

OTS Management

This appendix describes the OTS server features that have been exposed for management. It explains all the
managed entities, attributes, and operations. These can be managed using the Administrator management
consoles.

Introduction to OTS Management
This section provides an introduction to the OTS management model and the Administrator
management consoles.

OTS Management Model
Figure 22 shows the main components of the OTS management model.

Figure 22 OTS Management Model

In Figure 22, the components on the left are common to both OTS Encina and OTS Lite. The components
on the right apply to OTS Encina only.

In this model, each OTS server can have multiple Transactions and multiple Encina Transaction Volumes.
However, each server can only have one Transaction Manager, and one Encina Transaction Log.

OTS Management

- 115/131 -

OTS Managed Entities
The following OTS server components have been instrumented for management:

TransactionManager / Encina TransactionManager

Transaction / Encina Transaction

Encina Transaction Log

Encina Volume

This means that these features can be managed using the Administrator management consoles.

Administrator
The Administrator is a set of tools that enables you to manage and configure server applications at
runtime. The Administrator provides a graphical user interface known as the Administrator Console.
This enables you to manage applications, configuration settings, event logging, and user roles.

The Administrator also provides a web browser interface known as the Administrator Web Console. The
web console enables you to manage applications and event logging from anywhere.

The Administrator Web Console, is no longer automatically installed. It is now available as an
optional component. To install, please download and extract the GUI components archive and follow
the installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site,
which is part of the Micro Focus Support Portal. Among other benefits, this site provides access to
product license keys and install-kits, including the relevant GUI components.

For more information on the SLD, please see our Support Portal overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

For detailed information about the Orbix management tools, see the Orbix Management User’s Guide.

• •

• •

• •

• •

Note

OTS Managed Entities

- 116/131 -

https://support.microfocus.com/help/support-portal-overview.pdf

Example Managed Entity
Figure 23 shows an OTS Encina Transaction Manager running in the Administrator web console. It
shows the attributes and operations that are exposed for this entity.

The next sections in this chapter describe the attributes and operations that are displayed for each of
the OTS managed entities.

Figure 23 OTS Encina Transaction Manager Entity

Example Managed Entity

- 117/131 -

TransactionManager Entity
This section describes the managed attributes and operations that are exposed for the
TransactionManager and Encina TransactionManager entity. These attributes and operations are
displayed in the Administrator Console.

TransactionManager Attributes
The managed attributes for the TransactionManager entity are shown in Table 6. These attributes apply
to both OTS Encina and OTS Lite.

Table 6 TransactionManager Attributes

Attribute Type Description

Name string Name of the transaction manager.

Supports 1PC boolean Whether the manager supports one-phase commit.

Supports 2PC boolean Whether the manager supports two-phase commit.

Active long Number of active transactions.

Completed long Number of completed transactions (since the server started).

Committed long Number of committed transactions (since the server
started).

Aborted long Number of aborted transactions.

In Doubt long Number of transactions that are in doubt.

TPM long Number of transactions per minute.

TPM Peak long Maximum number of transactions per minute (since the
server started).

TPM Peak
Time

string Time when the maximum transactions per minute was
reached.

TPM Peak
Average

double Average transactions per minute (since server started).

TransactionManager Entity

- 118/131 -

Encina TransactionManager Attributes
The additional managed attributes for the Encina TransactionManager entity are shown in Table 7.
These attributes apply to OTS Encina only.

Table 7 Encina TransactionManager Attributes

Attribute Type Description

Timeout long Default value for transaction timeout (same as the
default_transaction_ timeout configuration variable

for the ots_lite and ots_encina plug-ins).

This attribute is writable.

Transaction
Log

hyperlink Hyperlink to the Transaction Log entity (null for OTS Lite).

Attribute Type Description

Trace File string The file to which the trace output is
written (
stderr if the string is empty).

This attribute is writable.

Trace On boolean Whether Encina tracing is enabled or
not.

This attribute is writable.

