
Orbix Programming Guide Java

Table of Contents

21Preface

21Audience

21Organization of this guide

21Typographical conventions

22Keying conventions

24Introduction to Orbix

24Why CORBA?

24What is CORBA?

25Orbix

25CORBA Objects

26Object Request Broker

27Servers and the Portable Object Adapter

28Orbix Plug-In Design

29Plug-ins

29ORB core

30Development Tools

30Code generation toolkit

30Multi-threading support

30Configuration and logging interfaces

31Portable interceptors

31Orbix Application Deployment

31Location domains

32Configuration domains

32CORBA Features and Services

32Full CORBA 2.3 support and interoperability

33Interoperable naming service and load balancing extensions

33Object transaction service

33Event service

33SSL/TLS

Table of Contents

- 2/599 -

34Dynamic type support: interface repository and dynany

35Getting Started with Orbix

35Creating a Configuration Domain

35Prerequisites

35Licensing

36Steps

36Run itconfigure

37Choose the domain type

38Specify service startup options

38Specify security settings

39Specify fault tolerance settings

40Select services

41Confirm choices

42Finish configuration

43Setting the Orbix Environment

43Prerequisites

44Setting the domain

44Setting ORB Properties for the Orbix ORB

45Using the iona.properties file

45Using Java interpreter arguments

46Setting Your Classpath

46Basic Orbix classpath settings

47Classpath settings for Orbix features

48Hello World Example

49Development from the Command Line

50Define the IDL interface

50Generate starting point code

51Complete the server program

52Complete the client program

53Build the demonstration

Table of Contents

- 3/599 -

53Run the demonstration

56First Application

56Development Using Code Generation

57Client development

57Server development

58Development Without Using Code Generation

58Client development

59Server development

59Locating CORBA Objects

60Development Steps

61Define IDL interfaces

62Generate starting point code

64Compile the IDL definitions

67Develop the server program

71Develop the client program

78Build the application

78Run the application

80Enhancing Server Functionality

81Initialize the ORB

83Create a POA for transient objects

86Create servant objects

87Activate CORBA objects

88Export object references

89Activate the POA manager

90Shut down the ORB

91Complete Source Code for server.java

97Defining Interfaces

97Modules and Name Scoping

98Nesting restrictions

99Interfaces

100Interface Contents

Table of Contents

- 4/599 -

101Operations

103Attributes

103Exceptions

104Empty Interfaces

105Inheritance of IDL Interfaces

108Forward Declaration of IDL Interfaces

109Local Interfaces

111Valuetypes

112Abstract Interfaces

113IDL Data Types

113Built-in Types

115Extended Built-in Types

118Complex Data Types

122Pseudo Object Types

122Defining Data Types

123Constants

123Integer

124Floating-point

124Character and string

125Wide character and string

126Boolean

126Octet

126Fixed-point

127Enumeration

127Constant Expressions

127Operator precedence

127Arithmetic operators

128Bitwise operators

129Developing Applications with Genies

129Genie Syntax

131Specifying Application Components

Table of Contents

- 5/599 -

132Selecting Interfaces

133Including Files

134Implementing Servants

135-tie/-notie

136-inherit/-noinherit

136-default_poa

137Implementing the Server Mainline

138-threads/-nothreads

139-strategy Options

140-ns/-nons

140Implementing a Client

141Generating Build Files

141Controlling Code Completeness

142Servant Code

144Client Code

146General Options

147-jP:

147-dir:

147-v/-s:

147Compiling the Application

147Configuration Settings

149ORB Initialization and Shutdown

149Initializing the ORB Runtime

149Calling within main()

149Supplying an ORB name

150Java mapping

151Registering portable interceptors

151Shutting Down the ORB

151In this section

152Shutting Down a Client

Table of Contents

- 6/599 -

153Shutting down a server

154Using Policies

154Creating Policy and PolicyList Objects

155Using POA policy factories

155Calling create_policy()

156Setting Orb and Thread Policies

157set_policy_overrides()

158get_policy_overrides()

158Setting Server-Side Policies

159Setting Client Policies

160Setting Policies at Different Scopes

160Managing Object Reference Policies

163Getting Policies

165Developing a Server

165Server tasks

165POAs, Skeletons, and Servants

166POA tasks

166POA skeleton class

166TIE class

166Server request handling

167Mapping Interfaces to Skeleton Classes

168Creating a Servant Class

170Activating CORBA Objects

170this()

171servant_to_reference()

171Explicit activation methods

171Handling Output Parameters

171Server-side rules

172Implementation example

172Delegating Servant Implementations

173Creating tie-based servants

Table of Contents

- 7/599 -

173Example

174Removing tie objects and servants

174Explicit Event Handling

175Managing Server Objects

175Mapping Objects to Servants

176Mapping options

177Creating a POA

177Using multiple POAs

178Procedure for creating a POA

178Setting POA Policies

182Root POA Policies

182Using POA Policies

182In this section

183Enabling the Active Object Map

184Processing Object Requests

185Setting Object Lifespan

188Assigning Object IDs

188Activating Objects with Dedicated Servants

189Activating Objects

189Setting Threading Support

190Explicit Object Activation

191Implicit Object Activation

191Calling _this()

191Calling _this() Inside an Operation

192Calling _this() Outside an Operation

194Managing Request Flow

194POA manager states

195Holding state

196Work Queues

196DispatchWorkQueuePolicy

196WorkQueuePolicy

Table of Contents

- 8/599 -

196Interface

197WorkQueue types

197ManualWorkQueue

199AutomaticWorkQueue

200Using a WorkQueue

204Controlling POA Proxification

204Policy

204Example

205Developing a Client

205Mapping IDL Interfaces to Proxies

206Using Object References

207Object Reference Operations

209Narrowing Object References

211String Conversions

214Initializing and Shutting Down the ORB

214Invoking Operations and Attributes

215Passing Parameters in Client Invocations

216Holder Class Types

217Holder Class Members

218Invoking an Operation With Holder Classes

220Client Policies

220RebindPolicy

221SyncScopePolicy

222Timeout Policies

233Implementing Callback Objects

235Managing Servants

235Drawbacks of active object map usage

236Policies for managing many objects

236Using Servant Managers

236Servant manager types

237Registering a servant manager

Table of Contents

- 9/599 -

239Servant Activators

244Servant Locators

249Using a Default Servant

249Obtaining the current object

250Implementing a default servant

252Setting a Default Servant

253Creating Inactive Objects

257Exceptions

257Example IDL

257AccountNotFound

257AccountAlreadyExists

258Exception Code Mapping

259Subclasses

259User-Defined Exceptions

259Exception design guidelines

260Java mapping for user exceptions

261Constructors

262Handling Exceptions

262Handling User Exceptions

264Handling System Exceptions

266Evaluating System Exceptions

273Throwing Exceptions

274Throwing System Exceptions

276Using Type Codes

276Type Code Components

276kind:

276description:

277TCKind enumerators

279Type Code Operations

279General Type Code Operations

283Type Codes for Basic Types

Table of Contents

- 10/599 -

284Type Codes for User-Defined Types

285Using the Any Data Type

285IDL-Java mapping

285type

285value

286Constructing an Any Object

286Inserting Basic Types

288Inserting User-Defined Types

289Type safety

289Extracting Basic Types

291Extracting User-Defined Types

292Inserting and Extracting Bounded String Aliases

292Inserting a bounded string

293Extracting a bounded string

293Extracting Object References

295Any as a Parameter or Return Value

296Using DynAny Objects

296Interface hierarchy

297Generic operations

298Creating a DynAny

298Create operations

299Returned types

299create_dyn_any()

301create_dyn_any_from_type_code()

303Inserting and Extracting DynAny Values

303Accessing basic DynAny values

304Insertion Operations

307Extraction Operations

310Iterating Over DynAny Components

Table of Contents

- 11/599 -

313Accessing Constructed DynAny Values

324Generating Interfaces at Runtime

324Using the DII

325Clients that use DII

325Steps

325Example IDL

327Constructing a Request Object

327_request()

330_create_request()

332Invoking a Request

333Retrieving Request Results

334Invoking Deferred Synchronous Requests

334Using the DSI

335DSI Applications

336Programming a Server to Use DSI

338Using the Interface Repository

338Benefits

339Interface Repository Data

340Abstract Base Interfaces

340Repository Object Types

345Containment in the Interface Repository

345Containment interfaces

345Example

346Containment properties of interface repository objects

347Contained Interface

349Container Interface

351Repository Object Descriptions

351How to obtain object descriptions

352Accessing attributes

Table of Contents

- 12/599 -

352Invoking describe()

354Retrieving Repository Information

354Getting a CORBA object’s interface

355Browsing and listing repository contents

357Finding an object using its repository id

357Sample Usage

359Repository IDs and Formats

360OMG IDL

360DCE UUID

361LOCAL

361Controlling Repository IDs with Pragma Directives

361ID pragma

362Prefix pragma

363Version pragma

364Naming Service

364Benefits

364Naming Service Design

364Naming graph organization

365Example

365Defining Names

365Name sequence

366Name components

367Representing Names as Strings

368Initializing a Name

369Converting a Name to a StringName

369Obtaining the Initial Naming Context

371Building a Naming Graph

371Binding Naming Contexts

375Binding Object References

Table of Contents

- 13/599 -

376Rebinding

376Using Names to Access Objects

376Setting object names

377Resolving names

378Resolving names with corbaname

379Exceptions Returned to Clients

380Listing Naming Context Bindings

380Iterating over binding list elements

381Using a Binding Iterator

384Maintaining the Naming Service

385Federating Naming Graphs

386Benefits

386Federation models

386Hierarchal federation

389Fully-connected federation

391Sample Code

391Server code

393Client code

394Object Groups and Load Balancing

394Selection algorithms

395Load balancing interfaces

397Using Object Groups in Orbix

400Load Balancing Example

400Defining the IDL for the application

401Creating an Object Group and Adding Objects

407Accessing Objects from a Client

409Event Service

409Overview

409Service capabilities

409Connections

410How many clients?

Table of Contents

- 14/599 -

410Event delivery

411Event Communication Models

411Push model

412Pull model

412Mixing push and pull models

413Typed push model

414Developing an Application Using Untyped Events

414In this section

414Obtaining an Event Channel

417Implementing a Supplier

423Implementing a Consumer

430Developing an Application Using Typed Events

430In this section

430Creating the Interface

431Obtaining a Typed Event Channel

435Implementing the Supplier

439Implementing the Consumer

445Portable Interceptors

445Sample application

446Interceptor Components

446Interceptor implementations

446IOP::ServiceContext

446PortableInterceptor::Current

446IOP::TaggedComponent

446IOP::Codec

446PortableInterceptor::PolicyFactory

447PortableInterceptor::ORBInitializer

447Interceptor Types

448Service Contexts

449PICurrent

451Tagged Components

Table of Contents

- 15/599 -

452Codec

453Policy Factory

454ORB Initializer

454Writing IOR Interceptors

455Interception point

455IORInfo

458Using RequestInfo Objects

458Interface definition

459Timeout attributes

460Writing Client Interceptors

460Interception point definitions

461Client interceptor constructor

462Client interceptor arguments

462Interception Points

463Interception Point Flow

466ClientRequestInfo

468Client Interceptor Tasks

472Writing Server Interceptors

473Interception Points

474Interception Point Flow

477ServerRequestInfo

479Server Interceptor Tasks

483Registering Portable Interceptors

483Implementing an ORB Initializer

490Registering an ORBInitializer

490Setting Up Orbix to Use Portable Interceptors

492Bidirectional GIOP

492Introduction to Bidirectional GIOP

492Bidirectional GIOP draft specification

492Features

493Configuration versus programming approach

Table of Contents

- 16/599 -

493Configuration approach

493Programming approach

494Bidirectional GIOP Policies

494Overview

494IDL for standard policies

495BidirectionalExportPolicy

496BidirectionalOfferPolicy

496BidirectionalAcceptPolicy

497IDL for proprietary policies

498BiDirIdGenerationPolicy

498BidirectionalGen3AcceptPolicy

499Policy granularity

500Configuration Prerequisites

500Client configuration

501Server configuration

501Basic BiDir Scenario

501In this section

502The Stock Feed Demonstration

505Setting the Export Policy

507Setting the Offer Policy

509Setting the Accept Policy

512Advanced BiDir Scenario

513Multiple endpoints

514Multiple connections

514Bidirectional offer phase

514Exporting a callback object

514Bidirectional accept phase

515Interoperability with Orbix Generation 3

515Configuring an Orbix 6.1 server for Gen 3 interoperability

516Setting the BiDir Gen 3 accept policy

516Asymmetry of Gen 3 bidirectional support

Table of Contents

- 17/599 -

516Limitations of Gen 3 bidirectional GIOP

517Locating Objects with corbaloc

517corbaloc URL Format

517Converting a corbaloc URL to an object reference

518corbaloc URL formats

518Basic corbaloc URL

519Multiple-address corbaloc URL

519Secure corbaloc URL

520Object keys

520URL escape mechanism

521Indirect Persistence Case

521Overview of the Indirect Persistence Case

523Registering a Named Key at the Command Line

524Registering a Named Key by Programming

526Using the corbaloc URL in a Client

527Direct Persistence Case

528Overview of the Direct Persistence Case

529Registering a Plain Text Key

530Using the corbaloc URL in a Client

531Named Keys and Plain Text Keys Used by Orbix Services

534Configuring and Logging

534The Configuration Interface

534The IT_Config::Configuration interface

536The ConfigList type

536Operations

536Reference

537Configuring

537Generating configuration domains

537Configuration sources

537Sample configuration

538Java accessing configuration settings

Table of Contents

- 18/599 -

541References

541Logging

541Logging event

542Logging subsystem

542Event ID

542Event priority

542Message

543Local log stream

543System log stream

543Defining a subsystem ID and event IDs

545Java logging messages

547References

548Orbix Compression Plug-in

548Introduction to the ZIOP Plug-In

549Implementation

549Additional components

549Configuration Prerequisites

550Configuring the ziop plug-in

550Configuring the binding lists

551Compression Policies

551IDL for the compression policies

552CompressionEnablingPolicy

553CompressorIdPolicy

553Programming Compression Policies

553Java enable/disable compression on the server side

554Java enable/disable compression on the client side

555Java select compression algorithm on the server side

556Implementing Custom Compression

557The IT_Buffer Module

561Implementing a Compressor

567Implementing a Compressor Factory

Table of Contents

- 19/599 -

572Registering a Compressor Factory

576Orbix IDL Compiler Options

576Command Line Switches

576Syntax

576General switches

578Plug-in Switch Modifiers

579Modifiers for all C++ plug-in switches

580Modifiers for -base, -psdl, and -pss_r switches

581Modifiers for -jbase and -jpoa switches

582Modifiers for -poa switch

584IDL Configuration File

589Rocket Software Orbix Policies

589Client Side Policies

592POA Policies

594Security Policies

595Firewall Proxy Policies

597Notices

597Copyright

597Trademarks

597Examples

597License agreement

598Corporate information

598Contacting Technical Support

598Country and Toll-free telephone number

Table of Contents

- 20/599 -

Preface

Orbix is a full implementation from Rocket Software of the Common Object Request Broker Architecture
(CORBA), as specified by the Object Management Group. Orbix complies with the following
specifications:

CORBA 2.6

GIOP 1.2 (default), 1.1, and 1.0

Audience
The CORBA Programmer’s Guide is intended to help you become familiar with Orbix, and show how to
develop distributed applications using Orbix components. This guide assumes that you are familiar with
programming in Java.

This guide does not discuss every API in great detail, but gives a general overview of the capabilities of
the Orbix development kit and how various components fit together.

Organization of this guide
Read Introduction to Orbix for an overview of Orbix. Getting Started with Orbix shows how you can use
code-generation genies to build a distributed application quickly and easily. First Application describes
in detail the basic steps in building client and server programs. Subsequent chapters expand on those
steps by focusing on topics that are related to application development.

Typographical conventions
This guide uses the following typographical conventions:

• •

• •

Preface

- 21/599 -

Keying conventions
This guide may use the following keying conventions:

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
Some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or Windows command prompt.

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

Keying conventions

- 22/599 -

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in
format and syntax descriptions.

Keying conventions

- 23/599 -

Introduction to Orbix

With Orbix, you can develop and deploy large-scale enterprise-wide CORBA systems in C++ and Java. Orbix has
an advanced modular architecture that lets you configure and change functionality without modifying your
application code, and a rich deployment architecture that lets you configure and manage a complex
distributed system.

Why CORBA?
Today’s enterprises need flexible, open information systems. Most enterprises must cope with a wide
range of technologies, operating systems, hardware platforms, and programming languages. Each of
these is good at some important business task; all of them must work together for the business to
function.

The common object request broker architecture—CORBA—provides the foundation for flexible and
open systems. It underlies some of the Internet’s most successful e-business sites, and some of the
world’s most complex and demanding enterprise information systems.

What is CORBA?
CORBA is an open, standard solution for distributed object systems. You can use CORBA to describe
your enterprise system in object-oriented terms, regardless of the platforms and technologies used to
implement its different parts. CORBA objects communicate directly across a network using standard
protocols, regardless of the programming languages used to create objects or the operating systems
and platforms on which the objects run.

CORBA solutions are available for every common environment and are used to integrate applications
written in C, C++, Java, Ada, Smalltalk, and COBOL, running on embedded systems, PCs, UNIX hosts, and
mainframes. CORBA objects running in these environments can cooperate seamlessly.

CORBA is widely available and offers an extensive infrastructure that supports all the features required
by distributed business objects. This infrastructure includes important distributed services, such as
transactions, security, and messaging.

Introduction to Orbix

- 24/599 -

Orbix
Orbix provides a CORBA development platform for building high-performance systems. Orbix’s
modular architecture supports the most demanding requirements for scalability, performance, and
deployment flexibility. The Orbix architecture is also language-independent and can be implemented in
Java and C++. Orbix applications can interoperate via the standard IIOP protocol with applications built
on any CORBA-compliant technology.

CORBA Objects
CORBA objects are abstract objects in a CORBA system that provide distributed object capability
between applications in a network. Figure 1 shows that any part of a CORBA system can refer to the
abstract CORBA object, but the object is only implemented in one place and time on some server of the
system.

Figure 1 The nature of abstract CORBA objects

An object reference is used to identify, locate, and address a CORBA object. Clients use an object
reference to invoke requests on a CORBA object. CORBA objects can be implemented by servers in any
supported programming language, such as C++ or Java.

Although CORBA objects are implemented using standard programming languages, each CORBA object
has a clearly-defined interface, specified in the CORBA Interface Definition Language (IDL). The interface
definition specifies which member functions, data types, attributes, and exceptions are available to a
client, without making any assumptions about an object’s implementation.

With a few calls to an ORB’s application programming interface (API), servers can make CORBA objects
available to client programs in your network.

Orbix

- 25/599 -

To call member functions on a CORBA object, a client programmer needs only to refer to the object’s
interface definition. Clients can call the member functions of a CORBA object using the normal syntax of
the chosen programming language. The client does not need to know which programming language
implements the object, the object’s location on the network, or the operating system in which the object
exists.

Using an IDL interface to separate an object’s use from its implementation has several advantages. For
example, you can change the programming language in which an object is implemented without
affecting the clients that access the object. You can also make existing objects available across a
network.

Object Request Broker
CORBA defines a standard architecture for object request brokers (ORB). An ORB is a software
component that mediates the transfer of messages from a program to an object located on a remote
network host. The ORB hides the underlying complexity of network communications from the
programmer.

An ORB lets you create standard software objects whose member functions can be invoked by client
programs located anywhere in your network. A program that contains instances of CORBA objects is
often known as a server. However, the same program can serve at different times as a client and a
server. For example, a server program might itself invoke calls on other server programs, and so relate
to them as a client.

When a client invokes a member function on a CORBA object, the ORB intercepts the function call. As
shown in Figure 2, the ORB redirects the function call across the network to the target object. The ORB
then collects results from the function call and returns these to the client.

Figure 2 The object request broker

Object Request Broker

- 26/599 -

You start developing a CORBA application by defining interfaces to objects in your system in CORBA IDL.
You compile these interfaces with an IDL compiler. An IDL compiler generates C++ or Java code from IDL
definitions. This code includes client stub code with which you develop client programs, and object
skeleton code, which you use to implement CORBA objects.

When a client calls a member function on a CORBA object, the call is transferred through the client stub
code to the ORB. Because the implemented object is not located in the client’s address space, CORBA
objects are represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process. The ORB then passes the
function call through the object skeleton code to the target object.

Figure 4 Invoking on a CORBA object

Servers and the Portable Object Adapter
Server processes act as containers for one or more portable object adapters. A portable object adapter,
or POA, maps abstract CORBA objects to their actual implementations, or servants, as shown in Figure 5.

Figure 5 The portable object adapter

Servers and the Portable Object Adapter

- 27/599 -

Because the POA assumes responsibility for mapping servants to abstract CORBA objects, the way that
you define or change an object’s implementation is transparent to the rest of the application. By
abstracting an object’s identity from its implementation, a POA enables a server to be portable among
different implementations.

Depending on the policies that you set on a POA, object-servant mappings can be static or dynamic.
POA policies also determine whether object references are persistent or transient, and the threading
model that it uses. In all cases, the policies that a POA uses to manage its objects are invisible to clients.

A server can have one or more nested POAs. Because each POA has its own set of policies, you can
group objects logically or functionally among multiple POAs, where each POA is defined in a way that
best accommodates the needs of the objects that it processes.

Orbix Plug-In Design
Orbix has a modular plug-in architecture. The ORB core supports abstract CORBA types and provides a
plug-in framework. Support for concrete features like specific network protocols, encryption
mechanisms, and database storage is packaged into plug-ins that can be loaded into the ORB based on
runtime configuration settings.

Orbix Plug-In Design

- 28/599 -

Plug-ins
A plug-in is a code library that can be loaded into an Orbix application at runtime. A plug-in can contain
any type of code; typically, it contains objects that register themselves with the ORB runtimes to add
functionality.

Plug-ins can be linked directly with an application, loaded when an application starts up, or loaded on-
demand while the application is running. This gives you the flexibility to choose precisely those ORB
features that you actually need. Moreover, you can develop new features such as protocol support for
direct ATM or HTTPNG. Because ORB features are configured into the application rather than compiled
in, you can change your choices as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be reconfigured to use the secure
SSL protocol simply by configuring a different transport plug-in. No one transport is inherent to the ORB
core; you simply load the transport set that suits your application best. This architecture makes it easy
for Rocket Software to support additional transports in the future such as multicast or special purpose
network protocols.

ORB core
The ORB core presents a uniform programming interface to the developer: everything is a CORBA object.
This means that everything appears to be a local C++ or Java object within the process. In fact it might
be a local object, or a remote object reached by some network protocol. It is the ORB’s job to get
application requests to the right objects no matter where they live.

To do its job, the ORB loads a collection of plug-ins as specified by ORB configuration settings—either
on startup or on demand—as they are needed by the application. For remote objects, the ORB
intercepts local function calls and turns them into CORBA requests that can be dispatched to a remote
object.

In order to send a request on its way, the ORB core sets up a chain of interceptors to handle requests for
each object. The ORB core neither knows nor cares what these interceptors do, it simply passes the
request along the interceptor chain. The chain might be a single interceptor which sends the request
with the standard IIOP protocol, or a collection of interceptors that add transaction information, encrypt
the message and send it on a secure protocol such as SSL. All of this is transparent to the application, so
you can change the protocol or services used by your application simply by configuring a different set of
interceptors.

Plug-ins

- 29/599 -

Development Tools
The CORBA developer’s environment contains a number of facilities and features that help you and your
development team be more productive.

Code generation toolkit
Rocket Software provides a code generation toolkit that simplifies and streamlines the development
effort. You only need to define your IDL interfaces; out-of-the box scripts generate a complete client/
server application automatically from an IDL file.

The toolkit also can be useful for debugging: you can use an auto-generated server to debug your
client, and vice versa. Advanced users can write code generation scripts to automate repetitive coding
in a large application.

For more information about the code generation toolkit, refer to the CORBA Code Generation Toolkit
Guide.