Encina TransactionManager Attributes

- 119/131 -

Encina TransactionManager Operations
The managed operations for the Encina TransactionManager entity are shown in Table 8.

Table 8 Encina TransactionManager Operations

Transaction Entity
This section describes the managed attributes and operations exposed for the Transaction and Encina
Transaction entity. These attributes and operations are displayed in the Administrator Console.

Trace Level
bde

space-separated list of strings,
where each element is one of the
following:

GLOBAL, EVENT, PARAM, NONE,

INTERNAL_PARAM ,
INTERNAL_EVENT

(for example,
"EVENT PARAM ")

These attributes specify the trace level
for the corresponding Encina module
(one of
bde ,
log ,
restart ,
tran ,
util ,
vol ,
respectively).

These attributes are writable.

Trace Level
log

Trace Level
restart

Trace Level
tran

Trace Level
util

Trace Level
vol

Operation Parameters Type Description

dump file name

overwrite

string

boolean

Writes the contents of the Encina trace
buffer to the specified file. Depending on the
value of the overwrite parameter,
appends to an existing file, or overwrites it.

Encina TransactionManager Operations

- 120/131 -

Transaction Attributes
The managed attributes for the Transaction entity are shown in Table 9. These attributes apply to both
OTS Encina and OTS Lite.

Table 9 Transaction Attributes

Encina Transaction Attributes
The additional managed attributes for the Encina Transaction entity are shown in Table 10. These
attributes apply to OTS Encina only.

Table 10 Encina Transaction Attributes

Transaction Operations
The managed operations for the Transaction entity are shown in Table 11. These operations apply to
both OTS Encina and OTS Lite.

Table 11 Transaction Operations

Attribute Type Description

Global TID string Global transaction identifier.

Timeout boolean Transaction-specific timeout.

Creation Time boolean Time when the transaction was created.

Status long CosTransactions::Status values.

Resources long Available resources for the transaction.

Attribute Type Description

Local TID string Local Encina-specific transaction identifier.

Operation Parameter Description

Rollback none Roll back the transaction.

Mark Rollback none Mark the transaction for being rolled back.

Commit none Commit the transaction.

Transaction Attributes

- 121/131 -

These operations are applicable to all transactions. In practice however, these operations will most
likely fail for well-behaved transactions because of their short lifetime. They would only be applied in
critical situations (for example, on a transaction with resource failures).

Encina Transaction Log Entity
This section describes the managed attributes and operations exposed for the Encina Transaction Log
entity. These attributes and operations are displayed in the Administrator Console.

Encina Transaction Log Attributes
The managed attributes for the Encina Transaction Log are shown in Table 12.

Table 12 Encina Transaction Log Attributes

Operation Parameter Description

Remove
Resource

string Remove (unregister) the resource identified by the
stringified object reference from the transaction.

For example, this enables a transaction to complete if
repeated attempts to deliver an outcome to a resource are
failing.

Note

Attribute Type Description

Name string Name of the log (always tranLog for the Encina
Transaction Log) .

Size long Size (in pages of 512 K).

Free long Free space (in pages).

Encina Transaction Log Entity

- 122/131 -

Encina Transaction Log Operations
The managed operations for the Encina Transaction Log are shown in Table 13.

Table 13 Encina Transaction Log Operations

Attribute Type Description

Threshold long Percentage of used pages versus total pages that (when
exceeded) cause a management event to be sent to the
management service.

This attribute is writable.

Check
Interval

long Interval (in seconds) for checking the amount of free space
in the log.

This attribute is writable.

Growth long Difference of free space in the log at beginning and end of
the last check interval.

Average
Growth

double Average of the growth rate in the lifetime of the OTS server.

Archive
Device

string File name of the archive device of the log.

Mirrors list of
hyperlinks

List of hyperlinks to Encina Volume entities.

Operation Parameters Description

Expand none Expands the log to maximum possible size. This is necessary
to avail of the increased disk space after a mirror has been
added.