Multi-threading support
Orbix provides excellent support for multi-threaded applications. Orbix libraries are multi-threaded and
thread-safe. Orbix servers use standard POA policies to enable multi-threading. The ORB creates a
thread pool that automatically grows or shrinks depending on demand load. Thread pool size, growth
and request queuing can be controlled by configuration settings without any coding.

Configuration and logging interfaces
Applications can store their own configuration information in Orbix configuration domains, taking
advantage of the infrastructure for ORB configuration. CORBA interfaces provide access to
configuration information in application code.

Applications can also take advantage of the Orbix logging subsystem, again using CORBA interfaces to
log diagnostic messages. These messages are logged to log-stream objects that are registered with the
ORB. Log streams for local output, file logging and system logging (Unix syslogd or Windows Event
Service) are provided with Orbix. You can also implement your own log streams, which capture ORB and
application diagnostics and send them to any destination you desire.

Development Tools

- 30/599 -

Portable interceptors
Portable interceptors allow an application to intervene in request handling. They can be used to log
per-request information, or to add extra “hidden” data to requests in the form of GIOP service
contexts¾for example, transaction information or security credentials.

Orbix Application Deployment
Orbix provides a rich deployment environment designed for high scalability. You can create a location
domain that spans any number of hosts across a network, and can be dynamically extended with new
hosts. Centralized domain management allows servers and their objects to move among hosts within
the domain without disturbing clients that use those objects. Orbix supports load balancing across
object groups. A configuration domain provides the central control of configuration for an entire
distributed application.

Orbix offers a rich deployment environment that lets you structure and control enterprise-wide
distributed applications. Orbix provides central control of all applications within a common domain.

Location domains
A location domain is a collection of servers under the control of a single locator daemon. The locator
daemon can manage servers on any number of hosts across a network. The locator daemon
automatically activates remote servers through a stateless activator daemon that runs on the remote
host.

The locator daemon also maintains the implementation repository, which is a database of available
servers. The implementation repository keeps track of the servers available in a system and the hosts
they run on. It also provides a central forwarding point for client requests. By combining these two
functions, the locator lets you relocate servers from one host to another without disrupting client
request processing. The locator redirects requests to the new location and transparently reconnects
clients to the new server instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in the event of a failure, or
spread client load by redirecting clients to one of a group of servers.

Portable interceptors

- 31/599 -

Configuration domains
A configuration domain is a collection of applications under common administrative control. A
configuration domain can contain multiple location domains.

Orbix supports two mechanisms to administer a configuration domain:

During development, or for small-scale deployment, configuration can be stored in an ASCII text
file, which is edited directly.

For larger deployments, Orbix provides a distributed configuration server that enables centralized
configuration for all applications spread across a network.

The configuration mechanism is loaded as a plug-in, so future configuration systems can be
extended to load configuration from any source such as example HTTP or third-party
configuration systems.

CORBA Features and Services
Orbix fully supports the latest CORBA specification, and in some cases anticipates features to be
included in upcoming specifications.

Full CORBA 2.3 support and interoperability
All CORBA 2.3 IDL data types are fully supported, including:

Extended precision numeric types for 64 bit integer and extended floating point calculations.

Fixed point decimals for financial calculations.

International character sets, including support for code-set negotiation where multiple character
sets are available.

Objects by value: you can define objects that are passed by value as well as the traditional pass-
by-reference semantics of normal CORBA objects. This is particularly relevant in Java based
systems, but also supported for C++ using object factories.

Orbix supports the most recent 1.2 revision of the CORBA standard General Inter-ORB Protocol
(GIOP) and Internet Inter-ORB Protocol (IIOP), and also supports previous 1.1 and 1.0 revisions for
backwards compatibility with applications based on other ORBs. Orbix is interoperable with any
CORBA-compliant application that uses the standard IIOP protocol.

Orbix implements quality-of-service policies as specified in CORBA 3.0. Quality-of-service policies
let you control how the ORB processes requests. For example, you can specify how quickly a client
resumes processing after sending one-way requests.

• •

• •

• •

• •

• •

• •

Configuration domains

- 32/599 -

Interoperable naming service and load balancing extensions
Orbix supports the interoperable naming service specification. This is a superset of the original CORBA
naming service which adds some ease-of-use features and provides a standard URL format for CORBA
object references to simplify configuration and administration of CORBA services.

The Orbix naming service also supports Orbix-specific load-balancing extensions of OrbixNames 3. A
group of objects can be registered against a single name; the naming service hands out references to
clients so that the client load is spread across the group.

Object transaction service
Orbix includes the object transaction service (OTS) which is optimized for the common case where only
a single resource (database) is involved in a transaction. Applications built against the single resource
OTS can easily be reconfigured to use a full-blown OTS when it is available, since the interfaces are
identical. With Orbix plug-in architecture, applications will not even need to be recompiled. For the
many applications where transactions do not span multiple databases, the single-resource OTS will
continue to be a highly efficient solution, compared to a full OTS that performs extensive logging to
guarantee transaction integrity.

Event service
Orbix supports the CORBA event service specification, which defines a model for indirect
communications between ORB applications. A client does not directly invoke an operation on an object
in a server. Instead, the client sends an event that can be received by any number of objects. The
sender of an event is called a supplier; the receivers are called consumers. An intermediary event channel
takes care of forwarding events from suppliers to consumers.

Orbix supports both the push and pull model of event transfer, as defined in the CORBA event
specification. Orbix performs event transfer using the untyped format, whereby events are based on a
standard operation call that takes a generic parameter of type any .

SSL/TLS
Orbix SSL/TLS provides data security for applications that communicate across networks by ensuring
authentication, privacy, and integrity features for communications across TCP/IP connections.

TLS is a transport layer security protocol layered between application protocols and TCP/IP, and can be
used for communication by all Orbix SSL/TLS components and applications.

Interoperable naming service and load balancing extensions

- 33/599 -

Dynamic type support: interface repository and dynany
Orbix has full support for handling data values that are not known at compile time. The interface
repository stores information about all CORBA types known to the system and can be queried at
runtime. Clients can construct requests based on runtime type information using the dynamic
invocation interface (DII), and servers can implement “universal” objects that can implement any
interface at run time with the dynamic skeleton interface (DSI).

Although all of these features have been available since early releases of the CORBA specification, they
are incomplete without the addition of the DynAny interface. This interface allows clients and servers to
interpret or construct values based purely on runtime information, without any compiled-in data types.

These features are ideal for building generic object browsers, type repositories, or protocol gateways
that map CORBA requests into another object protocol.

Dynamic type support: interface repository and dynany

- 34/599 -

Getting Started with Orbix

You can use the CORBA Code Generation Toolkit to develop an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client and server application
code, including build files. You then complete the distributed application by filling in the missing
business logic.

Creating a Configuration Domain
This section describes how to create a simple configuration domain, simple , which is required for
running basic demonstrations. This domain deploys a minimal set of Orbix services.

Prerequisites
Before creating a configuration domain, the following prerequisites must be satisfied:

Orbix is installed.

Some basic system variables are set up (in particular, the IT_PRODUCT_DIR , IT_LICENSE_FILE , and
PATH variables).

Fore more details, please consult the Installation Guide.

Licensing
The location of the license file, licenses.txt , is specified by the IT_LICENSE_FILE system variable. If this
system variable is not already set in your environment, you can set it now.

• •

• •

Getting Started with Orbix

- 35/599 -

Steps
To create a configuration domain, simple , perform the following steps:

Run itconfigure.

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

Finish configuration.

Run itconfigure
To begin creating a new configuration domain, enter itconfigure at a command prompt. An Orbix
Configuration Welcome dialog box appears, as shown in Figure 6.

Select Create a new domain and click OK.

Figure 6 The Orbix Configuration Welcome Dialog Box

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

Steps

- 36/599 -

Choose the domain type
A Domain Type window appears, as shown in Figure 7.

In the Configuration Domain Name text field, type simple . Under Configuration Domain Type, click
the Select Services radiobutton.

Click Next> to continue.

Figure 7 The Domain Type Window

Choose the domain type

- 37/599 -

Specify service startup options
A Service Startup window appears, as shown in Figure 8.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 8 The Service Startup Window

Specify security settings
A Security window appears, as shown in Figure 9.

You can leave the settings in this Window at their defaults (no security).

Click Next> to continue.

Figure 9 The Security Window

Specify service startup options

- 38/599 -

Specify fault tolerance settings
A Fault Tolerance window appears, as shown in Figure 10.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 10 The Fault Tolerance Window

Specify fault tolerance settings

- 39/599 -

Select services
A Select Services window appears, as shown in Figure 11.

In the Select Services window, select the following services and components for inclusion in the
configuration domain: Location, Node daemon, Management, CORBA Interface Repository, CORBA
Naming, and demos.

Click Next> to continue.

Figure 11 The Select Services Window

Select services

- 40/599 -

Confirm choices
You now have the opportunity to review the configuration settings in the Confirm Choices window,
Figure 12. If necessary, you can use the <Back button to make corrections.

Click Next> to create the configuration domain and progress to the next window.

Figure 12 The Confirm Choices Window

Confirm choices

- 41/599 -

Finish configuration
The itconfigure utility now creates and deploys the simple configuration domain, writing files into the
OrbixInstallDir /etc/bin , OrbixInstallDir /etc/domain , OrbixInstallDir /etc/log , and OrbixInstallDir /var
directories.

If the configuration domain is created successfully, you should see a Summary window with a message
similar to that shown in Figure 13.

Click Finish to quit the itconfigure utility.

Figure 13 Configuration Summary

Finish configuration

- 42/599 -

Setting the Orbix Environment

Prerequisites
Before proceeding with the demonstration in this chapter you need to ensure:

The CORBA developer’s kit is installed on your host.

Orbix is configured to run on your host platform.

Your Java development kit (JDK) is configured to use the Orbix ORB runtime (see Setting ORB
Properties for the Orbix ORB).

Your configuration domain is set (see Setting the domain).

The Administrator’s Guide contains more information on Orbix configuration, and details of Orbix
command line utilities.

• •

• •

• •

• •

Setting the Orbix Environment

- 43/599 -

Setting the domain
The scripts that set the Orbix environment are associated with a particular domain, which is the basic
unit of Orbix configuration. See the Installation Guide, and the Administrator’s Guide for further details
on configuring your environment.

To set the Orbix environment associated with the domain-name domain, enter:

Windows

UNIX

YourJdkDir is the root directory of the Java development kit that you want to use with Orbix. See the
Installation Guide for details of supported Java platforms.

config-dir is the root directory where the Appliation Server Platform stores its configuration
information. You specify this directory while configuring your domain. domain-name is the name of a
configuration domain.

Setting ORB Properties for the Orbix ORB
SUN’s Java development kit (JDK) comes with a built-in ORB runtime that is used by default. However,
you cannot use SUN’s ORB runtime with Orbix applications. You must configure the JDK to use the Orbix
ORB runtime instead by setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass to the appropriate values. You can set the ORB properties in one of the
following ways:

Using the iona.properties file

Using Java interpreter arguments

> set JAVA_HOME=YourJdkDir
> config-dir\etc\bin\domain-name_env.bat

% JAVA_HOME=YourJdkDir ; export JAVA_HOME
% . config-dir/etc/bin/domain-name_env

• •

• •

Setting the domain

- 44/599 -

Using the iona.properties file
Setting system properties org.omg.CORBA.ORBClass and org.omg.CORBA.ORBSingletonClass in the
iona.properties file is the preferred way to configure your JDK to use the Orbix ORB runtime.

Location of the iona.properties file

The iona.properties file is located in the JDKHome/jre/lib directory, where JDKHome is the JDK root
directory.

Contents of the iona.properties file

The iona.properties file should contain the following two lines of text:

The first line sets org.omg.CORBA.ORBC lass to the name of a class that implements org.omg.CORBA.ORB .

The second line sets org.omg.CORBA.ORBSingletonClass to the name of a class that implements the static
ORB instance returned from org.omg.CORBA.ORB.init() (taking no arguments).

By setting system properties org.omg.CORBA.ORBClass and org.omg.CORBA.ORBSingletonClass in the
iona.properties file, as detailed above, you effectively specify the Orbix ORB classes as the ORB
runtime for the JDK. This might affect other applications that use the same JDK but want to use
different ORB classes—if this is the case, you should consider using one of the alternative
mechanisms for setting ORB properties, given in the following sub-sections.

Using Java interpreter arguments
You can use the -Dproperty_name=property_value option on the Java Interpreter to specify the
org.omg.CORBA.ORB Class and org.omg.CORBA.ORBSingletonClass properties. For example, to set the ORB
properties for an orbix_app Orbix application:

org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl
org.omg.CORBA.ORBSingletonClass=
com.iona.corba.art.artimpl.ORBSingleton

Note

Using the iona.properties file

- 45/599 -

Setting Your Classpath
Before building any Orbix Java server or client application, you must ensure that your classpath is
configured appropriately for the Orbix features that you wish to use.

Basic Orbix classpath settings
The basic Orbix JAR files that must be included on you classpath are as follows:

Windows

For example, on Windows, the following command adds these JAR files to your classpath:

UNIX

For example, on UNIX, the following command adds these JAR files to your classpath:

java -Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl\
-Dorg.omg.CORBA.ORBSingletonClass=\
com.iona.corba.art.artimpl.ORBSingleton orbix_app

OrbixInstallDir/lib/art/omg/1.3/omg.jar
OrbixInstallDir/lib/art/art/1.3/art.jar

set
CLASSPATH=%CLASSPATH%;%IT_PRODUCT_DIR%/lib/art/omg/1.3/omg.jar;
%IT_PRODUCT_DIR%/lib/art/omg/1.3/art.jar;

Setting Your Classpath

- 46/599 -

Classpath settings for Orbix features
Other Orbix JAR files might also need to be included on your classpath, depending on which Orbix
features your application is using (for example, the naming service or notification service). The
following list of JAR files shows typical Orbix features that you may wish to include on your classpath:

Windows

For example, on Windows, the following command adds the naming service JAR file to your classpath:

UNIX

export
CLASSPATH=$CLASSPATH:$IT_PRODUCT_DIR/lib/art/omg/1.3/omg.jar:
$IT_PRODUCT_DIR/lib/art/art/1.3/art.jar

OrbixInstallDir/lib/platform/java_poa/1.3/poa.jar
OrbixInstallDir/lib/corba/idlgen/5.3/it_genie.jar
OrbixInstallDir/lib/platform/naming_service/1.3/naming.jar
OrbixInstallDir/lib/platform/lease/1.3/lease.jar
OrbixInstallDir/lib/corba/event_service/5.3/event.jar
OrbixInstallDir/lib/common/ifc/1.3/ifc.jar
OrbixInstallDir/lib/corba/event_service/5.3/event_psk.jar
OrbixInstallDir/lib/corba/messaging_utils/5.3/messaging.jar
OrbixInstallDir/lib/platform/ots/1.3/ots.jar
OrbixInstallDir/lib/corba/notification_service/5.3/notification.jar
OrbixInstallDir/lib/corba/notification_service/5.3/notification_psk.jar
OrbixInstallDir/lib/corba/event_service/5.3/event.jar
OrbixInstallDir/lib/corba/trading_service/5.3/trading.jar
OrbixInstallDir/lib/corba/trading_service/5.3/trading_psk.jar
OrbixInstallDir/lib/corba/basic_log_service/5.3/basic_log.jar
OrbixInstallDir/lib/corba/event_log_service/5.3/event_log.jar
OrbixInstallDir/lib/corba/notification_log_service/5.3/notify_log.jar
OrbixInstallDir/lib/platform/fps/1.3/fps_agent.jar
OrbixInstallDir/lib/platform/java_secure_transports/1.3/tls.jar
OrbixInstallDir/lib/platform/java_transports/1.3/iiop.jar

set
CLASSPATH=%CLASSPATH%;%IT_PRODUCT_DIR%/lib/platform/
naming_service/1.3/naming.jar;

Classpath settings for Orbix features

- 47/599 -

For example, on UNIX, the following command adds the naming service JAR file to your classpath:

The following Orbix JAR file should not be included in your build classpath: OrbixInstallDir /asp/6.3/

lib/asp-corba.jar

Hello World Example
This chapter shows how to create, build, and run a complete client/server demonstration with the help
of the CORBA code generation toolkit. The architecture of this example system is shown in Figure 14.

Figure 14 Client makes a single operation call on a server

The client and server applications communicate with each other using the Internet Inter-ORB Protocol
(IIOP), which sits on top of TCP/IP. When a client invokes a remote operation, a request message is sent
from the client to the server. When the operation returns, a reply message containing its return values is
sent back to the client. This completes a single remote CORBA invocation.

All interaction between the client and server is mediated via a set of IDL declarations. The IDL for the
Hello World! application is:

export
CLASSPATH=$CLASSPATH:$IT_PRODUCT_DIR/lib/platform/naming_service/1.3/
naming.jar

Note

Hello World Example

- 48/599 -

The IDL declares a single Hello interface, which exposes a single operation getGreeting() . This
declaration provides a language neutral interface to CORBA objects of type Hello .

The concrete implementation of the Hello CORBA object is written in Java and is provided by the server
application. The server could create multiple instances of Hello objects if required. However, the
generated code generates only one Hello object.

The client application has to locate the Hello object—it does this by reading a stringified object
reference from the file Hello.ref . There is one operation getGreeting() defined on the Hello interface.
The client invokes this operation and exits.

Development from the Command Line
Starting point code for CORBA client and server applications can be generated using the idlgen
command line utility.

The idlgen utility can be used on Windows and UNIX platforms.

You implement the Hello World! application with the following steps:

Define the IDL interface, Hello .

Generate starting point code.

Complete the server program by implementing the single IDL getGreeting() operation.

Complete the client program by inserting a line of code to invoke the getGreeting() operation.

Build the demonstration.

Run the demonstration.

//IDL
interface Hello {
string getGreeting();
};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Development from the Command Line

- 49/599 -

Define the IDL interface
Create the IDL file for the Hello World! application. First of all, make a directory to hold the example
code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or OCGT/HelloExample/hello.idl (UNIX) using
a text editor.

Enter the following text into the file hello.idl :

This interface mediates the interaction between the client and the server halves of the distributed
application.

Generate starting point code
Generate files for the server and client application using the CORBA Code Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample (UNIX) enter the following
command:

This command logs the following output to the screen while it is generating the files:

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
string getGreeting();
};

idlgen java_poa_genie.tcl -all -jP HelloExample hello.idl

Define the IDL interface

- 50/599 -

You can edit the following files to customize client and server applications:

Client:

Server:

Complete the server program
Complete the implementation class, HelloImpl , by providing the definition of the
HelloImpl.getGreeting() method . This Java method provides the concrete realization of the
Hello::getGreeting() IDL operation.

Edit the HelloImpl.java file, and delete most of the generated boilerplate code occupying the body of
the HelloImpl.getGreeting method Replace it with the line of code highlighted in bold font below:

hello.idl:
java_poa_genie.tcl: creating idlgen/RandomFuncs.java
java_poa_genie.tcl: creating idlgen/HelloExample/RandomHello.java
java_poa_genie.tcl: creating idlgen/RandomHelloExample.java
java_poa_genie.tcl: creating HelloExample/HelloCaller.java
java_poa_genie.tcl: creating HelloExample/client.java
java_poa_genie.tcl: creating HelloExample/HelloImpl.java
java_poa_genie.tcl: creating HelloExample/server.java
java_poa_genie.tcl: creating build.xml

HelloExample/client.java

HelloExample/server.java
HelloExample/HelloImpl.java

Complete the server program

- 51/599 -

Complete the client program
Complete the implementation of the client main() function in the client.java file. You must add a
couple of lines of code to make a remote invocation of the getGreeting() operation on the Hello object.

Edit the client.java file and search for the line where the HelloExample.HelloCaller.getGreeting()
method is called. Delete this line and replace it with the line of code highlighted in bold font below:

The object reference Hello1 refers to an instance of a Hello object in the server application. It is already
initialized for you.

//Java
//File ’HelloImpl.java’
...
public java.lang.String getGreeting()
throws org.omg.CORBA.SystemException
{
java.lang.String _result;
_result = "Hello World!";
return _result;
}
...

//Java
//File: ’client.java’
...
try
{
...
// Exercise interface HelloExample.Hello.
//
tmp_ref = read_reference("Hello.ref");
HelloExample.Hello Hello1 =
HelloExample.HelloHelper.narrow(tmp_ref);
System.out.println("Greeting is: " + Hello1.getGreeting());
}
catch(Exception ex)
{
System.out.println("Unexpected CORBA exception: " + ex);
}
...

Complete the client program

- 52/599 -

A remote invocation is made by invoking getGreeting() on the Hello1 object reference. The ORB
automatically establishes a network connection and sends packets across the network to invoke the
HelloImpl.getGreeting() method in the server application.

Build the demonstration
The itant utility—a Java-based build tool—is used to build the generated Java code. For more details
about itant , see http://jakarta.apache.org/ant. The itant utility is bundled with Orbix.

The generated file build.xml is used to build this demonstration. This file contains the rules for building
the Hello World! application in an XML format that is understood by the itant utility.

To build the client and server complete the following steps:

Open a command line window.

Go to the ../OCGT/HelloExample directory.

Enter:

Run the demonstration
Run the application as follows:

Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services need to run for this
demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based configuration, start up the basic
Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.

Set the Application Server Platform’s environment.

Run the server program.

1. 1.

2. 2.

3. 3.

1. 1.

start_domain-name**_services**

2. 2.

> domain-name**_env**

3. 3.

Build the demonstration

- 53/599 -

http://jakarta.apache.org/ant

Open a DOS prompt, or xterm window (UNIX). Enter the following command:

The server outputs the following lines to the screen:

The server performs the following steps when it is launched:

It instantiates and activates a single Hello CORBA object.

The stringified object reference for the Hello object is written to the local Hello.ref file.

The server opens an IP port and begins listening on the port for connection attempts by CORBA
clients.

Run the client program.

Open a new DOS prompt, or xterm window (UNIX). Enter the following command:

The client outputs the following lines to the screen:

The client performs the following steps when it is run:

It reads the stringified object reference for the Hello object from the Hello.ref file.

It converts the stringified object reference into an object reference.

It calls the remote Hello::getGreeting() operation by invoking on the object reference. This causes a
connection to be established with the server and the remote invocation to be performed.

When you are finished, terminate all processes.

itant runserver

Buildfile: build.xml
runserver:
[java] Initializing the ORB
[java] Writing stringified object reference to Hello.ref
[java] Waiting for requests...

• •

• •

• •

4. 4.

itant runclient

Buildfile: build.xml
runclient:
[java] Reading stringified object reference from Hello.ref
Greeting is: Hello World!
Total time: 3 seconds

• •

• •

• •

5. 5.

Run the demonstration

- 54/599 -

Shut down the server by typing Ctrl-C in the window where it is running.

Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in this way is suitable only for simple
demonstrations. Realistic server applications use the CORBA naming service to export their object
references instead.

6. 6.

stop_domain-name**_services**

Run the demonstration

- 55/599 -

First Application

This chapter uses a simple application to describe the basic programming steps required to define CORBA
objects, write server programs that implement those objects, and write client programs that access them. The
programming steps are the same whether the client and server run on a single host or are distributed across
a network.

Development Using Code Generation
With the code generation toolkit, you can automatically generate a large amount of the code required
for the client and server programs:

First, you define a set of interfaces written in the OMG interface definition language (IDL). The IDL
forms the basis of development for both the client and the server. The toolkit takes the IDL file as input
and, based on the declarations in the IDL file, generates a complete, working Orbix application. You can
then modify the generated code to add business logic to the application.

First Application

- 56/599 -

Client development
Client development consists of the following steps:

An IDL compiler takes the IDL file as input and generates client stub code.

The code generation toolkit takes the IDL file as input and generates a complete client application.

The generated client is a dummy implementation that invokes every operation on each interface in
the IDL file exactly once. The dummy client is a working application that can be built and run right
away.

You can modify the dummy client to complete the application.

You do not have to write boilerplate CORBA code.

You build the application.

A build file is generated by the code generation toolkit.

Server development
Server development consists of the following steps:

An IDL compiler takes the IDL file as input and generates server skeleton code.

The code generation toolkit takes the IDL file as input and generates a complete server application.

Dummy implementation classes are generated for each interface appearing in the IDL file. The
dummy server is a working application that can be built and run right away.

You can modify the dummy server to complete the application logic.

You do not have to write boilerplate CORBA code.

The implementations of IDL interfaces can be modified by adding business logic to the class
definitions.

You build the application.

A build file is generated by the code generation toolkit.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

4. 4.

Client development

- 57/599 -

Development Without Using Code Generation
The following section outlines the steps for developing clients and servers without using the code
generation toolkit (see page 33):.

First, you define a set of interfaces written in the OMG interface definition language (IDL). The IDL file
forms the basis of development for both the client and the server.

Client development
Client development consists of the following steps:

An IDL compiler takes the IDL file as input and generates client stub code.

The client stub code is a set of files that enable clients to make remote invocations on the interfaces
defined in the IDL file.

You write the rest of the client application from scratch.

You build the application.

Typically, you write a customized build file to build the client program.

1. 1.

2. 2.

3. 3.

Development Without Using Code Generation

- 58/599 -

Server development
Server development consists of the following steps:

An IDL compiler takes the IDL file as input and generates server skeleton code.

The server skeleton code is a set of files that enables the server to service requests on the interfaces in
the IDL file.

You write the rest of the server application from scratch.

You must write an implementation class for each interface appearing in the IDL file.

You build the application.

You typically write a customized build file to build the server program.

Locating CORBA Objects
Before developing an Orbix application, you must choose a strategy for locating CORBA objects.

To find a CORBA object, a client needs to know both the identity of the object and the location of the
server process that provides a home for that object. In general, CORBA encapsulates both the identity
and location of a CORBA object inside an entity known as an object reference.

In this chapter, a simple strategy is adopted to pass the object reference from the server to the client.
The strategy, illustrated in Figure 15, has three steps:

1

The server converts the object reference into a string (stringified object reference) and writes this
stringified object reference to a file.

2

The client reads the stringified object reference from the file and converts it to a real object reference.

3

The client can now make remote invocations by invoking on the object reference.

Figure 15 Simple strategy for passing object references to clients

1. 1.

2. 2.

3. 3.

Server development

- 59/599 -

This approach is convenient for simple demonstrations but is not recommended for use in realistic
applications. The CORBA naming service, described in Naming Service, provides a more sophisticated
and scalable approach to distributing object references.

Development Steps
You typically develop an Orbix application in the following steps:

Define IDL interfaces: Identify the objects required by the application and define their public
interfaces in IDL.

Generate starting point code: Use the code generation toolkit to generate starting point code for the
application. You can then edit the generated files to add business logic.

Compile the IDL definitions: The compiler generates the Java source files that you need to implement
client and server programs.

Develop the server program: The server acts as a container for a variety of CORBA objects, each of
which supports one IDL interface. You must add code to provide the business logic for each type of
CORBA object.

The server makes its CORBA objects available to clients by exporting object references to a well-known
location.

Develop the client program: The client uses the IDL compiler-generated mappings to invoke
operations on the object references that it obtains from the server.

Build the application.

Run the application.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Development Steps

- 60/599 -

Define IDL interfaces
Begin developing an Orbix enterprise application by defining the IDL interfaces to the application’s
objects. These interfaces implement CORBA distributed objects on a server application. They also
define how clients access objects regardless of the object’s location on the network.

An interface definition contains operations and attributes:

Operations correspond to methods that clients can call on an object.

Attributes give you access to a single data value.

Each attribute corresponds either to a single accessor method (readonly attribute) or an accessor
method and a modifier method (plain attribute).

For example, the IDL code in Example 1 defines an interface for an object that represents a building.
This building object could be the beginning of a facilities management application such as a warehouse
allocation system.

The IDL contains these components:

The address attribute is preceded by the IDL keyword readonly , so clients can read but can not set its
value.

The Building interface contains two operations: available() and reserveDate() . Operation
parameters can be labeled in , out , or inout :

in parameters are passed from the client to the object.

out parameters are passed from the object to the client.

• •

• •

Example1IDL for the Building Interface

//IDL
//File: ’building.idl’
interface Building {

[1](#define-idl-
interfaces)

readonly attribute string address;

[2](#define-idl-
interfaces)

boolean available(in long date);
boolean reserveDate(in long date, out long
confirmation);
};

1. 1.

2. 2.

• •

• •

Define IDL interfaces

- 61/599 -

inout parameters are passed in both directions.

available() lets a client test whether the building is available on a given date. This operation returns
a boolean (true/false) value.

reserveDate() takes the date as input, returns a confirmation number as an out parameter, and has a
boolean (true/false) return value.

All attributes and operations in an IDL interface are implicitly public. IDL interfaces have no concept of
private or protected members.

Generate starting point code
It’s recommended that you start developing a CORBA application by using the code generation toolkit
to generate starting point code. The toolkit contains two key components:

The idlgen interpreter
is an executable file that processes IDL files based on the instructions contained in predefined code
generation scripts.

A set of genies
(code generation scripts) are supplied with the toolkit. Most important of these is the java_poa_genie.tcl
genie that is used to generate starting point code for a Java application.

Taking the building.idl IDL file as input, the java_poa_genie.tcl genie can produce complete source
code for a distributed application that includes a client and a server program.

To generate starting point code, execute the following command:

This command generates all of the files you need for this application. The -all flag selects a default set
of genie options that are appropriate for simple demonstration applications. The -jP PackageName

option lets you specify the name of the Java package that contains the generated code.

The main client file generated by the java_poa_genie.tcl genie is:

The main server files generated by the java_poa_genie.tcl genie are:

• •

idlgen java_poa_genie.tcl -all -jP BuildingExample building.idl

BuildingExample/client.java Implementation of the client.

Generate starting point code

- 62/599 -

One file is generated for building the application: build.xml, which is an XML file that contains the rules
for building the Hello World! application.

The files in the generated idlgen directory are used to support a dummy implementation of the client
and server programs:

Dummy implementation of client and server programs
The generated starting point code provides a complete dummy implementation of the client and the
server programs. The dummy implementation provides:

A server program that implements every IDL interface.

Every IDL operation is implemented with default code. Return values, inout and out parameters
are populated with randomly generated values. At random intervals a CORBA user exception
might be thrown instead.

A client program that calls every operation on every IDL interface once.

The dummy client and server programs can be built and run as they are.

Modifying dummy client and server programs
Later steps describe in detail how to modify the generated code to implement the business logic of the
Building application.

In the code listings that follow, modifications are indicated as follows:

Additions to the generated code are highlighted in bold font. You can manually add this code to
the generated files using a text editor.

In some cases the highlighted additions replace existing generated code, requiring you to
manually delete the old code.

BuildingExample/server.java Server main() containing the server initialization
code.

BuildingExample/
BuildingImpl.java

Implementation of the BuildingImpl servant
class.

• •

• •

• •

• •

Generate starting point code

- 63/599 -

Compile the IDL definitions
This step is optional if you use the code generation toolkit to develop an application. The build.xml file
generated by the toolkit has a rule to run the IDL compiler automatically.

After defining your IDL, compile it using the CORBA IDL compiler. The IDL compiler checks the validity of
the specification and generates code in Java that you use to write the client and server programs.

Compile the Building interface by running the IDL compiler as follows:

The -jbase option generates Java client stub code. The -PBuildingExample sub-option puts the stub code
in the BuildingExample Java package. The -Ojava_output sub-option puts stub code files in the
java_output directory.

The -jpoa option generates server-side code for the POA in Java. The -jpoa sub-options are analogous
to the -jbase sub-options.

Run the IDL compiler with the -flags option to get a complete description of the supported options.

Output from IDL compilation
The IDL compiler produces several Java files when it compiles the building.idl file. These files contain
Java definitions that correspond to your IDL definitions. You should never modify this code.

The generated files can be divided into two categories:

Client stub code is compiled and linked with client programs, so they can make remote
invocations on Building CORBA objects.

Server skeleton code is compiled and linked with server programs, so they can service invocations
on Building CORBA objects.

Client stub code

The stub code is used by clients and consists of the following files:

idl -jbase=-PBuildingExample:-Ojava_output -jpoa=-PBuildingExample:-
Ojava_output building.idl

• •

• •

Building.java A file defining a Java Building interface. Clients use this Java interface
to invoke IDL Building operations.

BuildingHelper.
java

A file defining a Java BuildingHelper class. Every user-defined IDL
type has an associated Java Helper class.

Compile the IDL definitions

- 64/599 -

Server skeleton code

The skeleton code is a superset of the stub code. The additional files contain code that allows you to
implement servants for the Building interface. The skeleton code consists of the following files:

IDL to Java mapping
The IDL compiler translates IDL into stub and skeleton code for a given language—in this case, Java. As
long as the client and server programs comply with the definitions in the generated stub and skeleton
code, the runtime ORB enables type-safe interaction between the client and the server.

BuildingHolder.
java

A file defining a Java BuildingHolder class. Clients use this class to
pass inout and out parameters. Every IDL type has an associated
Java Holder class.

_BuildingStub.
java

A file containing stub code that enables remote access to Building
objects—not directly used by clients.

BuildingOperat
ions.java

A file containing the Java BuildingOperations interface—not directly
used by clients.

BuildingPOA.
java

A file containing the BuildingPOA class. Servers can use this class to
implement the IDL Building interface.

BuildingPOAT
ie.java

A file containing the BuildingPOATie class. This class provides an
alternative approach to implementing the IDL Building interface,
known as the tie approach.

Example1Java Stub Code for the Building Interface

// File: ’Building.java’
package BuildingExample;

Compile the IDL definitions

- 65/599 -

The code can be explained as follows:

The Java Building interface provides the client view of a CORBA object. The methods inherited from
the Java BuildingOperations interface correspond to the attributes and operations of the IDL Building
interface.

When a client program calls methods on an object of Building type, Orbix forwards the method calls
to a server object that supports the IDL Building interface.

The Java address() method is mapped from the IDL readonly address attribute. Clients call this
method to get the attribute’s current value, which returns a java.lang.String .

The Java available() method is mapped from the IDL available() operation. The parameter and
return type are mapped as follows:

The date parameter (in parameter) is mapped from an IDL long to a Java int .

The return type is mapped from an IDL boolean to a Java boolean .

The Java reserveDate() method is mapped from the IDL reserveDate() operation. The parameters and
return type are mapped as follows:

The date parameter (in parameter) is mapped from an IDL long to a Java int .

[1](#idl-to-java-mapping) public interface Building
extends BuildingOperations,
org.omg.CORBA.object,
org.omg.CORBA.portable.IDLEntity
{
}
...
// File: ’BuildingOperations.java’
package BuildingExample;
public interface BuildingOperations
{

[2](#idl-to-java-mapping) java.lang.String address();

[3](#idl-to-java-mapping) boolean available(int date);

[4](#idl-to-java-mapping) boolean reserveDate(
int date,
org.omg.CORBA.IntHolder confirmation
);
}

1. 1.

2. 2.

3. 3.

• •

• •

4. 4.

• •

Compile the IDL definitions

- 66/599 -

The confirmation parameter (out parameter) is mapped from an IDL long to a Java
org.omg.CORBA.IntHolder object.

The return type is mapped from an IDL boolean to a Java boolean .

All inout and out parameters are declared as Holder types in Java. The org.omg.CORBA.IntHolder type
is used to pass the confirmation parameter from the server back to the client. For an example of how
to use the IntHolder type, see Client business logic.

Develop the server program
The main programming task on the server side is the implementation of servant classes. In this
demonstration there is one interface, Building , and one corresponding servant class, BuildingImpl . The
code generation toolkit generates a dummy definition of every servant class. The BuildingImpl servant
class is defined in the BuildingImpl.java file.

The other programming task on the server side is the implementation of the server main() . For this
simple demonstration, the generated server main() does not require any modification. It is discussed in
detail in Enhancing Server Functionality.

Define the servant class
The code generation toolkit generates the BuildingImpl.java file, which contains an outline of the
method definitions for the BuildingImpl servant class. You should edit this file to fill in the bodies of
methods that correspond to the operations and attributes of the Building interface. It is usually
necessary to edit the constructor of the servant class as well.

Manual additions made to the generated code are shown in bold font. In some cases, the additions
replace existing generated code requiring you to manually delete the old code.

• •

• •

Example2Java BuildingImpl Servant Implementation

// File: ’BuildingImpl.java’
...
package BuildingExample;
// CORBA imports
import org.omg.CORBA.ORB;
import org.omg.CORBA.StringHolder;

Develop the server program

- 67/599 -

[1](#define-the-servant-
class)

public class BuildingImpl extends
BuildingPOA
{

[2](#define-the-servant-
class)

//-----------------------
// Private Member Variables
//-----------------------
private int m_confirmation_counter;
private int[] m_reservation;
boolean isClient = false;
org.omg.PortableServer.POA m_poa = null;
/**
* The state for the CORBA Attribute
’address’
*/
protected java.lang.String m_address;

[3](#define-the-servant-
class)

public static BuildingImpl
_create(org.omg.PortableServer.POA the_poa)
throws org.omg.CORBA.SystemException
{
return new BuildingImpl(the_poa);
}

Develop the server program

- 68/599 -

[4](#define-the-servant-
class)

public BuildingImpl(
org.omg.PortableServer.POA the_poa
)
{
m_address = "200 West Street, Waltham,
MA.";
m_confirmation_counter = 1;
m_reservation = new int[366];
for (int i=0; i<366; i++) { m_reservation[i]
= 0; }
m_poa = the_poa;
System.out.println("created");
}
/**
* implementation for IDL operation
available().
*/
public
boolean available(
int date
)
throws org.omg.CORBA.SystemException
{

[5](#define-the-servant-
class)

if (1<=date && date<=366) {
return (m_reservation[date-1]==0);
}
return true;
}
/**
* implementation for IDL operation
reserveDate().
*/
public
boolean reserveDate(
int date,
org.omg.CORBA.IntHolder confirmation
)
throws org.omg.CORBA.SystemException
{

Develop the server program

- 69/599 -

The code can be explained as follows:

The BuildingImpl servant class inherits from BuildingPOA .

The BuildingPOA class is a standard name for the base class generated for the Building interface. By
inheriting from BuildingPOA , you are indicating to the ORB that BuildingImpl is the servant class that
implements the Building interface. This approach to associating a servant class with an interface is
called the inheritance approach.

The lines of code shown in bold font are added to the generated code to complete the application.
Two private member variables are declared to store the state of a BuildingImpl object.

The m_confirmation_counter index counter is incremented each time a reservation is confirmed.

[6](#define-the-servant-
class)

confirmation.value = 0;
if (1<=date && date<=366) {
if (m_reservation[date-1]==0) {
m_reservation[date-1] =
m_confirmation_counter;
confirmation.value =
m_confirmation_counter;
m_confirmation_counter++;
return true;
}
}
return false;
}
/**
* Implementation for IDL address accessor.
*/
public
java.lang.String address()
{

[7](#define-the-servant-
class)

return m_address;
}

[8](#define-the-servant-
class)

public org.omg.PortableServer.POA
_default_POA()
{
return m_poa;
}
}

1. 1.

2. 2.

Develop the server program

- 70/599 -

The m_reservation array has 366 elements (representing the 365 or 366 days in a year). The elements
are equal to zero when unreserved or a positive integer (the confirmation number) when reserved.

_create() is a BuildingImpl method that creates BuildingImpl instances.

_create() is not a standard part of CORBA. It is generated by the code generation toolkit for
convenience. You are free to call the constructor directly, or remove the _create() method entirely if
you wish.

The BuildingImpl constructor is an appropriate place to initialize any member variables. The three
private member variables— m_address , m_confirmation_counter and m_reservation —are initialized here.
Replace the dummy initialization code with the highlighted code.

The few lines of code here implement available() and replace the generated dummy code. If an
element of the array m_reservation is zero, that means the date is available. Otherwise the array
element holds the confirmation number (a positive integer).

The few lines of code here implement reserveDate() and replace the generated dummy code.
Because confirmation is declared as an out parameter in IDL, it is passed as an
org.omg.CORBA.IntHolder type. The value of the confirmation variable is accessed as confirmation.value .

The use of holder types gets around the Java language feature that limits parameter passing to pass-
by-value. Changes made to confirmation.value can be seen by the calling code. Effectively, the holder
types allow you to imitate pass-by-reference in Java.

The address() accessor method is implemented by returning a reference to the m_address string.

_default_POA() is inherited from org.omg.PortableServer.Servant by way of BuildingPOA . It is a standard
servant method that identifies the POA object with which this servant is associated. In this example,
the value of m_poa is set in the BuildingImpl constructor.

_default_POA() is overridden to guard against the possibility of accidental implicit activation. For
information about implicit activation, see page 138.

Develop the client program
The generated code in the client.java file takes care of initializing the ORB and getting a Building
object reference. This allows the client programmer to focus on the business logic of the client
application.

You modify the generated client code by implementing the logic of the client program. Use the Bulding
object reference to access an object’s attributes and invoke its operations.

3. 3.

Note

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

Develop the client program

- 71/599 -

Client main()
The code in the client main() initializes the ORB, reads a Building object reference from the file
Building.ref and hands over control to run_warehouse_menu() , which is described in the next section.
When run_warehouse_menu() returns, the generated code shuts down the ORB.

Changes or additions to the code are shown in bold font.

Example3Java Client main() Function

//File: ’client.java’
...
package BuildingExample;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
public class client
{
// global_orb -- make ORB global so all code can find
it.

[1](#client-
main)

public static org.omg.CORBA.ORB global_orb = null;

Develop the client program

- 72/599 -

[2](#client-
main)

static org.omg.CORBA.Object read_reference(String
file)
{
System.out.println(
"Reading stringified object reference from " + file
);
String ref = null;
try {
FileReader retrieve=new FileReader(file);
BufferedReader in=new BufferedReader(retrieve);
ref = in.readLine();
}
catch (IOException ex) {
System.out.println(
"Error reading object reference from "
+ file + " : " + ex.toString()
);
return null;
}
org.omg.CORBA.Object obj =
global_orb.string_to_object(ref);
return obj;
}
...
// main() -- the main client program.
public static void main (String args[])
{
try {
// For temporary object references
org.omg.CORBA.Object tmp_ref;
// Initialise the ORB

[3](#client-
main)

global_orb = ORB.init(args, null);
// Exercise the BuildingExample.Building interface.

[4](#client-
main)

tmp_ref = read_reference("Building.ref");

[5](#client-
main)

BuildingExample.Building Building1 =
BuildingExample.BuildingHelper.narrow(tmp_ref);

Develop the client program

- 73/599 -

The code can be explained as follows:

Declare the variable global_orb in the global scope so that all parts of the program can easily access
the ORB object.

The global_orb is temporarily set equal to null , which represents a nil object reference.

Define read_reference() to read an object reference from a file. This method reads a stringified object
reference from a file and converts the stringified object reference to an object reference using
org.omg.CORBA.ORB.string_to_object() . The return type of read_reference() is org.omg.CORBA.Object —the
base type for object references.

If there is an error, read_reference() returns null .

Call org.omg.CORBA.ORB.init() to get an object reference to an ORB object.

A client must associate itself with an ORB in order to get object references to CORBA services such as
the naming service or trader service.

Get a reference to a Building CORBA object by calling read_reference() , passing the name of the file,
Building.ref , that contains its stringified object reference.

Narrow the CORBA object to a Building object, to get the object reference, Building1 .

Every IDL interface has an associated Helper class in Java. For example, the Building interface has a
BuildingExample.BuildingHelper class. The Helper class defines a static narrow() method to let you

[6](#client-
main)

run_warehouse_menu(Building1);
}
catch(Exception ex) {
System.out.println("Unexpected CORBA exception: " +
ex);
}
// Ensure that the ORB is properly shutdown and cleaned
up
try {

[7](#client-
main)

global_orb.shutdown(true);
}
catch (Exception ex) {
// Do nothing.
}
return;
}
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Develop the client program

- 74/599 -

narrow an object reference from a base type to a derived type. It is similar to a Java cast operation,
but is used specifically for types related via IDL inheritance.

Replace the lines of generated code that use the BuildingCaller class with a single call to
run_warehouse_menu() .

run_warehouse_menu() uses the Building1 object reference to make remote invocations on the server.

The ORB must be explicitly shut down before the client exits.

CORBA::ORB::shutdown() stops all server processing, deactivates all POA managers, destroys all POAs,
and causes the run() loop to terminate. The boolean argument, true , indicates that shutdown()
blocks until shutdown is complete.

When an object reference enters a client’s address space, Orbix creates a proxy object that acts as a
stand-in for the remote servant object. Orbix forwards method calls on the proxy object to
corresponding servant object methods.

Client business logic
You access an object’s attributes and operations by calling the appropriate Building class methods on
the proxy object. The proxy object redirects the Java calls across the network to the appropriate servant
method.

The following code uses the Java member access operator (.) on the Building object warehouse to
access Building class methods.

Additions to the code are shown in bold font.

6. 6.

7. 7.

Develop the client program

- 75/599 -

Example4Java Client Business Logic

//File: ’client.java’
import org.omg.CORBA.*;
...
public class client
{
...
public static void run_warehouse_menu(Building
warehouse)
{
String address = warehouse.address();
System.out.println("The warehouse address is:\n"
+ address);
InputStreamReader userInputStream
= new InputStreamReader(System.in);
BufferedReader userBuf = new
BufferedReader(userInputStream);
int date;

[1](#client-business-
logic)

IntHolder confirmationH = new IntHolder();
String quit = "n";
try {
do {
System.out.println(
"Enter day to reserve warehouse (1,2,...): "
);
date = Integer.parseInt(userBuf.readLine());
if(warehouse.available(date)) {

[2](#client-business-
logic)

if (warehouse.reserveDate(date, confirmationH))
{
System.out.println(

Develop the client program

- 76/599 -

The org.omg.CORBA.IntHolder type is used as follows:

Because confirmation is an out parameter, a holder type (of org.omg.CORBA.IntHolder type) must be
allocated for it.

The content of the confirmationH holder type, confirmationH.value , does not need to be initialized
before the operation invocation.

After invoking reserveDate() , confirmationH.value holds the returned out parameter value.

The confirmation number is accessed as confirmationH.value .

[3](#client-business-
logic)

"Confirmation number: " + confirmationH.value
);
}
else {
System.out.println(
"Reservation attempt failed!"
);
}
}
else {
System.out.println("That date is
unavailable.");
}
System.out.println("Quit? (y,n)");
quit = userBuf.readLine();
}
while (quit.equals("n"));
}
catch (java.io.IOException ex) {
System.err.println("error: failed to read user
input");
}
}
...
};

1. 1.

2. 2.

3. 3.

Develop the client program

- 77/599 -

Build the application
The tool used to build the generated Java code is the itant utility, which is a Java-based build tool
developed by Apache as part of the Jakarta project. For further details about itant , see http://
jakarta.apache.org/ant. The itant utility is bundled with Orbix.

The file build.xml is generated when building this demonstration. This file sets up your environment to
use the itant utility. This file contains the rules for building the Hello World! application in an XML
format that is understood by the itant utility.

To build the client and server, go to the example directory and at a command line prompt enter:

Run the application

Prerequisites
The prerequisites for running this application are:

The Orbix deployment environment is installed on the machine where the demonstration is run.

Orbix has been correctly configured. See the Application Server Platform Administrator’s Guide for
details.

Your Java development kit (JDK) is configured to use the Orbix ORB runtime (see Setting ORB
Properties for the Orbix ORB).

Your classpath includes the necessary Orbix JAR files (Setting Your Classpath).

This demonstration assumes that both the client and the server run in the same directory.

Steps
Perform the following steps to run the application:

1

Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services need to run for this
demonstration. Proceed to step 2.

> itant build_all

• •

• •

• •

• •

Build the application

- 78/599 -

If you have configured Orbix to use configuration repository based configuration, start up the basic
Orbix services.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter:

where domain-name is the name of the default configuration domain.

2

Run the server program.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter the following commands:

The server outputs the following lines to the screen:

At this point the server is blocked while executing ORB.run() .

3

Run the client program.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter the following command:

4

When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is running.