Encina Transaction Log Operations

- 123/131 -

Encina Volume Entity
This section describes the managed attributes and operations exposed for the Encina (Physical) Volume
entity. These attributes and operations are displayed in the Administrator Console.

Encina Volume Attributes
The managed attributes for the Encina (Physical) Volume entity are shown in Table 14.

Table 14 Encina (Physical) Volume Attributes

Encina Volume Operations
The managed operations for the Encina (Physical) Volume are shown in Table 15.

Table 15 Encina (Physical) Volume Operations

Operation Parameters Description

Add Mirror string Creates a new physical volume backed up by the specified
disk, and adds it to the list of volumes currently mirroring the
transaction log.

The raw partition or file specified by the string parameter
must exist. You can create files using the itadmin tool.

Attribute Type Description

Name string Logical name of the physical volume.

Disks list of
strings

List of fully qualified file or raw partition names for the
different disks that backup the volume.

Operation Parameter Description

Remove none Removes this physical volume.

Encina Volume Entity

- 124/131 -

Management Events
The following OTS events are logged with the Administrator management service:

The heuristic outcome of a transaction.

This event includes the otid and the heuristic outcome type.

When the used space in the transaction log exceeds the threshold.

This event includes the actual percentage of used versus the total number of pages in the
transaction log.

Operation Parameter Description

Add Disk string Adds the specified disk to the physical volume. The raw
partition or file must exist. You can create files using the itad
min tool.

• •

• •

Management Events

- 125/131 -

Glossary

A

administration

All aspects of installing, configuring, deploying, monitoring, and managing a system.

C

client

An application (process) that typically runs on a desktop and requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a program that requests services from CORBA objects.

configuration

A specific arrangement of system elements and settings.

configuration domain

Contains all the configuration information that Orbix ORBs, services and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior. This information consists of configuration variables and their
values. Configuration domain data can be implemented and maintained in a centralised Orbix configuration repository or as a set of
files distributed among domain hosts. Configuration domains let you organise ORBs into manageable groups, thereby bringing
scalability and ease of use to the largest environments. See also configuration file and configuration repository.

configuration file

A file that contains configuration information for Orbix components within a specific configuration domain. See also configuration
domain.

configuration repository

A centralised store of configuration information for all Orbix components within a specific configuration domain. See also
configuration domain.

configuration scope

Orbix configuration is divided into scopes. These are typically organized into a root scope and a hierarchy of nested scopes, the fully-
qualified names of which map directly to ORB names. By organising configuration properties into scopes, different settings can be
provided for individual ORBs, or common settings for groups of ORB. Orbix services have their own configuration scopes.

CORBA

Common Object Request Broker Architecture. An open standard that enables objects to communicate with one another regardless of
what programming language they are written in, or what operating system they run on. The CORBA specification is produced and
maintained by the OMG. See also OMG.

Glossary

- 126/131 -

CORBA objects

Self-contained software entities that consist of both data and the procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and Java.

D

deployment

The process of distributing a configuration or system element into an environment.

E

event

The occurrence of a condition or state change, or the availability of some information that is of interest to one or more modules in a
system. Suppliers generate events and consumers subscribe to receive them.

I

IDL

Interface Definition Language. The CORBA standard declarative language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose in a server application. Clients use these interfaces to access
server objects across a network. IDL interfaces are independent of operating systems and programming languages.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined by the OMG, for communications between ORBs and
distributed applications. IIOP is defined as a protocol layer above the transport layer, TCP/IP.

installation

The placement of software on a computer. Installation does not include configuration unless a default configuration is supplied.

Interface Definition Language

See IDL.

invocation

A request issued on an already active software component.

IOR

Interoperable Object Reference. See object reference.

M

management

To direct or control the use of a system or component. Sometimes used in a more general way meaning the same as Administration.
management console

N

Glossary

- 127/131 -

node daemon

Starts, monitors, and manages servers on a host machine. Every machine that runs a server must run a node daemon.

O

object reference

Uniquely identifies a local or remote object instance. Can be stored in a CORBA naming service, in a file or in a URL. The contact
details that a client application uses to communicate with a CORBA object. Also known as interoperable object reference (IOR) or
proxy.

object transaction service

See Orbix OTS.

OMG

Object Management Group. An open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including CORBA. See www.omg.com.

ORB

Object Request Broker. Manages the interaction between clients and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a distributed computer environment. Key component in CORBA.

Orbix OTS

Object Transaction Service. An implementation of the OMG Transaction Service Specification. Provides interfaces to manage the
demarcation of transactions and the propagation of transaction contexts.

POA

Portable Object Adapter. Maps object references to their concrete implementations in a server. Creates and manages object
references to all objects used by an application, manages object state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB products. Can be transient or persistent.

protocol

Format for the layout of messages sent over a network.

S

server

A program that provides services to clients. CORBA servers act as containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T

transaction manager

Manages global transactions on behalf of application programs. A transaction manager coordinates commands from application
programs and resource managers to start and complete global transactions. When an application completes a transaction, either
with a commit or rollback request, the transaction manager communicates the outcome with each resource manager.

Glossary

- 128/131 -

http://www.omg.com

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 129/131 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 130/131 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 131/131 -

	Orbix OTS Programming Reference Java
	V6.3.14

	Preface
	Audience
	Typographical Conventions
	Keying Conventions

	Transaction Service
	About Transactions
	What is a transaction?
	Transaction support in Orbix
	Example
	Properties of transactions

	Transaction Managers
	Purpose of a Transaction Manager
	Two-phase commit protocol
	One-phase-commit protocol

	OMG OTS and J2EE JTA Interfaces
	Transaction Interfaces
	Purpose
	Transaction Demarcation
	Transaction Propagation
	Resource Manager Integration
	Transaction Management

	OTS Interfaces
	Supported OTS Interfaces
	OTS Transaction Modes

	J2EE JTA Interfaces
	JTA Interfaces
	Integration with resource managers
	Integration with JDBC

	Getting Started with Transactions
	Application Overview
	Funds transfer application
	Interface definition
	TransactionalObject interface deprecated
	Transferring funds
	Completing the application

	Transaction Demarcation
	Demarcation using OTS current object
	Obtain a reference to the OTS current object from the ORB
	Create a new transaction
	Perform the funds transfer
	Complete the transaction by either committing it or rolling it back

	Transaction Propagation and POA Policies
	Propagating the transaction
	POA Policies
	OTSPolicy values

	JTA Resource Manager Integration
	Process of using a JTA resource manager
	Wrapping the DataSource
	Using JDBC within a OTS/JTA transaction

	Application-Specific Resources
	Resource interface operations
	Implementing resource objects

	Configuration Issues
	Issues
	Loading the OTS plug-in

	Transaction Demarcation and Control
	The OTS Current Object
	Current Interface
	Threads and transactions
	Getting a Reference to the OTS Current Object
	Creating Transactions
	Committing the Current Transaction
	Rolling Back the Current Transaction
	Nested Transactions
	Timeouts
	Suspending and Resuming Transactions
	Miscellaneous Operations

	The JTA Interfaces
	Use of UserTransaction and TransactionManager
	UserTransaction Interface
	Getting a Reference to the UserTransaction Object
	Creating a Transaction
	Committing the current Transaction
	Rolling Back the Current Transaction
	Timeouts

	Direct Transaction Demarcation
	Using the transaction factory to create transactions
	Example
	Example of a commit

	Propagation and Transaction Policies
	Implicit Propagation Policies
	Implicit and Explicit Propagation
	Policies for implicit propagation

	Shared and Unshared Transactions
	InvocationPolicy transaction models
	Shared model
	Unshared model

	Policy Meanings
	The three standard OTSPolicy values
	The two NonTxTargetPolicy values
	Setting the policies
	The three InvocationPolicy values

	Steps to create an object with an OTSPolicy
	Example
	Example Use of a NonTxTargetPolicy
	Steps to use a NonTxTargetPolicy
	Example
	Specifying the default NonTxTargetPolicy