5

start_domain-name_services

set CLASSPATH=%CLASSPATH%;./classes
java BuildingExample.server

Initializing the ORB
Writing stringified object reference to Building.ref
Waiting for requests...

set CLASSPATH=%CLASSPATH%;./classes
java BuildingExample.client

Run the application

- 79/599 -

Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

where domain-name is the name of the default configuration domain.

Enhancing Server Functionality
In this demonstration, the default implementation of main() suffices so there is no need to edit the
server.java file.

However, for realistic applications, you need to customize the server main() to specify what kind of
POAs are created. You also need to select which CORBA objects get activated as the server boots up.

The default server main() contains code to perform these tasks:

Initialize the ORB.

Create a POA for transient objects.

Create servant objects.

Activate CORBA objects—the default server code activates one CORBA object for each of the
interfaces defined in the IDL file.

Export object references—an object reference is exported for each of the activated CORBA objects.

Activate the POA manager—so it can process requests on the CORBA objects it manages.

Shut down the ORB—shut down the ORB cleanly before exiting.

In this demonstration, there is only one interface, Building , and a single CORBA object of this type is
activated.

The following subsections discuss the code in the server.java file piece by piece. For a complete source
listing of server.java , Complete Source Code for server.java.

stop_domain-name_services

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Enhancing Server Functionality

- 80/599 -

Initialize the ORB
Before a server can make its objects available to the rest of an enterprise application, it must initialize
the ORB:

The code can be explained as follows:

The global_orb variable is used to hold a reference to an org.omg.CORBA.ORB object.

org.omg.CORBA.ORB.init() is used to create an instance of an ORB. Command-line arguments are
passed to the ORB via the args parameter. ORB.init() searches args for arguments of the general
form -ORB suffix, parses these arguments, and removes them from the argument list.

The second parameter (properties parameter) of ORB.init() is usually left equal to null . The following
sub-subsection describes how the properties parameter can (optionally) be used to set the
org.omg.CORBA.ORBClass property.

Programatically setting the orbclass property
This step is not recommended for most Java Orbix applications. See Setting ORB Properties for the Orbix
ORB for the recommended ways of setting the ORB properties.

The org.omg.CORBA.ORBClass property can be set programatically using the Properties parameter of
ORB.init() , as in the following example:

Example5Java Initializing the ORB

...
public class server {

[1](#initialize-the-orb) public static ORB global_orb = null;
...
public static void main(String args[])
{
...
try {

[2](#initialize-the-orb) global_orb = ORB.init(args, null);

1. 1.

2. 2.

Initialize the ORB

- 81/599 -

The code can be explained as follows:

A java.util.Properties object is created that can hold one or more property values. The
org.omg.CORBA.ORBClass property is set on the p property object.

The property object is passed as the second argument to the ORB.init() call, which returns a new
ORB object that is implemented by the com.iona.corba.art.artimpl.ORBImpl class.

The org.omg.CORBA.ORBSingletonClass property cannot be set programatically because it is used in a
different context to ORB.init(args,p) — that is, the no argument ORB.init() call. The
org.omg.CORBA.ORBSingletonClass property is searched for in a static initializer on org.omg.CORBA.ORB ,
and can only be usefully set in the system properties or the iona.properties file.

Example6

public static ORB global_orb =
null;
...
public static void main(String
args[])
{

[1](#programatically-setting-the-
orbclass-property)

java.util.Properties p = new
java.util.Properties();
p.setProperty("org.omg.CORBA.ORBCla
ss",
"com.iona.corba.art.artimpl.ORBImpl"
);
...
try {

[2](#programatically-setting-the-
orbclass-property)

global_orb = ORB.init(args, p);
...

1. 1.

2. 2.

Note

Initialize the ORB

- 82/599 -

Create a POA for transient objects
A simple POA object is created using the following lines of code:

The code can be explained as follows:

Get a reference to the root POA object by calling resolve_initial_references("RootPOA") on the ORB.

resolve_initial_references() provides a bootstrap mechanism for obtaining access to key Orbix
objects. It contains a mapping of well-known names to important objects such as the root POA
(RootPOA), the naming service (NameService), and other objects and services.

Narrow the root POA reference tmp_ref to type PortableServer.POA using
PortableServer.POAHelper.narrow() .

Example7

...
try {
...

[1](#create-a-poa-for-
transient-objects)

tmp_ref
=
global_orb.resolve_initial_references("R
ootPOA");
}
catch
(org.omg.CORBA.ORBPackage.InvalidName ex)
{
// Handle exception...
}

[2](#create-a-poa-for-
transient-objects)

POA root_poa =
POAHelper.narrow(tmp_ref);

[3](#create-a-poa-for-
transient-objects)

POAManager root_poa_manager =
root_poa.the_POAManager();

[4](#create-a-poa-for-
transient-objects)

// Now create our own POA.
POA my_poa = create_simple_poa("my_poa",
root_poa,
root_poa_manager);

1. 1.

2. 2.

Create a POA for transient objects

- 83/599 -

Because tmp_ref is of org.omg.CORBA.Object type—the generic base class for object references—
methods specific to the PortableServer.POA class are not directly accessible. It is therefore necessary to
down-cast the tmp_ref pointer to the actual type of the object reference using POAHelper.narrow() .

Obtain a reference to the root POA manager object.

A POA manager controls the flow of messages to a set of POAs. CORBA invocations cannot be
processed unless the POA manager is in an active state (see page 57).

Create the my_poa POA as a child of root_poa . The my_poa POA becomes associated with the
root_poa_manager POA manager. This means that the root_poa_manager object controls the flow of
messages into my_poa .

create_simple_poa()
The create_simple_poa() method is defined as follows:

3. 3.

4. 4.

Create a POA for transient objects

- 84/599 -

A POA is created by invoking PortableServer.POA.create_POA() on an existing POA object. The POA on
which this method is invoked is known as the parent POA and the newly created POA is known as the
child POA.

create_POA() takes the following arguments:

...
static POA create_simple_poa(
String poa_name,
POA parent_poa,
POAManager poa_manager
)
{
// Create a policy list.
// Policies not set in the list get default values.
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
int i = 0;
POA new_poa = null;
// Make the POA single threaded.
policies[i++] = parent_poa.create_thread_policy(
ThreadPolicyValue.SINGLE_THREAD_MODEL
);
if(i>1 || i<1) {
System.out.println("Policy creation failed");
System.exit(1);
}
try {
new_poa = parent_poa.create_POA(poa_name,
poa_manager,
policies);
}
catch (
org.omg.PortableServer.POAPackage.AdapterAlreadyExists ex
) {
System.out.println(
"Failed to create POA with exception: " +ex.toString());
System.exit(1);
}
catch (org.omg.PortableServer.POAPackage.InvalidPolicy ex) {
System.out.println(
"Failed to create POA with exception: " +ex.toString());
System.exit(1);
}
return new_poa;
}

Create a POA for transient objects

- 85/599 -

poa_name is the adapter name. This name is used within the ORB to identify the POA instance
relative to its parent.

poa_manager is a reference to a POA manager object with which the newly created POA becomes
associated.

policies is a list of policies that configure the new POA. For more information, see Using POA
Policies.

The POA instance returned by create_simple_poa() accepts default values for most of its policies. The
resulting POA is suitable for activating transient CORBA objects. A transient CORBA object is an object
that exists only as long as the server process that created it. When the server is restarted, old transient
objects are no longer accessible.

Create servant objects
A number of servant objects must be created. A servant is an object that does the work for a CORBA
object. For example, the BuildingImpl servant class contains the code that implements the Building IDL
interface.

A single BuildingImpl servant object is created as follows:

In this example, _create() creates an instance of a BuildingImpl servant. The POA reference my_poa that
is passed to _create() must be the same POA that is used to activate the object in the next section
Activate CORBA objects.

_create() is not a standard CORBA method. It is a convenient pattern implemented by the code
generation toolkit. You can use the BuildingImpl constructor instead, if you prefer.

• •

• •

• •

...
// Variables to hold our servants
Servant the_Building = null;
...
// Create a servant for BuildingExample.Building.
the_Building = BuildingExample.BuildingImpl._create(my_poa);

Create servant objects

- 86/599 -

Activate CORBA objects
A CORBA object must be activated before it can accept client invocations. Activation is the step that
establishes the link between an ORB, which receives invocations from clients, and a servant object,
which processes these invocations.

In this step, two fundamental entities are created that are closely associated with a CORBA object:

An object ID.

This is a CORBA object identifier that is unique with respect to a particular POA instance. In the
case of a persistent CORBA object, the object ID is often a database key that is used to retrieve the
state of the CORBA object from the database.

An object reference.

This is a handle on a CORBA object that exposes a set of methods mapped from the operations of
its corresponding IDL interface. It can be stringified and exported to client programs. Once a
client gets hold of an object reference, the client can use it to make remote invocations on the
CORBA object.

A single Building object is activated using the following code:

The code can be explained as follows:

Activate the CORBA object.

A number of things happen when activate_object() is called:

An unique object ID, oid , is automatically generated by my_poa to represent the CORBA object’s
identity. Automatically generated object IDs are convenient for use with transient objects.

The CORBA object becomes associated with the POA, my_poa .

• •

• •

Example8

org.omg.CORBA.Object tmp_ref = null;
...
byte [] oid;
...

[1](#activate-corba-objects) oid =
my_poa.activate_object(the_Building);

[2](#activate-corba-objects) tmp_ref = my_poa.id_to_reference(oid);

1. 1.

• •

• •

Activate CORBA objects

- 87/599 -

The POA records the fact that the the_Building servant provides the implementation for the CORBA
object identified by oid .

Use org.omg.PortableServer.POA.id_to_reference() to generate an object reference, tmp_ref , from the
given object ID.

You can activate a CORBA object in various ways, depending on the policies used to create the POA. For
information about activating objects in the POA, see Activating CORBA Objects; for information about
activating objects on demand, see Chapter 11 on page 173.

Export object references
A server must advertise its objects so that clients can find them. In this demonstration, the Building
object reference is exported to clients using write_reference() :

This call writes the tmp_ref object reference to the Building.ref file.

write_reference() writes an object reference to a file in stringified form. It is defined as follows:

• •

2. 2.

write_reference(tmp_ref,"Building.ref");

Export object references

- 88/599 -

The ref object reference is converted to a string by passing ref as an argument to
org.omg.CORBA.ORB.object_to_string() . The string is then written to the objref_file file.

CORBA clients can read the objref_file file to obtain the object reference.

This approach to exporting object references is convenient to use for this simple demonstration.
Realistic applications, however, are more likely to use the CORBA naming service instead.

Activate the POA manager
After a server has set up the objects and associations it requires during initialization, it must tell the
ORB to start listening for requests:

static void write_reference(
org.omg.CORBA.Object ref,
String objref_file
)
{
String stringified_ref = global_orb.object_to_string(ref);
System.out.println(
"Writing stringified object reference to " + objref_file
);
try {
FileWriter store = new FileWriter(objref_file);
store.write(stringified_ref);
store.flush();
store.close();
}
catch (IOException ex) {
System.out.println("Failed to write to " + objref_file);
}
}

Activate the POA manager

- 89/599 -

The code can be explained as follows:

A POA manager acts as a gatekeeper for incoming object requests. The manager can be in four
different states: active, holding, discarding, or inactive (see Table 10 on page 141). A POA manager can
accept object requests only after it is activated by calling org.omg.PortableServer.POAManager.activate() .

org.omg.CORBA.ORB.run() puts the ORB into a state where it listens for client connection attempts and
accepts request messages from existing client connections.

org.omg.CORBA.ORB.run() is a blocking method that returns only when org.omg.CORBA.ORB.shutdown() is
invoked.

Shut down the ORB
Shutdown is initiated when a Ctrl-C or similar event is sent to the server from any source. You can shut
down the server application as follows:

On Windows platforms, switch focus to the MS-DOS box where the server is running and type Ctrl-
C.

On UNIX platforms, switch focus to the xterm window where the server is running and type Ctrl-C.

On UNIX, send a signal to a background server process using the kill system command.

Example9

[1](#activate-the-poa-
manager)

// Activate the POA Manager.
//
try{
root_poa_manager.activate();
}
catch (
org.omg.PortableServer.POAManagerPackage.Adapt
erInactive ex){
// Handle exception...
}

[2](#activate-the-poa-
manager)

global_orb.run();

1. 1.

2. 2.

• •

• •

• •

Shut down the ORB

- 90/599 -

With JDK 1.2, there is no mechanism for the Java Virtual Machine to detect abnormal program
termination (for example, Ctrl-C to exit). It is, therefore, unlikely that orb.shutdown() is ever called but it
is good programming practice to call it before exit, as in the current server example.

With JDK 1.3, an API for Java Virtual Machine shutdown hooks has been added to the java.lang.Runtime
class that provides process-shutdown notification. A JDK 1.3 application can initiate shutdown actions,
such as orb.shutdown() , before the Java Virtual Machine exits.

See the release notes for JDK versions in the documentation pages at Oracle’s web site, http://
www.oracle.com/us/technologies/java/overview/index.htm for further details.

Complete Source Code for server.java

Complete Source Code for server.java

- 91/599 -

http://www.oracle.com/us/technologies/java/overview/index.html
http://www.oracle.com/us/technologies/java/overview/index.html

//Java
//---
// Edit idlgen config file to get your own copyright notice
// placed here.
//---
// Automatically generated server for the following
// IDL interfaces:
// Building
package BuildingExample;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import java.text.DateFormat;
/**
* server: This class implements the CORBA server automatically
* generated from the idl file.
*
*/
public class server {
public static ORB global_orb = null;
// write_reference() -- export object reference to file.
// This is a useful way to advertise objects for simple tests
// and demos.
// The CORBA naming service is a more scalable way to
// advertise references.
//
static void write_reference(
org.omg.CORBA.Object ref,
String objref_file
)
{
String stringified_ref = global_orb.object_to_string(ref);
System.out.println(
"Writing stringified object reference to " + objref_file
);
try {
FileWriter store = new FileWriter(objref_file);
store.write(stringified_ref);
store.flush();
store.close();
}
catch (IOException ex) {
System.out.println("Failed to write to " + objref_file);
}
}
// create_simple_poa() --

Complete Source Code for server.java

- 92/599 -

// Create a POA for simple servant management.
static POA create_simple_poa(
String poa_name,
POA parent_poa,
POAManager poa_manager
)
{
// Create a policy list.
// Policies not set in the list get default values.
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
int i = 0;
POA new_poa = null;
// Make the POA single threaded.
//
policies[i++] = parent_poa.create_thread_policy(
ThreadPolicyValue.SINGLE_THREAD_MODEL
);
if(i>1 || i<1)
{
System.out.println("Policy creation failed");
System.exit(1);
}
try {
new_poa = parent_poa.create_POA(poa_name,
poa_manager,
policies);
}
catch (
org.omg.PortableServer.POAPackage.AdapterAlreadyExists ex
)
{
System.out.println(
"Failed to create POA with exception: " +ex.toString()
);
System.exit(1);
}
catch (org.omg.PortableServer.POAPackage.InvalidPolicy ex)
{
System.out.println(
"Failed to create the POA with exception : " +ex.toString()
);
System.exit(1);
}
return new_poa;
}
// main() -- set up a POA, create and export object references
public static void main(String args[])

Complete Source Code for server.java

- 93/599 -

{
// Variables to hold our servants
Servant the_Building = null;
try {
// For temporary object references
org.omg.CORBA.Object tmp_ref = null;
// Initialise the ORB and Root POA.
//
System.out.println("Initializing the ORB");
try {
global_orb = ORB.init(args, null);
tmp_ref
= global_orb.resolve_initial_references("RootPOA");
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
System.out.println(
"Caught exception while resolving to RootPOA : "
+ ex.toString()
);
System.exit(1);
}
POA root_poa = POAHelper.narrow(tmp_ref);
POAManager root_poa_manager = root_poa.the_POAManager();
// Now create our own POA
POA my_poa = create_simple_poa("my_poa",
root_poa,
root_poa_manager);
// Create servants and export object references
// Note: _create is a useful convenience function created
// by the genie; it is not a standard CORBA function
byte [] oid;
try{
// Create a servant for BuildingExample.Building
the_Building =
BuildingExample.BuildingImpl._create(my_poa);
oid = my_poa.activate_object(the_Building);
tmp_ref = my_poa.id_to_reference(oid);
write_reference(tmp_ref,"Building.ref");
}
catch
(org.omg.PortableServer.POAPackage.ServantAlreadyActive ex)
{
System.out.println(
"Caught exception trying to activate an object : "
+ ex.toString()
);
System.exit(1);

Complete Source Code for server.java

- 94/599 -

}
catch (org.omg.PortableServer.POAPackage.WrongPolicy ex) {
System.out.println(
"Caught exception trying to activate an object : "
+ ex.toString()
);
System.exit(1);
}
catch (
org.omg.PortableServer.POAPackage.ObjectNotActive ex)
{
System.out.println(
"Caught exception while trying to create reference : "
+ ex.toString()
);
System.exit(1);
}
// Activate the POA Manager.
try {
root_poa_manager.activate();
}
catch (
org.omg.PortableServer.POAManagerPackage.AdapterInactive ex)
{
System.out.println(
"Failed trying to activate root poa manager : "
+ ex.toString()
);
System.exit(1);
}
// Let the ORB process requests
System.out.println("Waiting for requests...");
global_orb.run();
}
catch (Exception e) {
System.out.println(
"Unexpected CORBA exception: " + e.toString()
);
}
// Ensure that the ORB is properly shutdown and cleaned up
try {
global_orb.shutdown(true);
}
catch (Exception e) {
// Do nothing.
}
return;

Complete Source Code for server.java

- 95/599 -

}
}

Complete Source Code for server.java

- 96/599 -

Defining Interfaces

The CORBA Interface Definition Language (IDL) is used to describe interfaces of objects in an enterprise
application. An object’s interface describes that object to potential clients—its attributes and operations, and
their signatures.

An IDL-defined object can be implemented in any language that IDL maps to, such as C++, Java, and
COBOL. By encapsulating object interfaces within a common language, IDL facilitates interaction
between objects regardless of their actual implementation. Writing object interfaces in IDL is therefore
central to achieving the CORBA goal of interoperability between different languages and platforms.

CORBA defines standard mappings from IDL to several programming languages, including C++, Java,
and Smalltalk. Each IDL mapping specifies how an IDL interface corresponds to a language-specific
implementation. Orbix’s IDL compiler uses these mappings to convert IDL definitions to language-
specific definitions that conform to the semantics of that language.

This chapter describes IDL semantics and uses. For mapping information, refer to language-specific
mappings in the Object Management Group’s latest CORBA specification.

Modules and Name Scoping
You create an application’s IDL definitions within one or more IDL modules. Each module provides a
naming context for the IDL definitions within it.

Modules and interfaces form naming scopes, so identifiers defined inside an interface need to be
unique only within that interface. To resolve a name, the IDL compiler conducts its search among the
following scopes, in this order:

The current interface

Base interfaces of the current interface (if any)

The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account , are defined within module BankDemo :

1. 1.

2. 2.

3. 3.

Defining Interfaces

- 97/599 -

Within the same module, interfaces can reference each other by name alone. If an interface is
referenced from outside its module, its name must be fully scoped with the following syntax:

For example, the fully scoped names of interfaces Bank and Account are BankDemo::Bank and
BankDemo::Account , respectively.

Nesting restrictions
A module cannot be nested inside a module of the same name. Likewise, you cannot directly nest an
interface inside a module of the same name. To avoid name ambiguity, you can provide an intervening
name scope as follows:

module BankDemo
{
interface Bank {
//...
};
interface Account {
//...
};
};

module-name::interface-name

Nesting restrictions

- 98/599 -

Interfaces
Interfaces are the fundamental abstraction mechanism of CORBA. An interface defines a type of object,
including the operations that the object supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through operations and attributes:

Operations of an interface give clients access to an object’s behavior. When a client invokes an
operation on an object, it sends a message to that object. The ORB transparently dispatches the
call to the object, whether it is in the same address space as the client, in another address space
on the same machine, or in an address space on a remote machine.

An IDL attribute is short-hand for a pair of operations that get and, optionally, set values in an
object.

For example, the Account interface in module BankDemo describes the objects that implement bank
accounts:

module A
{
module B
{
interface A {
//...
};
};
};

• •

• •

Interfaces

- 99/599 -

This interface declares two readonly attributes, AccountId and balance , which are defined as typedefs of
string and float , respectively. The interface also defines two operations that a client can invoke on this
object, withdraw() and deposit() .

Because an interface does not expose an object’s implementation, all members are public. A client can
access variables in an object’s implementations only through an interface’s operations or attributes.

While every CORBA object has exactly one interface, the same interface can be shared by many CORBA
objects in a system. CORBA object references specify CORBA objects—that is, interface instances. Each
reference denotes exactly one object, which provides the only means by which that object can be
accessed for operation invocations.

Interface Contents
An IDL interface can define the following components:

Operations

Attributes

Exceptions

IDL Data Types

Constants

Of these, operations and attributes must be defined within the scope of an interface; all other
components can be defined at a higher scope.

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account ids
//...
interface Account {
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;
void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
void
deposit(in CashAmount amount);
};
};

• •

• •

• •

• •

• •

Interface Contents

- 100/599 -

Operations
IDL operations define the signatures of an object’s function, which client invocations on that object
must use. The signature of an IDL operation is generally composed of three components:

Return value data type

Parameters and their direction

Exception clause

A operation’s return value and parameters can use any data types that IDL supports (see Abstract
Interfaces).

For example, the Account interface defines two operations, withdraw() and deposit() ; it also defines the
exception InsufficientFunds :

On each invocation, both operations expect the client to supply an argument for parameter amount, and
return void . Invocations on withdraw() can also raise the exception InsufficientFunds , if necessary.

Parameter direction
Each parameter specifies the direction in which its arguments are passed between client and object.
Parameter passing modes clarify operation definitions and allow the IDL compiler to map operations
accurately to a target programming language. At runtime, Orbix uses parameter passing modes to
determine in which direction or directions it must marshal a parameter.

A parameter can take one of three passing mode qualifiers:

• •

• •

• •

module BankDemo
{
typedef float CashAmount; // Type for representing cash
//...
interface Account {
exception InsufficientFunds {};
void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
void
deposit(in CashAmount amount);
};
};

Operations

- 101/599 -

in:
The parameter is initialized only by the client and is passed to the object.

out:
The parameter is initialized only by the object and returned to the client.

inout:
The parameter is initialized by the client and passed to the server; the server can modify the value
before returning it to the client.

In general, you should avoid using inout parameters. Because an inout parameter automatically
overwrites its initial value with a new value, its usage assumes that the caller has no use for the
parameter’s original value. Thus, the caller must make a copy of the parameter in order to retain that
value. By using two parameters, in and out , the caller can decide for itself when to discard the
parameter.

One-way operations
By default, IDL operations calls are synchronous—that is, a client invokes an operation on an object and
blocks until the invoked operation returns. If an operation definition begins with the keyword oneway , a
client that calls the operation remains unblocked while the object processes the call.

Three constraints apply to a one-way operation:

The return value must be set to void .

Directions of all parameters must be set to in .

No raises clause is allowed.

For example, interface Account might contain a one-way operation that sends a notice to an Account
object:

• •

• •

• •

Operations

- 102/599 -

Orbix cannot guarantee the success of a one-way operation call. Because one-way operations do not
support return data to the client, the client cannot ascertain the outcome of its invocation. Orbix only
indicates failure of a one-way operation if the call fails before it exits the client’s address space; in this
case, Orbix raises a system exception.

Attributes
An interface’s attributes correspond to the variables that an object implements. Attributes indicate
which variables in an object are accessible to clients.

Unqualified attributes map to a pair of get and set functions in the implementation language, which let
client applications read and write attribute values. An attribute that is qualified with the keyword
readonly maps only to a get function.

For example, the Account interface defines two readonly attributes, AccountId and balance . These
attributes represent information about the account that only the object implementation can set; clients
are limited to read-only access.

Exceptions
IDL operations can raise one or more CORBA-defined system exceptions. You can also define your own
exceptions and explicitly specify these in an IDL operation. An IDL exception is a data structure that can
contain one or more member fields, formatted as follows:

After you define an exception, you can specify it through a raises clause in any operation that is
defined within the same scope. A raises clause can contain multiple comma-delimited exceptions:

module BankDemo {
//...
interface Account {
oneway void notice(in string text);
//...
};
};

exception exception-name {
[member;]...
};

Attributes

- 103/599 -

Exceptions that are defined at module scope are accessible to all operations within that module;
exceptions that are defined at interface scope are accessible only to operations within that interface.

For example, interface Account defines the exception InsufficientFunds with a single member of data
type string . This exception is available to any operation within the interface. The following IDL defines
the withdraw() operation to raise this exception when the withdrawal fails:

For more about exception handling, see Chapter 12 on page 189.

Empty Interfaces
IDL allows you to define empty interfaces. This can be useful when you wish to model an abstract base
interface that ties together a number of concrete derived interfaces. For example, the CORBA
PortableServer module defines the abstract ServantManager interface, which serves to join the interfaces
for two servant manager types, servant activator and servant locator:

return-val operation-name([params-list])
raises(exception-name[, exception-name]);

module BankDemo
{
typedef float CashAmount; // Type for representing cash
//...
interface Account {
exception InsufficientFunds {};
void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
//...
};
};

Empty Interfaces

- 104/599 -

Inheritance of IDL Interfaces
An IDL interface can inherit from one or more interfaces. All elements of an inherited, or base interface,
are available to the derived interface. An interface specifies the base interfaces from which it inherits as
follows:

For example, the following interfaces, CheckingAccount and SavingsAccount , inherit from interface
Account and implicitly include all of its elements:

module PortableServer
{
interface ServantManager {};
interface ServantActivator : ServantManager {
//...
};
interface ServantLocator : ServantManager {
//...
};
};

interface new-interface : base-interface[, base-interface]...
{...};

Inheritance of IDL Interfaces

- 105/599 -

An object that implements CheckingAccount can accept invocations on any of its own attributes and
operations and on any of the elements of interface Account . However, the actual implementation of
elements in a CheckingAccount object can differ from the implementation of corresponding elements in
an Account object. IDL inheritance only ensures type-compatibility of operations and attributes between
base and derived interfaces.

Multiple inheritance
The following IDL definition expands module BankDemo to include interface PremiumAccount , which
inherits from two interfaces, CheckingAccount and SavingsAccount :

Figure 16 shows the inheritance hierarchy for this interface.

module BankDemo{
typedef float CashAmount; // Type for representing cash
interface Account {
//...
};
interface CheckingAccount : Account {
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook ();
};
interface SavingsAccount : Account {
float calculateInterest ();
};
};

module BankDemo {
interface Account {
//...
};
interface CheckingAccount : Account {
//...
};
interface SavingsAccount : Account {
//...
};
interface PremiumAccount :
CheckingAccount, SavingsAccount {
//...
};
};

Inheritance of IDL Interfaces

- 106/599 -

Figure 16 Multiple inheritance of IDL interfaces

Multiple inheritance can lead to name ambiguity among elements in the base interfaces. The following
constraints apply:

Names of operations and attributes must be unique across all base interfaces.

If the base interfaces define constants, types, or exceptions of the same name, references to
those elements must be fully scoped.

Inheritance of the object interface
All user-defined interfaces implicitly inherit the predefined interface Object . Thus, all Object operations
can be invoked on any user-defined interface. You can also use Object as an attribute or parameter type
to indicate that any interface type is valid for the attribute or parameter. For example, the following
operation getAnyObject() serves as an all-purpose object locator:

It is illegal IDL syntax to inherit interface Object explicitly.

Inheritance redefinition
A derived interface can modify the definitions of constants, types, and exceptions that it inherits from a
base interface. All other components that are inherited from a base interface cannot be changed. In the
following example, interface CheckingAccount modifies the definition of exception InsufficientFunds ,
which it inherits from Account :

• •

• •

interface ObjectLocator {
void getAnyObject (out Object obj);
};

Note

Inheritance of IDL Interfaces

- 107/599 -

While a derived interface definition cannot override base operations or attributes, operation
overloading is permitted in interface implementations for those languages such as C++ that support
it.

Forward Declaration of IDL Interfaces
An IDL interface must be declared before another interface can reference it. If two interfaces reference
each other, the module must contain a forward declaration for one of them; otherwise, the IDL
compiler reports an error. A forward declaration only declares the interface’s name; the interface’s
actual definition is deferred until later in the module.

For example, IDL interface Bank defines two operations that return references to Account objects—
create_account() and find_account() . Because interface Bank precedes the definition of interface
Account , Account is forward-declared as follows:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
//...
interface Account {
exception InsufficientFunds {};
//...
};
interface CheckingAccount : Account {
exception InsufficientFunds {
CashAmount overdraftLimit;
};
};
//...
};

Note

Forward Declaration of IDL Interfaces

- 108/599 -

Local Interfaces
An interface declaration that contains the keyword local defines a local interface. An interface
declaration that omits this keyword can be referred to as an unconstrained interface, to distinguish it
from local interfaces. An object that implements a local interface is a local object.

Local interfaces differ from unconstrained interfaces in the following ways:

A local interface can inherit from any interface, whether local or unconstrained. However, an
unconstrained interface cannot inherit from a local interface.

Any non-interface type that uses a local interface is regarded as a local type. For example, a struct
that contains a local interface member is regarded as a local struct, and is subject to the same
localization constraints as a local interface.

Local types can be declared as parameters, attributes, return types, or exceptions only in a local
interface, or as state members of a valuetype.

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account ids
// Forward declaration of Account
interface Account;
// Bank interface...used to create Accounts
interface Bank {
exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };
Account
find_account(in AccountId account_id)
raises(AccountNotFound);
Account
create_account(
in AccountId account_id,
in CashAmount initial_balance
) raises (AccountAlreadyExists);
};
// Account interface...used to deposit, withdraw, and query
// available funds.
interface Account {
//...
};
};

• •

• •

• •

Local Interfaces

- 109/599 -

Local types cannot be marshaled, and references to local objects cannot be converted to strings
through ORB::object_to_string() . Attempts to do so throw CORBA::MARSHAL .

Any operation that expects a reference to a remote object cannot be invoked on a local object. For
example, you cannot invoke any DII operations or asynchronous methods on a local object;
similarly, you cannot invoke pseudo-object operations such as is_a() or validate_connection() .
Attempts to do so throw CORBA::NO_IMPLEMENT .

The ORB does not mediate any invocation on a local object. Thus, local interface implementations
are responsible for providing the parameter copy semantics that a client expects.

Instances of local objects that the OMG defines as supplied by ORB products are exposed either
directly or indirectly through ORB::resolve_initial_references() .

Local interfaces are implemented by CORBA::LocalObject to provide implementations of Object pseudo
operations, and other ORB-specific support mechanisms that apply. Because object implementations
are language-specific, the LocalObject type is only defined by each language mapping.

The LocalObject type implements the following Object pseudo-operations to throw an exception of
NO_IMPLEMENT :

CORBA::LocalObject also implements the pseudo-operations shown in Table 1:

Table 1: CORBA::LocalObject pseudo-operation returns

• •

• •

• •

• •

is_a()
get_interface()
get_domain_managers()
get_policy()
get_client_policy()
set_policy_overrides()
get_policy_overrides()
validate_connection()

Operation Always returns:

non_existent() False

hash() A hash value that is consistent with the object’s lifetime

Local Interfaces

- 110/599 -

Valuetypes
Valuetypes enable programs to pass objects by value across a distributed system. This type is especially
useful for encapsulating lightweight data such as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as long and string that can be passed by
value over the wire as arguments to remote invocations, and objects, which can only be passed by
reference. When a program supplies an object reference, the object remains in its original location;
subsequent invocations on that object from other address spaces move across the network, rather than
the object moving to the site of each request.

Like an interface, a valuetype supports both operations and inheritance from other valuetypes; it also
can have data members. When a valuetype is passed as an argument to a remote operation, the
receiving address space creates a copy it of it. The copied valuetype exists independently of the original;
operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be invoked locally. Unlike
invocations on objects, valuetype invocations are never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages used on sending and
receiving ends of the transmission, and their respective abilities to marshal and demarshal the
valuetype’s operations. A receiving process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These classes must be either
compiled into the application, or made available through a shared library. Conversely, Java applications
can marshal enough information on the sender, so the receiver can download the bytecodes for the
valuetype operation implementations.

Operation Always returns:

is_equivalent() True if the references refer to the same LocalObject
implementation.

Valuetypes

- 111/599 -

Abstract Interfaces
An application can use abstract interfaces to determine at runtime whether an object is passed by
reference or by value. For example, the following IDL definitions specify that operation
Example::display() accepts any derivation of abstract interface Describable :

Given these definitions, you can define two derivations of abstract interface Describable , valuetype
Currency and interface Account :

Because the parameter for display() is defined as a Describable type, invocations on this operation can
supply either Account objects or Currency valuetypes.

All abstract interfaces implicitly inherit from native type CORBA::AbstractBase , and map to Java interfaces.
Abstract interfaces have several characteristics that differentiate them from interfaces:

The GIOP encoding of an abstract interface contains a boolean discriminator to indicate whether
the adjoining data is an IOR (TRUE) or a value (FALSE). The demarshalling code can thus determine
whether the argument passed to it is an object reference or a value.

Unlike interfaces, abstract interfaces do not inherit from CORBA::Object , in order to allow support
for valuetypes. If the runtime argument supplied to an abstract interface type can be narrowed to
an object reference type, then CORBA::Object operations can be invoked on it.

Because abstract interfaces can be derived by object references or by value types, copy semantics
cannot be guaranteed for value types that are supplied as arguments to its operations.

Abstract interfaces can only inherit from other abstract interfaces.

abstract interface Describable {
string get_description();
};
interface Example {
void display(in Describable someObject);
};

interface Account : Describable {
// body of Account definition not shown
};
valuetype Currency supports Describable {
// body of Currency definition not shown
};

• •

• •

• •

• •

Abstract Interfaces

- 112/599 -

IDL Data Types
In addition to IDL module, interface, valuetype, and exception types, IDL data types can be grouped into
the following categories:

Built-in types such as short , long , and float

Extended built-in types such as long long and wstring

Complex data types such as enum and struct , and string

Pseudo object types

Built-in Types
Table 2 lists built-in IDL types.

Table 2: Built-in IDL types

• •

• •

• •

• •

Data type Size Range of values

[short](#integer-types) 16 bits -215...215-1

[unsigned short](#integer-
types)

16 bits 0...216-1

[long](#integer-types) 32 bits –231...231-1

[unsigned long](#integer-
types)

32 bits 0...232-1

32 bits IEEE single-precision floating point
numbers

[double](#floating-point-
types)

64 bits IEEE double-precision floating point
numbers

[char](#char) 8 bits ISO Latin-1

[string](#string-types) variable
length

ISO Latin-1, except NUL

[stringbound](#string-
types)

variable
length

ISO Latin-1, except NUL

boolean unspecified TRUE or FALSE

IDL Data Types

- 113/599 -

Integer types
IDL supports short and long integer types, both signed and unsigned. IDL guarantees the range of
these types. For example, an unsigned short can hold values between 0-65535. Thus, an unsigned short
value always maps to a native type that has at least 16 bits. If the platform does not provide a native 16-
bit type, the next larger integer type is used.

Floating point types
Types float and double follow IEEE specifications for single- and double-precision floating point values,
and on most platforms map to native IEEE floating point types.

char
Type char can hold any value from the ISO Latin-1 character set. Code positions 0-127 are identical to
ASCII. Code positions 128-255 are reserved for special characters in various European languages, such
as accented vowels.

String types
Type string can hold any character from the ISO Latin-1 character set except NUL . IDL prohibits
embedded NUL characters in strings. Unbounded string lengths are generally constrained only by
memory limitations. A bounded string, such as string<10> , can hold only the number of characters
specified by the bounds, excluding the terminating NUL character. Thus, a string<6> can contain the six-
character string cheese .

The declaration statement can optionally specify the string’s maximum length, thereby determining
whether the string is bounded or unbounded:

For example, the following code declares data type ShortString , which is a bounded string whose
maximum length is 10 characters:

Data type Size Range of values

[octet](#octet) 8 bits 0x0 to 0xff

[any](#any) variable
length

Universal container type

string[<length>] name

Built-in Types

- 114/599 -

octet
Octet types are guaranteed not to undergo any conversions in transit. This lets you safely transmit
binary data between different address spaces. Avoid using type char for binary data, inasmuch as
characters might be subject to translation during transmission. For example, if client that uses ASCII
sends a string to a server that uses EBCDIC, the sender and receiver are liable to have different binary
values for the string’s characters.

any
Type any allows specification of values that express any IDL type, which is determined at runtime. An
any logically contains a TypeCode and a value that is described by the TypeCode . For more information
about the any data type, see Chapter 14 on page 209.

Extended Built-in Types
Table 3 lists extended built-in IDL types.

Table 3: Extended built-in IDL types

typedef string<10> ShortString;
attribute ShortString shortName; // max length is 10 chars

Data type Size Range of values

[long long]
(#long-long)

64 bits –263...263-1

unsigned [long
long](#long-
long)

64 bits 0...-264-1

[long double]
(#long-double)

79 bits IEEE double-extended floating point number, with an
exponent of at least 15 bits in length and signed
fraction of at least 64 bits. long double type is
currently not supported on Windows NT.

[wchar]
(#wchar)

Unspecified Arbitrary codesets

[wstring]
(#wstring)

Variable
length

Arbitrary codesets

Extended Built-in Types

- 115/599 -

long long
The 64-bit integer types long long and unsigned long long support numbers that are too large for 32-bit
integers. Platform support varies. If you compile IDL that contains one of these types on a platform that
does not support it, the compiler issues an error.

long double
Like 64-bit integer types, platform support varies for long double , so usage can yield IDL compiler
errors.

wchar
Type wchar encodes wide characters from any character set. The size of a wchar is platform-dependent.

wstring
Type wstring is the wide-character equivalent of type string (see page 78). Like string -types, wstring
types can be unbounded or bounded. Wide strings can contain any character except NUL .

fixed
Type fixed provides fixed-point arithmetic values with up to 31 significant digits. You specify a fixed
type with the following format:

digit-size specifies the number’s length in digits. The maximum value for digit-size is 31 and must be
greater than or equal to scale . A fixed type can hold any value up to the maximum value of a double .

Scaling options

If scale is a positive integer, it specifies where to place the decimal point relative to the rightmost digit.
For example the following code declares fixed data type CashAmount to have a digit size of 8 and a scale
of 2 :

Data type Size Range of values

[fixed]
(#fixed)

Unspecified 31 significant digits

typedef fixed< digit-size, scale > name

Extended Built-in Types

- 116/599 -

Given this typedef, any variable of type CashAmount can contain values of up to (+/-)99999999.99.

If scale is negative, the decimal point moves to the right scale digits, thereby adding trailing zeros to
the fixed data type’s value. For example, the following code declares fixed data type bigNum to have a
digit size of 3 and a scale of -4 :

If myBigNum has a value of 123 , its numeric value resolves to 1230000 . Definitions of this sort let you store
numbers with trailing zeros efficiently.

Constant fixed types

Constant fixed types can also be declared in IDL, where digit-size and scale are automatically
calculated from the constant value. For example:

This yields a fixed type with a digit size of 7 , and a scale of 6 .

Unlike IEEEE floating-point values, type fixed is not subject to representational errors. IEEE floating
point values are liable to represent decimal fractions inaccurately unless the value is a fractional power
of 2. For example, the decimal value 0.1 cannot be represented exactly in IEEE format. Over a series of
computations with floating-point values, the cumulative effect of this imprecision can eventually yield
inaccurate results.

Type fixed is especially useful in calculations that cannot tolerate any imprecision, such as
computations of monetary values.

typedef fixed<10,2> CashAmount;

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

module Circle {
const fixed pi = 3.142857;
};

Extended Built-in Types

- 117/599 -

Complex Data Types
IDL provides the following complex data types:

enum

struct

union

multi-dimensional fixed-size arrays

sequence

enum
An enum (enumerated) type lets you assign identifiers to the members of a set of values. For example,
you can modify the BankDemo IDL with enum type balanceCurrency :

In this example, attribute balanceCurrency in interface Account can take any one of the values pound ,
dollar , yen , or franc .

The actual ordinal values of a enum type vary according to the actual language implementation. The
CORBA specification only guarantees that the ordinal values of enumerated types monotonically
increase from left to right. Thus, in the previous example, dollar is greater than pound , yen is greater
than dollar , and so on. All enumerators are mapped to a 32-bit type.

struct
A struct data type lets you package a set of named members of various types. In the following
example, struct CustomerDetails has several members. Operation getCustomerDetails() returns a struct
of type CustomerDetails that contains customer data:

• •

• •

• •

• •

• •

module BankDemo {
enum Currency {pound, dollar, yen, franc};
interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
//...
};
};

Complex Data Types

- 118/599 -

A struct must include at least one member. Because a struct provides a naming scope, member
names must be unique only within the enclosing structure.

union
A union data type lets you define a structure that can contain only one of several alternative members
at any given time. A union saves space in memory, as the amount of storage required for a union is the
amount necessary to store its largest member.

You declare a union type with the following syntax:

All IDL unions are discriminated. A discriminated union associates a constant expression (label1..labeln)
with each member. The discriminator’s value determines which of the members is active and stores the
union’s value.

For example, the following code defines the IDL union Date , which is discriminated by an enum value:

module BankDemo{
struct CustomerDetails {
string custID;
string lname;
string fname;
short age;
//...
};
interface Bank {
CustomerDetails getCustomerDetails
(in string custID);
//...
};
};

union name switch (discriminator) {
case label1 : element-spec;
case label2 : element-spec;
 [...]
case labeln : element-spec;
 [default : element-spec;]
};

Complex Data Types

- 119/599 -

Given this definition, if Date ’s discriminator value is numeric , then digitalFormat member is active; if the
discriminator’s value is strMMDDYY or strDDMMYY , then member stringFormat is active; otherwise, the
default member structFormat is active.

The following rules apply to union types:

A union’s discriminator can be integer , char , boolean or enum , or an alias of one of these types;
all case label expressions must be compatible with this type.

Because a union provides a naming scope, member names must be unique only within the
enclosing union.

Each union contains a pair of values: the discriminator value and the active member.

IDL unions allow multiple case labels for a single member. In the previous example, member
stringFormat is active when the discriminator is either strMMDDYY or strDDMMYY .

IDL unions can optionally contain a default case label. The corresponding member is active if the
discriminator value does not correspond to any other label.

arrays
IDL supports multi-dimensional fixed-size arrays of any IDL data type, with the following syntax:

dimension-spec must be a non-zero positive constant integer expression. IDL does not allow open arrays.
However, you can achieve equivalent functionality with sequence types (see page 83).

For example, the following code fragment defines a two-dimensional array of bank accounts within a
portfolio:

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };
struct DateStructure {
short Day;
short Month;
short Year;
};
union Date switch (dateStorage) {
case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;
};

• •

• •

• •

• •

• •

[typedef] element-type array-name [dimension-spec]...

Complex Data Types

- 120/599 -

An array must be named by a typedef declaration (see Defining Data Types) in order to be used as a
parameter, an attribute, or a return value. You can omit a typedef declaration only for an array that is
declared within a structure definition.

Because of differences between implementation languages, IDL does not specify the origin at which
arrays are indexed. For example C and C++ array indexes always start at 0, while Pascal uses an origin of
1. Consequently, clients and servers cannot portably exchange array indexes unless they both agree on
the origin of array indexes and make adjustments as appropriate for their respective implementation
languages. Usually, it is easier to exchange the array element itself instead of its index.

sequence
IDL supports sequences of any IDL data type with the following syntax:

An IDL sequence is similar to a one-dimensional array of elements; however, its length varies according
to its actual number of elements, so it uses memory more efficiently.

A sequence must be named by a typedef declaration (see Defining Data Types) in order to be used as a
parameter, an attribute, or a return value. You can omit a typedef declaration only for a sequence that is
declared within a structure definition.

A sequence’s element type can be of any type, including another sequence type. This feature is often
used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed (unbounded):

Unbounded sequences can hold any number of elements, up to the memory limits of your
platform.

Bounded sequences can hold any number of elements, up to the limit specified by the bound.

The following code shows how to declare bounded and unbounded sequences as members of an IDL
struct:

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

[typedef] sequence < element-type[, max-elements] > sequence-name

• •

• •

Complex Data Types

- 121/599 -

Pseudo Object Types
CORBA defines a set of pseudo object types that ORB implementations use when mapping IDL to a
programming language. These object types have interfaces defined in IDL but do not have to follow the
normal IDL mapping for interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation parameter types in an IDL
specification:

To use these types in an IDL specification, include the file orb.idl in the IDL file as follows:

This statement tells the IDL compiler to allow types NamedValue and TypeCode .

Defining Data Types
With typedef , you can define more meaningful or simpler names for existing data types, whether IDL-
defined or user-defined. The following IDL defines typedef identifier StandardAccount , so it can act as an
alias for type Account in later IDL definitions:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length is 50
};
struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length
};

CORBA::NamedValue
CORBA::TypeCode

#include <orb.idl>
//...

Pseudo Object Types

- 122/599 -

Constants
IDL lets you define constants of all built-in types except type any . To define a constant’s value, you can
either use another constant (or constant expression) or a literal. You can use a constant wherever a
literal is permitted.

The following constant types are supported:

Integer

Floating-point

Character and string

Wide character and string

Boolean

Octet

Fixed-point

Enumeration

Integer
IDL accepts integer literals in decimal, octal, or hexadecimal:

Both unary plus and unary minus are legal.

module BankDemo {
interface Account {
//...
};
typedef Account StandardAccount;
};

• •

• •

• •

• •

• •

• •

• •

• •

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

Constants

- 123/599 -

Floating-point
Floating-point literals use the same syntax as C++:

Character and string
Character constants use the same escape sequences as C++:

const float f1 = 3.1e-9; // Integer part, fraction part,
// exponent
const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent

Floating-point

- 124/599 -

Wide character and string
Wide character and string constants use C++ syntax. Use Universal character codes to represent
arbitrary characters. For example:

IDL files themselves always use the ISO Latin-1 code set, they cannot use Unicode or other extended
character sets.

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters
// ('\xA' and 'B'),
// not the single character '\xAB

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

Note

Wide character and string

- 125/599 -

Boolean
Boolean constants use the keywords FALSE and TRUE . Their use is unnecessary, inasmuch as they
create needless aliases:

Octet
Octet constants are positive integers in the range 0-255.

Octet constants were added with CORBA 2.3, so ORBs that are not compliant with this specification
might not support them.

Fixed-point
For fixed-point constants, you do not explicitly specify the digits and scale. Instead, they are inferred
from the initializer. The initializer must end in d or D . For example:

The type of a fixed-point constant is determined after removing leading and trailing zeros. The
remaining digits are counted to determine the digits and scale. The decimal point is optional.

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing

const octet O1 = 23;
const octet O2 = 0xf0;

Note

// Fixed point constants take digits and scale from the
// initialiser:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

Boolean

- 126/599 -

Currently, there is no way to control the scale of a constant if it ends in trailing zeros.

Enumeration
Enumeration constants must be initialized with the scoped or unscoped name of an enumerator that is
a member of the type of the enumeration. For example:

Enumeration constants were added with CORBA 2.3, so ORBs that are not compliant with this
specification might not support them.

Constant Expressions
IDL provides a number of arithmetic and bitwise operators.

Operator precedence
The precedence for operators follows the rules for C++. You can override the default precedence by
adding parentheses.

Arithmetic operators
The arithmetic operators have the usual meaning and apply to integral, floating-point, and fixed-point
types (except for % , which requires integral operands). However, these operators do not support mixed-
mode arithmetic; you cannot, for example, add an integral value to a floating-point value. The following
code contains several examples:

Note

enum Size { small, medium, large };
const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;

Note

Enumeration

- 127/599 -

Expressions are evaluated using the type promotion rules of C++. The result is coerced back into the
target type. The behavior for overflow is undefined, so do not rely on it. Fixed-point expressions are
evaluated internally with 62 bits of precision, and results are truncated to 31 digits.