	Use of the ADAPTS OTSPolicy
	Using the ADAPTS OTSPolicy
	Example

	Orbix-Specific OTSPolicies
	The two proprietary OTSPolicy values
	Automatic Transactions
	Just-In-Time Transaction Creation
	Enabling JIT Transaction Creation

	Migrating from TransactionPolicies
	Mapping from TransactionPolicy values
	Combining Policy Types

	Explicit Propagation
	Altering the IDL to propagate explicitly
	Example

	Using the Java Transaction API
	JTA Features
	What is JTA
	Features of the JTA

	JTA API Overview
	UserTransaction
	TransactionManager
	Transaction
	XAResource
	Synchronization

	Managing Transactions and Resources
	Enlisting transactional resources
	Delisting transactional resources
	Transaction manager interactions

	DataSources
	Managing transactional resources in Orbix
	Example
	Implementing a client with Orbix JTA and OTS

	DataSource Configuration
	Configuring JNDI
	Retrieving a reference to TransactionManager
	Retrieving a reference via JNDI
	Retrieving a reference using resolve_initial_references()
	Using a standard DataSource

	JTA Configuration
	Specifying plug-ins
	Registering a persistent POA

	Transaction Management
	Synchronization Objects
	Synchronization interface
	before_completion()
	after_completion()
	register_synchronization()

	Transaction Identity Operations
	Coordinator interface identity operations
	Maintaining information in individual transactions

	Transaction Status
	Coordinator interface status operations

	Transaction Relationships
	Coordinator interface relationship operations
	Example

	Recreating Transactions
	TransactionFactory interface
	Example

	Writing Recoverable Resources
	The Resource Interface
	Resource interface transaction operations
	Overview of the use of resource objects

	Creating and Registering Resource Objects
	Implementing servants for resource objects
	Creating resource objects
	Tracking resource objects
	Registering resource objects

	Resource Protocols
	Protocols supported by resource objects
	Transaction Rollbacks
	The 2-Phase-Commit Protocol
	Read-Only Resources
	The 1-Phase-Commit Protocol
	Heuristic Outcomes
	Failure and Recovery
	Failure of the Resource
	Failure of the Transaction Coordinator

	Responsibilities and Lifecycle of a Resource Object
	prepare()
	commit()
	rollback()
	commit_one_phase()
	forget()
	Resource Object Checklist

	Interoperability
	Use of InvocationPolicies
	Deprecated policies

	Use of the TransactionalObject Interface
	Enabling support for the TransactionalObject interface

	Interoperability with Orbix 3 OTS Applications
	Orbix 3 OTS Interoperability
	Using otstf as transaction manager
	Summary

	Using the Orbix 3 otstf with Orbix Applications
	Using Orbix 3 otstf transaction manager

	OTS Plug-Ins and Deployment Options
	OTS Plug-ins
	OTS Lite
	OTS Encina
	Features in OTS
	The OTS Plug-In
	Purpose of the OTS plug-in
	Loading the OTS plug-in
	Deployment scenarios

	The OTS Lite Plug-In
	Loading the OTS Lite plug-in

	The Encina Transaction Manager
	Configuring the OTS Encina Plug-In

	The itotstm Transaction Manager Service
	Using itconfigure
	Example client/server deployment
	Configuring itotstm
	Configuring the OTS plug-in

	OTS Management
	Introduction to OTS Management
	OTS Management Model
	OTS Managed Entities
	Administrator
	Example Managed Entity

	TransactionManager Entity
	TransactionManager Attributes
	Encina TransactionManager Attributes
	Encina TransactionManager Operations

	Transaction Entity
	Transaction Attributes
	Encina Transaction Attributes
	Transaction Operations

	Encina Transaction Log Entity
	Encina Transaction Log Attributes
	Encina Transaction Log Operations

	Encina Volume Entity
	Encina Volume Attributes
	Encina Volume Operations

	Management Events

	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