Bitwise operators
The bitwise operators only apply to integral types. The right-hand operand must be in the range 0–63.
Note that the right-shift operator >> is guaranteed to inject zeros on the left, whether the left-hand
operand is signed or unsigned:

IDL guarantees two’s complement binary representation of values.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;
// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;
// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;
// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff

Bitwise operators

- 128/599 -

Developing Applications with Genies

The code generation toolkit is packaged with a genie that can help your development effort get off to a fast
start.

The Java genie java_poa_genie.tcl creates a complete, working client and server directly from your IDL
interfaces. You can then add application logic to the generated code. This can improve productivity in
two ways:

The outlines of your application—class declarations and operation signatures—are generated for
you.

A working system is available immediately, which you can incrementally modify and test. With the
generated build files, you can build and test modifications right away, thereby eliminating much
of the overhead that is usually associated with getting a new project underway.

In a genie-generated application, the client invokes every operation and each attribute’s get and
set methods, and directs all display to standard output. The server also writes all called operations
to standard output.

This client/server application achieves these goals:

Demonstrates or tests an Orbix client/server application for a particular interface or interfaces.

Provides a starting point for your application.

Shows the right way to initialize and pass parameters for various IDL data types.

Genie Syntax
java_poa_genie.tcl uses the following syntax:

You must specify an IDL file. You must also specify the application components to generate, either all
components at once, or individual components, with one of the arguments in Table 4:

Table 4: Component specifier arguments to java_poa_genie.tcl

• •

• •

• •

• •

• •

idlgen java_poa_genie.tcl component-spec [options] idl-file

Developing Applications with Genies

- 129/599 -

Each component specifier can take its own arguments. For more information on these, refer to the
discussion on each component later in this chapter.

You can also supply one or more of the optional switches shown in Table 5:

Table 5: Optional switches to java_poa_genie.tcl

Component
specifier

Output

-all All components: server, servant, client, and antfile (see page 90).

-servant Servant classes to implement the selected interfaces (see page 92).

-server Server main program (see page 95)

-client Client main program (see page 97).

-antfile Files used by the itant utility to compile server and client applications
(see page 98).

Option Description

-complete/-
incomplete

Controls the completeness of the code that is generated for the
specified components (see page 98).

-dir Specifies where to generate file output (see page 102).

-include Specifies to generate code for included files (see page 92).

-interface-spec Specifies to generate code only for the specified interfaces (see page
92).

-jPpackage-name Specifies the package name to contain the file output (see page 102).

Genie Syntax

- 130/599 -

Specifying Application Components
The -all argument generates the files that implement all application components: server, servant,
client, and build files. For example, the following command generates all the files required for an
application that is based on bankdemo.idl :

Alternatively, you can use java_poa_genie.tcl to generate one or more application components. For
example, the following command specifies to generate only those files that are required to implement a
server:

Option Description

-v/-s Controls the level of verbosity (see page 102).

> **idlgen java_poa_genie.tcl -all bankdemo.idl**
java_poa_genie.tcl: creating idlgen/RandomFuncs.java
java_poa_genie.tcl: creating idlgen/NoPackage/RandomBankDemo.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/RandomBank.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/RandomAccount.java
java_poa_genie.tcl: creating idlgen/RandomNoPackage.java
java_poa_genie.tcl: creating NoPackage/BankDemo/BankCaller.java
java_poa_genie.tcl: creating NoPackage/BankDemo/AccountCaller.java
java_poa_genie.tcl: creating NoPackage/client.java
java_poa_genie.tcl: creating NoPackage/BankDemo/BankImpl.java
java_poa_genie.tcl: creating NoPackage/BankDemo/AccountImpl.java
java_poa_genie.tcl: creating NoPackage/server.java
java_poa_genie.tcl: creating build.xml

Specifying Application Components

- 131/599 -

By generating output for application components selectively, you can control genie processing
for each one. For example, the following commands specify different -dir options, so that server
and servant files are output to one directory, and client files are output to another:

Selecting Interfaces
By default, java_poa_genie.tcl generates code for all interfaces in the specified IDL file. You can specify
to generate code for specific interfaces within the file by supplying their fully scoped names. For
example, the following command specifies to generate code for the Bank interface in bankdemo.idl :

You can also use wildcard patterns to specify the interfaces to process. For example, the following
command generates code for all interfaces in module BankDemo :

The following command generates code for all interfaces in foo.idl with names that begin with Foo or
end with Bar .

> **idlgen java_poa_genie.tcl -server bankdemo.idl**
java_poa_genie.tcl: creating idlgen/PrintFuncs.java
java_poa_genie.tcl: creating idlgen/NoPackage/PrintBankDemo.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/PrintBank.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/PrintAccount.java
java_poa_genie.tcl: creating idlgen/RandomFuncs.java
java_poa_genie.tcl: creating idlgen/NoPackage/RandomBankDemo.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/RandomBank.java
java_poa_genie.tcl: creating idlgen/NoPackage/BankDemo/RandomAccount.java
java_poa_genie.tcl: creating idlgen/RandomNoPackage.java
java_poa_genie.tcl: creating NoPackage/server.java

> **idlgen java_poa_genie.tcl -servant - server bankdemo.idl**
-dir c:\app\server
> **idlgen java_poa_genie.tcl -client bankdemo.idl**
-dir c:\app\client

> idlgen java_poa_genie.tcl -all BankDemo::Bank bankdemo.idl

> idlgen java_poa_genie.tcl BankDemo::* bankdemo.idl

Selecting Interfaces

- 132/599 -

For interfaces defined inside modules, the wildcard is matched against the fully scoped interface
name, so Foo* matches FooModule::Y but not BarModule::Foo .

Pattern matching is performed according to the rules of the TCL string match command, which is
similar to Unix or Windows filename matching. Table 6 contains some common wildcard patterns:

Table 6: Wildcard pattern matching to interface names

Including Files
By default, java_poa_genie.tcl generates code only for the specified IDL files. You can specify also to
generate code for all #include files by supplying the -include option. For example, the following
command specifies to generate code from bankdemo.idl and any IDL files that are included in it:

The default for this option is set in the configuration file through default.java_genie.want_include .

> idlgen java_poa_genie.tcl foo.idl "Foo*" "*Bar"

Note

Wildcard pattern Matches...

* Any string

? Any single character

[xyz] x , y , or z .

> idlgen java_poa_genie.tcl -all -include bankdemo.idl

Including Files

- 133/599 -

Implementing Servants
The -servant option generates POA servant classes that implement IDL interfaces. For example, this
command generates a class header and implementation code for each interface that appears in IDL file
bankdemo.idl :

The genie constructs the implementation class name by adding a suffix—by default, Impl —to the
interface name. The default suffix is set in the configuration file through default.java.impl_class_suffix.

For example, BankDemo::Account is implemented by class AccountImpl . The generated implementation
class contains these components:

A static _create() member method to create a servant.

A member method to implement each IDL operation for the interface.

The -servant option can take one or more arguments, shown in Table 7, that let you control how
servant classes are generated:

Table 7: Arguments that control servant generation

idlgen java_poa_genie.tcl -servant bankdemo.idl

• •

• •

Argument Purpose

-tie -notie Choose the inheritance or tie (delegation) method for implementing
servants.

-inherit -
noinherit

Choose whether implementation classes follow the same inheritance
hierarchy as the IDL interfaces they implement.

-default_poa
arg

Determines the behavior of implicit activation, which uses the default
POA associated with a given servant. default_poa can take one of
these arguments:

- per_servant : Set the correct default POA for each servant.

- exception : Throw an exception on all attempts at implicit
activation.

For more information, see page 138.

Implementing Servants

- 134/599 -

The actual content and behavior of member methods is determined by the -complete or -
incomplete flag. For more information, see Controlling Code Completeness.

-tie/-notie
A POA servant is either an instance of a class that inherits from a POA skeleton, or an instance of a tie
template class that delegates to a separate implementation class. You can choose the desired approach
by supplying -tie or -notie options. The default for this option is set in the configuration file through
default.java_genie.want_tie .

With -notie , the genie generates servants that inherit directly from POA skeletons. For example:

The _create() method constructs a servant as follows:

With -tie , the genie generates implementation classes that do not inherit from POA skeletons. The
following example uses a _create method to create an implementation object (1), and a tie (2) that
delegates to it:

Argument Purpose

-refcount -
norefcount

Choose whether or not servants are reference counted.

public class AccountImpl extends AccountPOA

public static AccountImpl _create(
org.omg.PortableServer.POA the_poa)
throws org.omg.CORBA.SystemException
{
return new AccountImpl(the_poa);
}

Example1Java Creating a TIE Object

public static NoPackage.BankDemo.AccountPOATie _create(
org.omg.PortableServer.POA the_poa)
throws org.omg.CORBA.SystemException
{

-tie/-notie

- 135/599 -

_ create() is a useful genie convention that provides a consistent way to create servants whether you
use the tie approach or not. This helps minimize the impact on your code if you change approaches
during development. You can also create servants and tie objects by calling the constructors directly
in your own code.

-inherit/-noinherit
IDL servant implementation classes typically have the same inheritance hierarchy as the interfaces that
they implement, but this is not required.

-inherit generates implementation classes with the same inheritance as the corresponding
interfaces.

-noinherit generates implementation classes that do not inherit from each other. Instead, each
implementation class independently implements all operations for its IDL interface, including
operations that are inherited from other IDL interfaces.

The default for this option is set in the configuration file through default.java_genie.want_inherit .

-default_poa
In the standard CORBA Java mapping, each servant class provides a _this() method, which generates
an object reference and implicitly activates that object with the servant. Implicit activation calls
_default_POA() on the same servant to determine the POA in which this object is activated. Unless you
specify otherwise, _default_POA() returns the root POA, which is typically not the POA where you want
to activate objects.

The code that java_poa_genie.tcl generates always overrides _default_POA() in a way that prevents
implicit activation. Applications generated by this genie can only activate objects explicitly. Two options
are available that determine how to override _default_POA() :

1 AccountImpl tied_object = new AccountImpl();

2 NoPackage.BankDemo.AccountPOATie the_tie =
new NoPackage.BankDemo.AccountPOATie(
tied_object, the_poa);
return the_tie;
}

Note

• •

• •

-inherit/-noinherit

- 136/599 -

per_servant : (default) Servant constructors and generated _create() methods takes a POA
parameter. For each servant, _default_POA() returns the POA specified when the servant was
created.

exception : _default_POA() throws a CORBA::INTERNAL system exception. This option is useful in a
group development environment, in that it allows tests to easily catch any attempts at implicit
activation.

For more information about explicit and implicit activation, see Explicit Object Activation.

Implementing the Server Mainline
The -server option generates a simple server mainline that activates and exports some objects. For
example, the following command generates a file called serverjava that contains a main program:

The server program performs the following steps:

Initializes the ORB and POA.

For each interface:

Activates a CORBA object of that interface.

Exports a reference either to the naming service or to a file, depending on whether you set the option
-ns or -nons .

Catches any exceptions and print a message.

The -server option can take one or more arguments, shown in Table 8, that let you modify server
behavior:

Table 8: Options affecting the server

• •

• •

> idlgen java_poa_genie.tcl -server bankdemo.idl

1. 1.

2. 2.

3. 3.

Command line option Purpose

[-threads](#-threads-nothreads) Choose a single or multi-threaded server.

[-strategy simple](#-strategy-
options)

Create servants during start-up.

[-strategy activator](#-strategy-
activator)

Create servants on demand with a servant
activator.

Implementing the Server Mainline

- 137/599 -

-threads/-nothreads
You can specify the threads policy for all POAs in the server with one of these options:

-nothreads
sets the SINGLE_THREAD_MODEL policy on all POAs in the server, which ensures that all calls to application
code are made in the main thread. This policy allows a server to run thread-unsafe code, but might
reduce performance because the ORB can dispatch only one operation at a time.

-threads
sets the ORB_CTRL_MODEL policy on all POAs in the server, allowing the ORB to dispatch incoming calls in
multiple threads concurrently.

If you enable multi-threading, you must ensure that your application code is thread-safe and
application data structures are adequately protected by thread-synchronization calls.

The default for this option is set in the configuration file through default.java_genie.want_threads .

Command line option Purpose

[-strategy locator](#-strategy-
locator)

Create servants per call with a servant
locator.

[-strategy default_servant](#-
strategy-default_servant)

For each interface, generate a POA that
uses a default servant.

[-ns](#-ns-nons) [-nons](#-ns-nons) Determines how to export object
references:

- -ns : use the naming service to publish
object references.

- -nons : write object references to a file.

Note

-threads/-nothreads

- 138/599 -

-strategy Options
The POA is a flexible tool that lets servers manage objects with different strategies. Some servers can
use a combination of strategies for different objects. You can use the genie to generate examples of
each strategy, then cut-and-paste the appropriate generated code into your own server.

You set a server’s object management strategy through one of the following arguments to the
-strategy option:

-strategy simple:
The server creates a POA with a policy of USE_ACTIVE_OBJECT_MAP_ONLY (see page 132). For each interface in
the IDL file, the server main() creates a servant, activates it with the POA as a CORBA object, and
exports an object reference.

This strategy is appropriate for servers that implement a small, fixed set of objects.

-strategy activator:
The server creates a POA and a servant activator (see Servant Activators). For each interface, the server
exports an object reference. The object remains inactive until a client first calls on its reference; then,
the servant activator is invoked and creates the appropriate servant, which remains in memory to
handle future calls on that reference.

This strategy lets the server start receiving requests immediately and defer creation of servants until
they are needed. It is useful for servers that normally activate just a few objects out of a large collection
on each run, or for servants that take a long time to initialize.

-strategy locator:
The server creates a POA and a servant locator (see Servant Locators). The server exports references,
but all objects are initially inactive. For every incoming operation, the POA asks the servant locator to
select an appropriate servant. The generated servant locator creates a servant for each incoming
operation.

A servant locator is ideal for managing a cache of servants from a very large collection of objects in a
database. You can replace the preinvoke and postinvoke methods in the generated locator with code
that looks for servants in a database cache, loads them into the cache if required, and deletes old
servants when the cache is full.

-strategy Options

- 139/599 -

-strategy default_servant:
The server creates a POA for each interface, and defines a default servant for each POA to handle
incoming requests. A server that manages requests for many objects that all use the same interface
should probably have a POA that maps all these requests to the same default servant. For more
information about using default servants, see Setting a Default Servant.

-ns/-nons
Determines how the server exports object references to the application:

-ns:
Use the naming service to publish object references. For each interface, the server binds a reference
that uses the interface name, in naming context IT_GenieDemo . For example, for interface Demo_Bank , the
genie binds the reference IT_GenieDemo/BankDemo_Bank . If you use this option, the naming service and
locator daemon must be running when you start the server.

For more information about the naming service, see Naming Service.

-nons:
Write stringified object references to a file. For each interface, the server exports a reference to a file
named after the interface with the suffix ref —for example BankDemo_Bank.ref

The default for this option is set in the configuration file through default. .

Implementing a Client
The -client option generates client source code in client.java . For example:

When you run this client, it performs the following actions for each interface:

Reads an object reference from the file generated by the server—for example, BankDemo_Bank.ref .

If generated with the -complete option, for each operation:

Calls the operation and passes random values.

Prints out the results.

Catches raised exceptions and prints an appropriate message.

> idlgen java_poa_genie.tcl -client bank.idl

1. 1.

2. 2.

3. 3.

-ns/-nons

- 140/599 -

Generating Build Files
The -antfile option generates a build.xml file that contains rules to build the server and client
applications. The build.xml file provides the following targets:

build_all : Deletes class files, IDL compiler generated files and rebuilds everything.

clean : Deletes all class files.

clean_all : Deletes all generated files.

runserver : Runs the server.

runclient : Runs the client.

To build the client and server, enter this command:

Controlling Code Completeness
You can control the extent of the code that is generated for each interface through the -complete and -
incomplete options. These options are valid for server, servant, and client code generation.

The default for this option is set in the configuration file through default.java_genie.want_complete .

For example, the following commands generate complete servant and client code and incomplete
server mainline code:

Setting the -complete option on servant, server, and client components yields a complete application
that you can compile and run. The application performs these tasks:

The client application calls every operation in the server application and passes random values as
in parameters.

The server application returns random values for inout / out parameters and return values.

Client and server print a message for each operation call, which includes the values passed and
returned.

• •

• •

• •

• •

• •

> itant build_all

> **idlgen java_poa_genie.tcl -servant -complete bankdemo.idl**
> **idlgen java_poa_genie.tcl -client -complete bankdemo.idl**
> **idlgen java_poa_genie.tcl -server -incomplete bankdemo.idl**

• •

• •

• •

Generating Build Files

- 141/599 -

Using the -complete option lets you quickly produce a demo or proof-of-concept prototype. It also offers
useful models for typical coding tasks, showing how to initialize parameters properly, invoke
operations, and throw and catch exceptions.

If you are familiar with calling and parameter passing rules and simply want a starting point for your
application, you probably want to use the -incomplete option. This option produces minimal code,
omitting the bodies of operations, attributes, and client-side invocations.

The sections that follow describe, for each application component, the differences between complete
and incomplete code generation. All examples assume the following IDL for interface Account:

Servant Code
Qualifying the -servant option with -incomplete or -complete yields the required source files for each
IDL interface. Either option generates the AccountImpl.java source file.

Incomplete servant
The -incomplete option specifies to generate servant class AccountImpl , which implements the
BankDemo::Account interface. The implementation of each operation and attribute throws a
CORBA::NO_IMPLEMENT exception.

For example, the following code is generated for the withdraw() operation:

// IDL:
module BankDemo
{
// Other interfaces and type definitions omitted...
interface Account
{
exception InsufficientFunds {};
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;
void withdraw(
in CashAmount amount
) raises (InsufficientFunds);
void
deposit(
in CashAmount amount
);
};
}

Servant Code

- 142/599 -

All essential elements of IDL code are automatically generated, so you can focus on writing the
application logic for each IDL operation.

Complete servant
The -complete option specifies to generate the file idlgen.NoPackage.RandomModuleName , which provides the
functionality required to generate random values for parameter passing. For example,
idlgen.NoPackage.RandomBankDemo is generated for the BankDemo module.

Each interface-nameImpl method is fully implemented to print parameter values and, if required, return
a value to the client. For example, the following code is generated for the withdraw() operation:

public void withdraw(float amount)
throws org.omg.CORBA.SystemException,
NoPackage.BankDemo.AccountPackage.InsufficientFunds {
{
throw org.omg.CORBA.NO_IMPLEMENT();
}

Servant Code

- 143/599 -

Client Code
In a completely implemented client, java_poa_genie.tcl generates a source file for each interface,
interface-nameCaller.java . This source file defines contains a wrapper method for each operation in
interface-name , and the generated client program calls each of these methods. For example, the
BankDemo client program calls the deposit() method in NoPackage.BankDemo.AccountCaller , which in turn
calls deposit() on the Account object. Each method assigns random values to the parameters of
operations and prints out the values of parameters that they send, and those that are received back as
out parameters. Utility methods to assign random values to IDL types are generated in the file
idlgen.NoPackage.Randommodule-name .

An incomplete client contains no invocations.

Both complete and incomplete clients catch raised exceptions and print appropriate messages.

// ...
boolean isClient = false;
// ...
public void withdraw(float amount)
throws org.omg.CORBA.SystemException,
NoPackage.BankDemo.AccountPackage.InsufficientFunds {
// Diagnostics: print the values of "in" and "inout" parameters
System.out.println("AccountImpl.withdraw(): called with...");
System.out.println("amount = " + amount);
// Decide if we want to throw back an exception
switch (idlgen.RandomFuncs.init().randomlong() % 2) {
case 1: {
// Declare and initialise the exception
 NoPackage.BankDemo.AccountPackage.InsufficientFunds IT_ex;
IT_ex =
 idlgen.NoPackage.BankDemo.RandomAccount.InsufficientFunds(
isClient);
throw IT_ex;
}
default:
// Don't throw an exception
break;
}
// Diagnostics
System.out.println ("AccountImpl.withdraw(): returning"
}

Client Code

- 144/599 -

For example, the following client code is generated for the Account::deposit() operation in
NoPackage.BankDemo.AccountCaller.deposit() :

Client Code

- 145/599 -

General Options
You can supply switches that control java_poa_genie.tcl genie output:

public static
void deposit(NoPackage.BankDemo.Account IT_obj)
{
// Diagnostics: announce our intention to invoke the operation.
// Declare parameters for making the remote call.
float amount;
// Initialise "in" and "inout" parameters with random values
amount = idlgen.NoPackage.RandomBankDemo.CashAmount(isClient);
// Make the call and handle any exceptions that are thrown
try {
IT_obj.deposit(
amount);
}
catch(org.omg.CORBA.SystemException se) {
System.out.println(
"deposit failed with the following exception");
se.printStackTrace(System.out);
return;
}
catch(Exception ex) {
System.out.println(
"deposit failed with the following exception");
ex.printStackTrace(System.out);
return;
}
// If we get this far then no exception was thrown.
// Success depends on us having gotten back expected
// values
System.out.println("deposit done");
}
}

General Options

- 146/599 -

-jP:
By default, java_poa_genie.tcl writes all generated application files to a package whose name is initially
set in the configuration file through default.java_genie.package_name . The distributed configuration file
initially sets the package name to NoPackage . You can override the default through the -jP switch. For
example, the following command puts all generated files in package my_package :

-dir:
By default, java_poa_genie.tcl writes all output files to the current directory. With the -dir option, you
can explicitly specify where to generate file output.

-v/-s:
By default, java_poa_genie.tcl runs in verbose (-v) mode. With the -s option, you can silence all
messaging.

Compiling the Application
To compile a genie-generated application, Orbix must be properly installed on the client and server
hosts:

Build the application using the build.xml file.

In separate windows, run first the server, then the client applications.

Configuration Settings
The configuration file jart_idlgen.cfg contains default settings for the Java genie java_poa_genie.tcl at
the scope default.java_genie .

Some other settings are not specific to java_poa_genie.tcl but are used by the std/cpp_poa_boa_lib.tcl
library, which maps IDL constructs to their Java equivalents. java_poa_genie.tcl uses this library
extensively, so these settings affect the output that it generates. They are held in the scope
default.java .

> idlgen java_poa_genie.tcl -all -jP my_package bank.idl

1. 1.

2. 2.

-jP:

- 147/599 -

For a full listing of these settings, refer to the CORBA Code Generation Toolkit Guide.

Configuration Settings

- 148/599 -

ORB Initialization and Shutdown

The mechanisms for initializing and shutting down the ORB on a client and a server are the same.

The main() of both sever and client must perform these steps:

Initialize the ORB by calling org.omg.CORBA.ORB.init() .

Shut down and destroy the ORB, by calling shutdown() and destroy() on the ORB.

Initializing the ORB Runtime
Before an application can start any CORBA-related activity, it must initialize the ORB runtime by calling
org.omg.CORBA.ORB.init() . ORB.init() returns an object reference to the ORB object; this, in turn, lets the
client obtain references to other CORBA objects, and make other CORBA-related calls.

Calling within main()
It is common practice to set a global variable with the ORB reference, so the ORB object is accessible to
most parts of the code. However, you should call ORB.init() only after you call main() to ensure access
to command line arguments.

Supplying an ORB name
You can supply an ORB name as an argument; this name determines the configuration information
that the ORB uses. If you supply null, Orbix uses the ORB identifier as the default ORB name. ORB
names and configuration are discussed in the Application Server Platform Administrator’s Guide.

• •

• •

ORB Initialization and Shutdown

- 149/599 -

Java mapping
The Java mapping provides three forms of initialization:

Application initialization

Applet initialization

Default initialization

These are defined as follows:

Application initialization

The application initialization method is used with a stand-alone Java application, and returns a
new fully functional ORB Java object with each call. This method is defined with two parameters:

Command arguments as an array of strings.

A list of Java properties.

Either parameter can be null.

Applet initialization

The applet initialization method is called from an applet, and returns a new fully functional ORB
Java object with each call. This method is defined with two parameters:

The applet.

A list of Java properties.

Either parameter can be null.

Default initialization

The default initialization method returns a singleton ORB. If called multiple times, it always
returns the same Java object. The ORB that this version returns has restricted capabilities. Only
the following ORB methods can be invoked on a singleton ORB:

• •

• •

• •

package org.omg.CORBA;
abstract public class ORB {
// ...
public static ORB init(
String[] args,
java.util.Properties props);
public static ORB init(
java.applet.Applet app,
java.util.Properties props);
public static ORB init();
// ...

• •

• •

• •

• •

Java mapping

- 150/599 -

This version of ORB.init() primarily serves these purposes:

Provide a factory for type codes for use by helper classes implementing the type() method.

Create Any instances that are used to describe union labels as part of creating a union TypeCode .

Registering portable interceptors
During ORB initialization, portable interceptors are instantiated and registered through an ORB
initializer. The client and server applications must register the ORB initializer before calling ORB_init() .
For more information, see Registering Portable Interceptors.

Shutting Down the ORB
For maximum portability and to ensure against resource leaks, a client or server must always shut down
and destroy the ORB at the end of main() :

shutdown() stops all server processing, deactivates all POA managers, destroys all POAs, and
causes the run() loop to terminate. shutdown() takes a single Boolean argument; if set to true, the
call blocks until the shutdown process completes before it returns control to the caller. If set to
false, a background thread is created to handle shutdown, and the call returns immediately.

destroy() destroys the ORB object and reclaims all resources associated with it.

In this section
This section discusses the following topics:

create_typecode-type_tc()
get_primitive_tc()
create_any()

• •

• •

• •

• •

Shutting Down a Client page 105

Registering portable interceptors

- 151/599 -

Shutting Down a Client
A client is a CORBA application that does not call org.omg.CORBA.ORB.run() and does not process
incoming CORBA invocations.

Example 1 shows how a client is shut down:

A client calls shutdown() with the argument 1 (TRUE), causing the shutdown() operation to remain
blocked until ORB shutdown is complete.

The last thing the client does is to call destroy() . You are required to call destroy() for full CORBA
compliancy.

The destroy() function has no effect in Orbix. Hence, it can be omitted without affecting the runtime
behavior of an Orbix application.

Shutting down a server page 106

Example1Shutting down a CORBA client

// Java
void main(String args[])
{
org.omg.CORBA.ORB orb;
//ORB initialization not shown
...
...

[1](#shutting-down-a-client) orb.shutdown(true);

[2](#shutting-down-a-client) orb.destroy();
}

1. 1.

2. 2.

Note

Shutting Down a Client

- 152/599 -

Shutting down a server
Because servers typically process invocations by calling org.omg.CORBA.ORB.run() , which blocks
indefinitely, org.omg.CORBA.ORB.shutdown() cannot be called from the main thread. The following are the
main ways of shutting down a server:

Call shutdown(0) from a subthread.

Call shutdown(0) in the context of an operation invocation.

• •

• •

Shutting down a server

- 153/599 -

Using Policies

Orbix supports a number of CORBA and proprietary policies that control the behavior of application
components.

Most policies are locality-constrained; that is, they apply only to the server or client on which they are
set. Therefore, policies can generally be divided into server-side and client-side policies:

Server-side policies generally apply to the processing of requests on object implementations.
Server-side policies can be set programmatically and in the configuration, and applied to the
server’s ORB and its POAs.

client-side policies apply to invocations that are made from the client process on an object
reference. Client-side policies can be set programmatically and in the configuration, and applied
to the client’s ORB, to a thread, and to an object reference.

The procedure for setting policies programmatically is the same for both client and server:

Create the CORBA::Policy object for the desired policy.

Add the Policy object to a PolicyList .

Apply the PolicyList to the appropriate target—ORB, POA, thread, or object reference.

For detailed information about specific policies, refer to the chapters that cover client and POA
development: Developing a Client, and Managing Server Objects.

Creating Policy and PolicyList Objects
Two methods are generally available to create policy objects:

To apply policies to a POA, use the appropriate policy factory from the PortableServer::POA
interface.

on the ORB.

After you create the required policy objects, you add them to a PolicyList . The PolicyList is then
applied to the desired application component.

• •

• •

a. 1.

b. 2.

c. 3.

• •

• •

Using Policies

- 154/599 -

Using POA policy factories
The PortableServer::POA interface provides factories for creating CORBA::Policy objects that apply only
to a POA (see Table 9 on page 128). For example, the following code uses POA factories to create policy
objects that specify PERSISTENT and USER_ID policies for a POA, and adds these policies to a PolicyList .

Orbix also provides several proprietary policies to control POA behavior (see page 107). These policies
require you to call create_policy() on the ORB to create Policy objects, as described in the next section.

Calling create_policy()
You call create_policy() on the ORB to create Policy objects. For example, the following code creates a
PolicyList that sets a SyncScope policy of SYNC_WITH_SERVER ; you can then use this PolicyList to set
client policy overrides at the ORB, thread, or object scope:

import org.omg.CORBA*.;
import org.omg.PortableServer.*;
...
Policy[] policies = new Policy[2];
policies[0]=root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT);
policies[1]=root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID);

Using POA policy factories

- 155/599 -

Setting Orb and Thread Policies
The CORBA::PolicyManager interface provides the operations that a program requires to access and set
ORB policies. CORBA::PolicyCurrent is an empty interface that simply inherits all PolicyManager
operations; it provides access to client-side policies at the thread scope.

ORB policies override system defaults, while thread policies override policies set on a system or ORB
level. You obtain a PolicyManager or PolicyCurrent through resolve_initial_references() :

resolve_initial_references ("ORBPolicyManager") returns the ORB’s PolicyManager. Both server- and
client-side policies can be applied at the ORB level.

resolve_initial_references ("PolicyCurrent") returns a thread’s PolicyCurrent. Only client-side
policies can be applied to a thread.

The CORBA module contains the following interface definitions and related definitions to manage ORB
and thread policies:

import org.omg.Messaging.*;
org.omg.CORBA.Policy[] policies = new org.omg.Policy[1];
org.omg.CORBA.Any policy_value =
global_orb.create_any();
SyncScopePolicyValueHelper.insert(
policy_value,
SyncScopePolicyValue.SYNC_WITH_SERVER);
policies[0] = orb.create_policy(
SYNC_SCOPE_POLICY_TYPE.value, policy_value);

• •

• •

Setting Orb and Thread Policies

- 156/599 -

set_policy_overrides()
overrides policies of the same PolicyType that are set at a higher scope. The operation takes two
arguments:

A PolicyList sequence of Policy object references that specify the policy overrides.

An argument of type SetOverrideType :

ADD_OVERRIDE adds these policies to the policies already in effect.

SET_OVERRIDE removes all previous policy overrides and establishes the specified policies as the
only override policies in effect at the given scope.

set_policy_overrides() returns a new proxy that has the specified policies in effect; the original proxy
remains unchanged.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as arguments.

module CORBA {
// ...
enum SetOverrideType
{
SET_OVERRIDE,
ADD_OVERRIDE
};
exception InvalidPolicies
{
sequence<unsigned short> indices;
};
interface PolicyManager {
PolicyList
get_policy_overrides(in PolicyTypeSeq ts);
void
set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);
};
interface PolicyCurrent : PolicyManager, Current
{
};
// ...
}

• •

• •

set_policy_overrides()

- 157/599 -

get_policy_overrides()
returns a PolicyList of object-level overrides that are in effect for the specified PolicyType s. The
operation takes a single argument, a PolicyTypeSeq that specifies the PolicyType s to query. If the
PolicyTypeSeq argument is empty, the operation returns with all overrides for the given scope. If no
overrides are in effect for the specified PolicyType s, the operation returns an empty PolicyList .

After get_policy_overrides() returns a PolicyList , you can iterate through the individual Policy objects
and obtain the actual setting in each one by narrowing it to the appropriate derivation (see Getting
Policies).

Setting Server-Side Policies
Orbix provides a set of default policies that are effective if no policy is explicitly set in the configuration
or programmatically. You can explicitly set server policies at three scopes, listed in ascending order of
precedence:

In the configuration, so they apply to all ORBs that are in the scope of a given policy setting. For a
complete list of policies that you can set in the configuration, refer to the Application Server Platform
Administrator’s Guide.

On the server’s ORB, so they apply to all POAs that derive from that ORB’s root POA. The ORB has a
PolicyManager with operations that let you access and set policies on the server ORB (see Setting Orb
and Thread Policies).

On individual POAs, so they apply only to requests that are processed by that POA. Each POA can
have its own set of policies (see Using POA Policies).

You can set policies in any combination at all scopes. If settings are found for the same policy type at
more than one scope, the policy at the lowest scope prevails.

Most server-side policies are POA-specific. POA policies are typically attached to a POA when it is
created, by supplying a PolicyList object as an argument to create_POA() . The following code creates
POA persistentPOA as a child of the root POA, and attaches a PolicyList to it:

1. 1.

2. 2.

3. 3.

get_policy_overrides()

- 158/599 -

In general, you use different sets of policies in order to differentiate among various POAs within the
same server process, where each POA is defined in a way that best accommodates the needs of the
objects that it processes. So, a server process that contains the POA persistentPOA might also contain a
POA that supports only transient object references, and only handles requests for callback objects.

For more information about using POA policies, see page 130.

Setting Client Policies
Orbix provides a set of default policies that are effective if no policy is explicitly set in the configuration
or programmatically. Client policies can be set at four scopes, listed here in ascending order of
precedence:

In the configuration, so they apply to all ORBs that are in the scope of a given policy setting. For a
complete list of policies that you can set in the configuration, refer to the Application Server Platform
Administrator’s Guide.

On the client’s ORB, so they apply to all invocations. The ORB has a PolicyManager with operations
that let you access and set policies on the client ORB (see Setting Orb and Thread Policies).

On a given thread, so they apply only to invocations on that thread. Each client thread has a
PolicyCurrent with operations that let you access and set policies on that thread (see page 108).

On individual object references, so they apply only to invocations on those objects. Each object
reference can have its own set of policies; the Object interface provides operations that let you access
and set an object reference’s quality of service policies (see Managing Object Reference Policies).

//get an object reference to the root POA
Object poa_obj =
global_orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(poa_obj);
Policy[] policies=new Policy[2];
policies[0]=root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT);
policies[1]=root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID);
//create a POA for persistent objects
POA persistent_poa = root_poa.create_POA("persistentPOA",
poa_manager,
policies);

1. 1.

2. 2.

3. 3.

4. 4.

Setting Client Policies

- 159/599 -

Setting Policies at Different Scopes
You can set policies in any combination at all scopes. If settings are found for the same policy type at
more than one scope, the policy at the lowest scope prevails.

For example, the SyncScope policy type determines how quickly a client resumes processing after
sending one-way requests. The default SyncScope policy is SYNC_NONE : Orbix clients resume processing
immediately after sending one-way requests.

You can set this policy differently on the client’s ORB, threads, and individual object references. For
example, you might leave the default SyncScope policy unchanged at the ORB scope, set a thread to
SYNC_WITH_SERVER ; and set certain objects within that thread to SYNC_WITH_TARGET . Given these quality of
service settings, the client blocks on one-way invocations as follows:

Outside the thread, the client never blocks.

Within the thread, the client always blocks until it knows whether the invocations reached the
server.

For all objects within the thread that have SYNC_WITH_TARGET policies, the client blocks until the
request is fully processed.

Managing Object Reference Policies
The CORBA::Object interface contains the following operations to manage object policies:

• •

• •

• •

Setting Policies at Different Scopes

- 160/599 -

These operations will be supported in the future IDL-to-Java mapping. In the interim, Orbix supports
these operations with helper class com.iona.corba.util.ObjectHelper .

get_client_policy()
returns the policy override that is in effect for the specified PolicyType . This method obtains the
effective policy override by checking each scope until it finds a policy setting: first at object scope, then
thread scope, and finally ORB scope. If no override is set at any scope, the system default is returned.

get_policy()
returns the object’s effective policy for the specified PolicyType . The effective policy is the intersection of
values allowed by the object’s effective override —as returned by get_client_policy() —and the policy
that is set in the object’s IOR. If the intersection is empty, the method raises exception INV_POLICY .
Otherwise, it returns a policy whose value is legally within the intersection. If the IOR has no policy set
for the PolicyType , the method returns the object-level override.

get_policy_overrides()
returns a PolicyList of overrides that are in effect for the specified PolicyType s. The operation takes a
single argument, a PolicyTypeSeq that specifies the PolicyType s to query. If the PolicyTypeSeq argument
is empty, the operation returns with all overrides for the given scope. If no overrides are in effect for the
specified PolicyType s, the operation returns an empty PolicyList .

interface Object {
// ...
Policy
get_client_policy(in PolicyType type);
Policy
get_policy(in PolicyType type);
PolicyList
get_policy_overrides(in PolicyTypeSeq ts);
Object
set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);
boolean
validate_connection(out PolicyList inconsistent_policies);
};

Note

Managing Object Reference Policies

- 161/599 -

After get_policy_overrides() returns a PolicyList , you can iterate through the individual Policy objects
and obtain the actual setting in each one by narrowing it to the appropriate derivation (see Getting
Policies).

set_policy_overrides()
overrides policies of the same PolicyType that are set at a higher scope, and applies them to the new
object reference that it returns. The operation takes two arguments:

A PolicyList sequence of Policy object references that specify the policy overrides.

An argument of type SetOverrideType :

ADD_OVERRIDE adds these policies to the policies already in effect.

SET_OVERRIDE removes all previous policy overrides and establishes the specified policies as the
only override policies in effect at the given scope.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as arguments.

validate_connection()
returns true if the object’s effective policies allow invocations on that object. This method forces
rebinding if one of these conditions is true:

The object reference is not yet bound.

The object reference is bound but the current policy overrides have changed since the last binding
occurred; or the binding is invalid for some other reason.

The method returns false if the object’s effective policies cause invocations to raise the exception
INV_POLICY . If the current effective policies are incompatible, the output parameter
inconsistent_policies returns with a PolicyList of those policies that are at fault.

If binding fails for a reason that is unrelated to policies, validate_connections() raises the appropriate
system exception.

A client typically calls validate_connections() when its RebindPolicy is set to NO_REBIND .

• •

• •

• •

• •

• •

• •

Managing Object Reference Policies

- 162/599 -

Getting Policies
As shown earlier, CORBA::PolicyManager , CORBA::PolicyCurrent , and CORBA::Object each provide operations
that allow programmatic access to the effective policies for an ORB, thread, and object. Accessor
operations obtain a PolicyList for the given scope. After you get a PolicyList , you can iterate over its
Policy objects. Each Policy object has an accessor method that identifies its PolicyType . You can then
use the Policy object’s PolicyType to narrow to the appropriate type-specific Policy derivation—for
example, a SyncScopePolicy object. Each derived object provides its own accessor method that obtains
the policy in effect for that scope.

The Messaging module provides these PolicyType definitions:

For example, the following code gets the ORB’s SyncScope policy:

module Messaging
{
// Messaging Quality of Service
typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;
typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;
// PolicyType constants
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
// Locally-Constrained Policy Objects
// Rebind Policy (default = TRANSPARENT)
readonly attribute RebindMode rebind_mode;
};
interface RebindPolicy : CORBA::Policy {
// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;
};
...
}

Getting Policies

- 163/599 -

import org.omg.Messaging.*;
// ...
// get reference to PolicyManager
org.omg.CORBA.Object object;
object = orb.resolve_initial_references("ORBPolicyManager");
// narrow
org.omg.CORBA.PolicyManager policy_mgr =
org.omg.CORBA.PolicyManagerHelper.narrow(object);
// set SyncScope policy at ORB scope (not shown)
// ...
// get SyncScope policy at ORB scope
org.omg.CORBA.Policy[] types = new org.omg.CORBA.Policy[1];
types[0] = SYNC_SCOPE_POLICY_TYPE;
// get PolicyList from ORB's PolicyManager
org.omg.CORBA.Policy[] pList =
policy_mgr.get_policy_overrides(types);
// evaluate first Policy in PolicyList
org.omg.Messaging.SyncScopePolicy sync_p =
org.omg.Messaging.SyncScopePolicyHelper.narrow(pList[0]);
org.omg.Messaging.SyncScope sync_policy =
sync_p.synchronization();
System.out.println(
"Effective SyncScope policy at ORB level is " + sync_policy;

Getting Policies

- 164/599 -

Developing a Server

This chapter explains how to develop a server that implements servants for CORBA objects.

Server tasks
A CORBA server performs these tasks:

Uses a POA to map CORBA objects to servants, and to process client requests on those objects.

Implements CORBA objects as POA servants.

Creates and exports object references for these servants.

Initializes and shuts down the runtime ORB.

Passes parameters to server-side operations.

For an overview of server code requirements, see Enhancing Server Functionality. Although
throwing exceptions is an important aspect of server programming, it is covered separately in
Exceptions.

For information on ORB initialization and shutdown, see ORB Initialization and Shutdown.

POAs, Skeletons, and Servants
CORBA objects exist in server applications. Objects are implemented, or incarnated, by language-
specific servants. Objects and their servants are connected by the portable object adapter (POA). The
POA provides the server-side runtime support that connects server application code to the networking
layer of the ORB.

• •

• •

• •

• •

• •

Developing a Server

- 165/599 -

POA tasks
A POA has these responsibilities:

Create and destroy object references.

Convert client requests into appropriate calls to application code.

Synchronize access to objects.

Cleanly start up and shut down applications.

For detailed information about the POA, see Chapter 8.

POA skeleton class
For each IDL interface, the IDL compiler generates a an abstract POA skeleton class that you compile
into the server application. Skeleton classes are abstract classes. You implement skeleton classes in the
server application code with servant classes, which define the behavior of the methods that they
inherit. Through a servant’s inherited connection to a skeleton class, ORB runtime connects that
servant back to the CORBA object that it incarnates.

TIE class
The IDL compiler also generates a TIE class, which lets you implement CORBA objects with classes that
are unrelated (by inheritance) to skeleton classes. Given Java’s restriction on multiple inheritance, TIE
class implementations are especially useful for objects that inherit from multiple IDL interfaces. For
more information, see Delegating Servant Implementations.

Server request handling
Figure 17 shows how a CORBA server handles an incoming client request, and the stages by which it
dispatches that request to the appropriate servant. The server’s ORB runtime directs an incoming
request to the POA where the object was created. Depending on the POA’s state, the request is either
processed or blocked. A POA manager can block requests by rejecting them outright and raising an
exception in the client, or by queueing them for later processing.

Figure 17 The server-side ORB conveys client requests to the POA via its manager, and the POA
dispatches the request to the appropriate servant.

• •

• •

• •

• •

POA tasks

- 166/599 -

Mapping Interfaces to Skeleton Classes
When the ORB receives a request on a CORBA object, the POA maps that request to an instance of the
corresponding servant class and invokes the appropriate method.

For example, interface Account is defined as follows:

The IDL compiler maps the Account interface to the abstract skeleton class AccountPOA :

module BankDemo
{
typedef float CashAmount; // type represents cash
typedef string AccountId; // Type represents account IDs
// ...
interface Account
{
exception InsufficientFunds {};
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;
void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
void
deposit(in CashAmount amount);
};

Mapping Interfaces to Skeleton Classes

- 167/599 -

The following points are worth noting about the skeleton class:

AccountPOA inherits from org.omg.PortableServer.Servant . All skeleton classes inherit from the
Servant class for two reasons:

Servant provides functionality that is common to all servants.

Servants can be passed generically—you can pass a servant for any type of object as a pointer or
reference to Servant .

The skeleton class defines methods that correspond to the interface operations and attributes.

Because a skeleton class is defined as abstract, you cannot instantiate it. Instead, you must define
a concrete servant subclass that implements the skeleton class methods.

Both the skeleton class and the client stub class implement the same abstract methods that are
defined in interface AccountOperations .

Identical signatures preserve location transparency. If the server and client are collocated, the
proxy can delegate calls directly to the skeleton without translating or copying data. It also
simplifies client and server application development in that one set of parameter passing rules
apply to both.

Creating a Servant Class
Each servant class inherits from a skeleton class. The following code defines servant class AccountImpl ,
which extends skeleton class AccountPOA . Unlike the skeleton class, the AccountImpl class is not abstract,
so the server can instantiate AccountImpl as a servant.

package BankDemo;
abstract public class AccountPOA
extends org.omg.PortableServer.Servant
implements org.omg.CORBA.portable.InvokeHandler,
AccountOperations {
// ...
};

• •

• •

• •

• •

• •

• •

Creating a Servant Class

- 168/599 -

package BankDemo;
import org.omg.CORBA.*;
import org.omg.CORBA.portable.*;
import java.io.*;
import BankDemo.AccountPackage.*;
import BankDemo.*;
public class AccountImpl extends AccountPOA {
public AccountImpl(java.lang.String account_id,
AccountDatabase account_db)
{
m_account_db = account_db;
m_account_id = account_id;
m_balance = m_account_db.read_account(m_account_id);
}
protected void finalize() {
m_account_db.write_account(m_account_id, m_balance);
}
protected void save_all() {
m_account_db.write_account(m_account_id, m_balance);
}
public void withdraw(float amount) throws InsufficientFunds {
if (amount > m_balance) {
throw new InsufficientFunds();
}
m_balance -= amount;
}
public void deposit(float amount) {
m_balance += amount;
}
public String account_id() {
return m_account_id;
}
public float balance() {
return m_balance;
}
private String m_account_id;
private float m_balance;
private AccountDatabase m_account_db;
}

Creating a Servant Class

- 169/599 -

The choice of name for servant classes is purely a matter of convention. The examples here and
elsewhere apply the Impl suffix to the original interface name, as in AccountImpl . It is always good
practice to have a naming convention and use it consistently in your code.

Activating CORBA Objects
In order to enable clients to invoke on CORBA operations, a server must create and export object
references. These object references must point back to a CORBA object that is active through its
incarnation by a C++ or Java servant.

Activation of a CORBA object is a two-step process:

Instantiate the CORBA object’s servant. Instantiating a servant does not by itself activate the CORBA
object. The ORB runtime remains unaware of the existence of the servant and the corresponding
CORBA object.

Register the servant and the object’s ID in a POA.

this()
The simplest way to activate a CORBA object is by calling _this() on the servant. The IDL compiler
generates a _this() method for each servant skeleton class. _this() performs two separate tasks:

Checks the POA to determine whether the servant is registered with an existing object. If not,
_this() creates an object from the servant’s interface, registers a unique ID for this object in the
POA’s active object map, and maps this object ID to the servant’s address.

Generates and returns an object reference that includes the object’s ID and POA identifier.

In other words, the object is implicitly activated in order to return an object reference.

Note

1. 1.

2. 2.

• •

• •

Activating CORBA Objects

- 170/599 -

servant_to_reference()
You can also implicitly activate an object by calling servant_to_reference() on the desired POA. This
requires you to narrow to the appropriate object; however, there can be no ambiguity concerning the
POA in which the object is active, as can happen through using _this() (see page 138).

Explicit activation methods
Alternatively, you can explicitly activate a CORBA object: call activate_object() or
activate_object_with_id() on the POA. You can then obtain an object reference by calling _this() on the
servant. Because the servant is already registered in the POA with an object ID, the method simply
returns an object reference.

The ability to activate an object implicitly or explicitly depends on a POA’s activation policy. For more
information on this topic, see Using POA Policies.

The object reference returned by _this() is independent of the servant itself; you must eventually
call release() on the object. Releasing the object reference has no effect on the corresponding
servant.

Handling Output Parameters

Server-side rules
Server-side rules for passing output (in / inout) parameters to the client complement client-side rules.
For example, the following IDL defines operation create_account() with two out parameters:

Note

servant_to_reference()

- 171/599 -

Implementation example
The servant that implements this operation must use holder classes for the two out parameters:

For more information about holder classes, see Passing Parameters in Client Invocations.

Delegating Servant Implementations
Previous examples show how Orbix uses inheritance to associate servant classes and their
implementations with IDL interfaces. By inheriting from IDL-derived skeleton classes, servants establish
their connection to the corresponding IDL interfaces, and thereby make themselves available to client
requests.

Alternatively, you can explicitly associate, or tie a servant and its operations to the appropriate IDL
interface through tie classes. The tie approach lets you implement CORBA objects with classes that are
unrelated (by inheritance) to skeleton classes.

module BankDemo {
// ...
// Forward declaration of Account
interface Account;
interface Bank {
void create_account(
(in string name, out Account acct, out string acc_id)
// ...
}
// ...
}

// in servant class BankImpl
public void create_account(java.lang.String name,
AccountHolder acct, StringHolder acc_id) {
AccountImpl new_acct =
new AccountImpl (account_id, account_db);
// set AccountHolder value to Account object reference
acct.value = _this(new_acct);
// ...
}

Implementation example

- 172/599 -

The TIE approach is especially useful when implementing CORBA objects whose IDL definitions inherit
from multiple interfaces. Given Java single-inheritance restrictions on classes, a servant class that
inherits from an abstract POA skeleton class cannot inherit from any other class. Therefore, it must
implement all the methods that the skeleton class defines; it cannot reuse methods from other classes.
By contrast, a tie servant is free to inherit from any class.

Creating tie-based servants
Tie-based servants rely on two components:

A tie object implements the CORBA object; however, unlike the inherited approach, the class that it
instantiates does not inherit from any of the IDL-generated base skeleton classes.

A tie servant instantiates a tie class, which the IDL compiler generates when you run it with the -
xTIE switch. The POA regards a tie servant as the actual servant of an object. Thus, all POA
operations on a servant such as activate_object() take the tie servant as an argument. The tie
servant receives client invocations and forwards them to the tie object.

To create a tie servant and associate it with a tie object:

1

Instantiate the tie object

2

Create the tie object through the tie class constructor:

Example
For example, given an IDL specification that includes interface BankDemo::Bank , the IDL compiler can
generate tie class BankDemo.BankPOATie . This class supplies a number of operations that enable its tie
servant to control the tie object.

Given implementation class BankImpl , you can instantiate a tie object and create tie servant
bank_srv_tie for it as follows:

• •

• •

tie-servant = tie-constructor(tied-object, poa);

Creating tie-based servants

- 173/599 -

Given this tie servant, you can use it to create an object reference:

When the POA receives client invocations on the bankref object, it relays them to tie servant
bank_srv_tie , which delegates them to the bank tie object for processing.

Removing tie objects and servants
You remove a tie servant from memory like any other servant—for example, with
org.omg.PortableServer.POA.deactivate_object() . If the tie servant’s tie object implements only a single
object, the tie object is also removed.

Explicit Event Handling
When you call ORB::run() , the ORB gets the thread of control to dispatch events. This is acceptable for a
server that only processes CORBA requests. However, if your process must also support a GUI or uses
another networking stack, you also must be able to monitor incoming events that are not CORBA client
requests.

The ORB interface methods work_pending() and perform_work() let you poll the ORB’s event loop for
incoming requests:

work_pending() returns true if the ORB’s event loop has at least one request ready to process.

perform_work() processes one or more requests before it completes and returns the thread of
control to the application code. The amount of work processed by this call depends on the
threading policies and the number of queued requests; however, perform_work() guarantees to
return periodically so you can handle events from other sources.

// instantiate tie object and create its tie servant
BankImpl tie_object = new BankImpl();
BankDemo.BankPOATie bank_srv_tie =
new BankDemo.BankPOATie(tie_object, the_poa);

//create an object reference for bank servant
Bank bankref = bank_srv_tie._this();

• •

• •

Removing tie objects and servants

- 174/599 -

Managing Server Objects

A portable object adapter, or POA, maps CORBA objects to language-specific implementations, or servants, in
a server process. All interaction with server objects takes place via the POA.

A POA identifies objects through their object IDs, which are encapsulated within the object requests
that it receives. Orbix views an object as active when its object ID is mapped to a servant; the servant is
viewed as incarnating that object. By abstracting an object’s identity from its implementation, a POA
enables a server to be portable among different implementations.

Mapping Objects to Servants
Figure 18 shows how a POA manages the relationship between CORBA objects and servants, within the
context of a client request. A client references an object or invokes a request on it through an
interoperable object reference (IOR). This IOR encapsulates the information required to find the object,
including its server address, POA, and object ID—in this case, A. On receiving the request, the POA uses
the object’s ID to find its servant. It then dispatches the requested operation to the servant via the
server skeleton code, which extracts the operation’s parameters and passes the operation as a
language-specific call to the servant.

Figure 18 A portable object adapter (POA) maps abstract objects to their concrete implementations
(servants)

Managing Server Objects

- 175/599 -

Depending on a POA’s policies, a servant can be allowed to incarnate only one object; or it can incarnate
multiple objects. During an object’s lifetime, it can be activated multiple times by successive servant
incarnations.

Mapping options
A POA can map between objects and servants in several ways:

An active object map retains object-servant mappings throughout the lifetime of its POA, or until
an object is explicitly deactivated. Before a POA is activated, it can anticipate incoming requests by
mapping known objects to servants, and thus facilitate request processing.

• •

Mapping options

- 176/599 -

A servant manager maps objects to servants on demand, either on the initial object request, or on
every request. Servant managers can enhance control over servant instantiation, and help avoid
or reduce the overhead incurred by a static object-servant mapping.

A single default servant can be used to handle all object requests. A POA that uses a default
servant incurs the same overhead no matter how many objects it processes.

Depending on its policies, a POA can use just one object-mapping method, or several methods in
combination. For more information, see Enabling the Active Object Map.

Creating a POA
All server processes in a location domain use the same root POA, which you obtain by calling
resolve_initial_references("POA") . The root POA has predefined policies which cannot be changed (see
page 130). Within each server process, the root POA can spawn one or more child POAs. Each child POA
provides a unique namespace; and each can have its own set of policies, which determine how the POA
implements and manages object-servant mapping. Further, each POA can have its own POA manager
and servant manager.

Using multiple POAs
A number of objectives can justify the use of multiple POAs within the same server. These include:

Partition the server into logical or functional groups of servants. You can associate each group with a
POA whose policies conform with the group’s requirements. For example, a server that manages
Customer and Account servants can provide a different POA for each set of servants.

You can also group servants according to common processing requirements. For example, a POA
can be configured to generate object references that are valid only during the lifespan of that
POA, or across all instantiations of that POA and its server. POAs thus offer built-in support for
differentiating between persistent and transient objects.

Independently control request processing for sets of objects. A POA manager’s state determines
whether a POA is active or inactive; it also determines whether an active POA accepts incoming
requests for processing, or defers them to a queue (see Processing Object Requests). By
associating POAs with different managers, you can gain finer control over object request flow.

Choose the method of object-servant binding that best serves a given POA. For example, a POA that
processes many objects can map all of them to the same default servant, incurring the same
overhead no matter how many objects it processes.

• •

• •

• •

• •

• •

Creating a POA

- 177/599 -

Procedure for creating a POA
Creating a POA consists of these steps:

Set the POA policies.

Before you create a POA, establish its desired behavior through a CORBA PolicyList, which you attach
to the new POA on its creation. Any policies that are explicitly set override a new POA’s default policies
(refer to Table 9 on page 128).

Create the POA by calling create_POA() on an existing POA.

If the POA has a policy of USE_SERVANT_MANAGER , register its servant manager by calling
set_servant_manager() on the POA.

Enable the POA to receive client requests by calling activate() on its POA manager.

Setting POA Policies
A new POA’s policies are set when it is created. You can explicitly set a POA’s policies through a CORBA
PolicyList object, which is a sequence of Policy objects.

Java applications represent a PolicyList object as an array of Policy objects.

Creating Policy objects
The PortableServer::POA interface provides factories to create CORBA Policy object types (see Table 9 on
page 128). If a Policy object type is proprietary to Orbix, you must create the Policy object by calling
create_policy() on the ORB (see Setting proprietary policies for a POA). In all cases, you attach the
PolicyList object to the new POA. All policies that are not explicitly set in the PolicyList are set to their
defaults.

For example, the following code creates policy objects of PERSISTENT and USER_ID :

1. 1.

2. 2.

3. 3.

4. 4.

Procedure for creating a POA

- 178/599 -

With the PERSISTENT policy, a POA can create object references that remain valid across successive
instantiations of this POA and its server process. The USER_ID policy requires the application to
autoassign all object IDs for a POA.

Attaching policies to a POA
After you create a PolicyList object, you attach it to a new POA by supplying it as an argument to
create_POA() . The following code creates POA persistentPOA as a child of the root POA, and attaches to it
the PolicyList object just shown:

In general, POA policies let you differentiate among various POAs within the same server process,
where each POA is defined in a way that best accommodates the needs of the objects that it processes.
For example, a server process that contains the POA persistentPOA might also contain a POA that
supports only transient object references, and only handles requests for callback objects.

import org.omg.CORBA*.;
import org.omg.PortableServer.*;
...
Policy[] policies = new Policy[2];
policies[0]=root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT);
policies[1]=root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID);

//get an object reference to the root POA
Object poa_obj =
global_orb.resolve_initial_references("RootPOA");
POA root_poa =
POAHelper.narrow(poa_obj);
Policy[] policies=new Policy[2];
policies[0]=root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT);
policies[1]=root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID);
//create a POA for persistent objects
POA persistent_poa = root_poa.create_POA("persistentPOA",
poa_manager,
policies);

Setting POA Policies

- 179/599 -

POA Policy factories
The PortableServer::POA interface contains factory methods for creating CORBA Policy objects:

Table 9: POA policy factories and argument options

For specific information about these methods, refer to their descriptions in the CORBA Programmer’s
Reference.

Setting proprietary policies for a POA
Orbix provides several proprietary policies to control POA behavior. To set these policies, call
create_policy() on the ORB to create Policy objects with the desired policy value, and add these objects
to the POA’s PolicyList.

For example, Orbix provides policies that determine how a POA handles incoming requests for any
object as it undergoes deactivation. You can specify a DISCARD policy for a POA so it discards all
incoming requests for deactivating objects:

POA policy factories Policy options

create_id_assignment_p
olicy()

SYSTEM_ID *(default)* USER_ID

create_id_uniqueness_p
olicy()

UNIQUE_ID *(default)* MULTIPLE_ID

create_implicit_activa
tion_policy()

NO_IMPLICIT_ACTIVATION *(default)* IMPLICIT_AC
TIVATION

create_lifespan_policy(
)

TRANSIENT *(default)* PERSISTENT

create_request_process
ing_policy()

USE_ACTIVE_OBJECT_MAP_ONLY *(default)* USE_DEF
AULT_SERVANT USE_SERVANT_MANAGER

create_servant_retenti
on_policy()

RETAIN *(default)* NON_RETAIN

create_thread_policy() ORB_CTRL_MODEL *(default)* SINGLE_THREAD_MODEL

Setting POA Policies

- 180/599 -

Orbix-proprietary policies
You can attach the following Orbix-proprietary Policy objects to a POA’s PolicyList :

ObjectDeactivationPolicy
controls how the POA handles requests that are directed at deactivating objects. This policy is valid only
for a POA that uses a servant activator to control object activation. For more information, see Setting
deactivation policies.

PersistenceModePolicy
can specify a policy of DIRECT_PERSISTENCE , so that the POA uses a well-known address in the IORs that it
generates for persistent objects. This policy is valid only for a POA that has a PERSISTENT lifespan policy.
For more information, see Direct persistence.

WellKnownAddressingPolicy
sets transport configuration data—for example, address information for persistent objects that use a
well-known address, or IIOP buffer sizes. For more information, see Direct persistence.

DispatchWorkQueuePolicy
specifies the work queue used to process requests for a POA whose threading policy is set to
ORB_CTRL_MODEL . All requests for the POA are dispatched in a thread controlled by the specified work
queue. For more information, see Work Queues.

WorkQueuePolicy
specifies the work queue used by network transports to read requests for the POA. For more
information, see Work Queues.

import com.iona.corba.*;
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
org.omg.CORBA.Any obj_deactivation_policy_value =
global_orb.create_any();
ObjectDeactivationPolicyValueHelper.insert(
obj_deactivation_policy_value,
ObjectDeactivationPolicyValue.DISCARD);
policies[0] = global_orb.create_policy(
(OBJECT_DEACTIVATION_POLICY_ID.value,
obj_deactivation_policy_value);

Setting POA Policies

- 181/599 -

InterdictionPolicy
disables the proxification of the POA when using the firewall proxy service. A POA with this policy set to
DISABLE will never be proxified. For more information, see Controlling POA Proxification.

Root POA Policies
The root POA has the following policy settings, which cannot be changed:

Using POA Policies
A POA’s policies play an important role in determining how the POA implements and manages objects
and processes client requests. While the root POA has a set of predefined policies that cannot be
changed, any POA that you create can have its policies explicitly set.

In this section
The following sections describe POA policies and setting options:

Policy Default setting

Id Assignment SYSTEM_ID

Id Uniqueness UNIQUE_ID

Implicit Activation IMPLICIT_ACTIVATION

Lifespan TRANSIENT

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

Servant Retention RETAIN

Thread ORB_CTRL_MODEL

Enabling the Active Object Map page 131

Processing Object Requests page 131

Setting Object Lifespan page 133

Assigning Object IDs page 135

Activating Objects with Dedicated Servants page 136

Root POA Policies

- 182/599 -

Enabling the Active Object Map
A POA’s servant retention policy determines whether it uses an active object map to maintain servant-
object associations. Depending on its request processing policy (see page 131), a POA can rely
exclusively on an active object map to map object IDs to servants, or it can use an active object map
together with a servant manager and/or default servant. A POA that lacks an active object map must
use either a servant manager or a default servant to map between objects and servants.

You specify a POA’s servant retention policy by calling create_servant_retention_policy() with one of
these arguments:

RETAIN:
The POA retains active servants in its active object map.

NON_RETAIN:
The POA has no active object map. For each request, the POA relies on the servant manager or default
servant to map between an object and its servant; all mapping information is destroyed when request
processing returns. Thus, a NON_RETAIN policy also requires that the POA have a request processing
policy of USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER (see Processing Object Requests).

Servant manager and servant retention policy
If a POA has a policy of USE_SERVANT_MANAGER , its servant retention policy determines whether it uses a
servant activator or servant locator as its servant manager. A RETAIN policy requires the use of a servant
activator; a NON_RETAIN policy requires the use of a servant locator. For more information about servant
managers, see Chapter 11.

Activating Objects page 136

Setting Threading Support page 137

Enabling the Active Object Map

- 183/599 -

Processing Object Requests
A POA's request processing policy determines how it locates a servant for object requests. Four options
are available:

Maintain a permanent map, or active object map, between object IDs and servants and rely
exclusively on that map to process all object requests.

Activate servants on demand for object requests.

Locate a servant for each new object request.

Map object requests to a single default servant.

For example, if the application processes many lightweight requests for the same object type, the
server should probably have a POA that maps all these requests to the same default servant. At the
same time, another POA in the same server might be dedicated to a few objects that each use different
servants. In this case, requests can probably be processed more efficiently if the POA is enabled for
permanent object-servant mapping.

You set a POA’s request processing policy by calling create_request_processing_policy() and supplying
one of these arguments:

USE_ACTIVE_OBJECT_MAP_ONLY

USE_SERVANT_MANAGER

USE_DEFAULT_SERVANT

USE_ACTIVE_OBJECT_MAP_ONLY:
All object IDs must be mapped to a servant in the active object map; otherwise, Orbix returns an
exception of OBJECT_NOT_EXIST to the client.

During POA initialization and anytime thereafter, the active object map is populated with all object-
servant mappings that are required during the POA’s lifetime. The active object map maintains object-
servant mappings until the POA shuts down, or an object is explicitly deactivated through
deactivate_object() .

Typically, a POA can rely exclusively on an active object map when it processes requests for a small
number of objects.

This policy requires POA to have a servant retention policy of RETAIN . (see Enabling the Active Object
Map).

• •

• •

• •

• •

• •

• •

• •

Processing Object Requests

- 184/599 -

USE_SERVANT_MANAGER:
The POA’s servant manager finds a servant for the requested object. Depending on its servant retention
policy, the POA can implement one of two servant manager types, either a servant activator or a servant
locator:

A servant activator can be registered with a POA that has a RETAIN policy. The servant activator
incarnates servants for inactive objects on receiving an initial request for them. The active object
map retains mappings between objects and their servants; it handles all subsequent requests for
this object.

If the POA has a policy of NON_RETAIN (the POA has no active object map), a servant locator must
find a servant for an object on each request; otherwise, an OBJ_ADAPTER exception is returned
when clients invoke requests.

USE_SERVANT_MANAGER requires the application to register a servant manager with the POA by calling
set_servant_manager() .

For more information about servant managers, see Managing Servants.

USE_DEFAULT_SERVANT:
The POA dispatches requests to the default servant when it cannot otherwise find a servant for the
requested object. This can occur because the object’s ID is not in the active object map, or the POA’s
servant retention policy is set to NON_RETAIN .

Set this policy for a POA that needs to process many objects that are instantiated from the same class,
and thus can be implemented by the same servant.

This policy requires the application to register the POA’s default servant by calling set_servant() on the
POA; it also requires the POA’s ID uniqueness policy to be set to MULTIPLE_ID , so multiple objects can use
the default servant.

Setting Object Lifespan
A POA creates object references through calls to create_reference() or create_reference_with_id() . The
POA’s lifespan policy determines whether these object references are persistent—that is, whether they
outlive the process in which they were created. A persistent object reference is one that a client can
successfully reissue over successive instantiations of the target server and POA.

You specify a POA’s lifespan policy by calling create_lifespan_policy() with one of these arguments

• •

• •

Setting Object Lifespan

- 185/599 -

TRANSIENT:
(default policy) Object references do not outlive the POA in which they are created. After a transient
object’s POA is destroyed, attempts to use this reference yield the exception CORBA::OBJECT_NOT_EXIST .

PERSISTENT:
Object references can outlive the POA in which they are created.

Transient object references
When a POA creates an object reference, it encapsulates it within an IOR. If the POA has a TRANSIENT
policy, the IOR contains the server process’s current location—its host address and port. Consequently,
that object reference is valid only as long as the server process remains alive. If the server process dies,
the object reference becomes invalid.

Persistent object references
If the POA has a PERSISTENT policy, the IOR contains the address of the location domain’s
implementation repository, which maps all servers and their POAs to their current locations. Given a
request for a persistent object, the location daemon uses the object’s “virtual” address first, and looks
up the server process’s actual location via the implementation repository.

Direct persistence
Occasionally, you might want to generate persistent object references that avoid the overhead of using
the location daemon. In this case, Orbix provides the proprietary policy of DIRECT_PERSISTENCE . A POA
with policies of PERSISTENT and DIRECT_PERSISTENCE generates IORs that contain a well-known address list
for the server process.

A POA that uses direct persistence must also indicate where the configuration sets the well-known
address list to be embedded in object references. In order to do this, two requirements apply:

The configuration must contain a well-known address configuration variable, with this syntax:

prefix : transport:addr_list=[address-spec [,...]]

The POA must have a WELL_KNOWN_ADDRESSING_POLICY whose value is set to prefix .

For example, you might create a well-known address configuration variable in name scope MyConfigApp
as follows:

• •

• •

Setting Object Lifespan

- 186/599 -

Given this configuration, a POA is created in the ORB MyConfigApp can have its PolicyList set so it
generates object references that use direct persistence, as follows:

Object lifespan and ID assignment
A POA’s lifespan and ID assignment policies have dependencies upon one another.

TRANSIENT and SYSTEM_ID are the default settings for a new POA, becuase system-assigned IDs are
sufficient for transient object references. The appication does not need tight control over the POA’s ID
becuase the POA’s object reference is only valid for the POA’s current incarnation.

MyConfigApp {
...
wka:iiop:addr_list=["host.com:1075"];
...
}

import com.iona.corba.*;
import com.iona.IT_CORBA.*;
import com.iona.IT_PortableServer.*;
// Set up IONA policies
org.omg.CORBA.Any persistent_mode_policy_value =
global_orb.create_any();
org.omg.CORBA.Any well_known_addressing_policy_value =
global_orb.create_any();
PersistenceModePolicyValueHelper.insert(
persistent_mode_policy_value,
PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string(
"wka");
org.omg.CORBA.Policy[] policies=new Policy[] {
root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT),
root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID),
global_orb.create_policy(
PERSISTENCE_MODE_POLICY_ID.value,
persistence_mode_policy_value),
global_orb.create_policy(
WELL_KNOWN_ADDRESSING_POLICY_ID.value,
well_known_addressing_policy_value),
};
...

Setting Object Lifespan

- 187/599 -

However, PERSISTENT and USER_ID policies are usually set together, because applications require explicit
control over the object IDs of its persistent object references. When using persistent object references
the POA’s name is part of the information used to resolve an object’s IOR. For this reason, there is a
possibility of conflicts when using multiple POA’s with the same name and a lifespan policy of
PERSISTENT . This is particularly true when using indirect persistent IORs.

Assigning Object IDs
The ID assignment policy determines whether object IDs are generated by the POA or the application.
Specify the POA’s ID assignment policy by calling create_id_assignment_policy() with one of these
arguments:

SYSTEM_ID:
The POA generates and assigns IDs to its objects. Typically, a POA with a SYSTEM_ID policy manages
objects that are active for only a short period of time, and so do not need to outlive their server process.
In this case, the POA also has an object lifespan policy of TRANSIENT . Note, however, that system-
generated IDs in a persistent POA are unique across all instantiations of that POA.

USER_ID:
The application assigns object IDs to objects in this POA. The application must ensure that all user-
assigned IDs are unique across all instantiations of the same POA.

USER_ID is usually assigned to a POA that has an object lifespan policy of PERSISTENT —that is, it
generates object references whose validity can span multiple instantiations of a POA or server process,
so the application requires explicit control over object IDs.

Activating Objects with Dedicated Servants
A POA’s ID uniqueness policy determines whether it allows a servant to incarnate more than one object.
You specify a POA’s ID uniqueness policy by calling create_id_uniqueness_policy() with one of these
arguments:

UNIQUE_ID:
Each servant in the POA can be associated with only one object ID.

Any servant in the POA can be associated with multiple object IDs.

Assigning Object IDs

- 188/599 -

If the same servant is used by different POAs, that servant conforms to the uniqueness policy of
each POA. Thus, it is possible for the same servant to be associated with multiple objects in one POA,
and be restricted to one object in another.

Activating Objects
A POA’s activation policy determines whether objects are explicitly or implicitly associated with
servants. If a POA is enabled for explicit activation, you activate an object by calling activate_object() or
activate_object_with_id() on the POA. A POA that supports implicit activation allows the server
application to call the _this() function on a servant to create an active object (see Implicit Object
Activation).

The activation policy determines whether the POA supports implicit activation of servants.

Specify the POA’s activation policy by supplying one of these arguments:

NO_IMPLICIT_ACTIVATION:
(default) The POA only supports explicit activation of servants.

IMPLICIT_ACTIVATION:
The POA supports implicit activation of servants. This policy requires that the POA’s object ID
assignment policy be set to SYSTEM_ID , and its servant retention policy be set to RETAIN .

For more information, see Implicit Object Activation.

Setting Threading Support
Specify the POA’s thread policy by supplying one of these arguments:

ORB_CTRL_MODEL:
The ORB is responsible for assigning requests for an ORB-controlled POA to threads. In a multi-
threaded environment, concurrent requests can be delivered using multiple threads.

Note

Activating Objects

- 189/599 -

SINGLE_THREAD_MODEL:
Requests for a single-threaded POA are processed sequentially. In a multi-threaded environment, all
calls by a single-threaded POA to implementation code (servants and servant managers) are made in a
manner that is safe for code that does not account for multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure that calls are safe when they share
implementation code such as a servant manager.

Default work queues
Orbix maintains for each ORB two default work queues, one manual and the other automatic.
Depending on its thread policy, a POA that lacks its own work queue uses one of the default work
queues to process requests:

A POA with a threading policy of SINGLE_THREAD_MODEL uses the manual work queue. To remove
requests from the manual work queue, you must call either ORB::perform_work() or ORB::run()
within the main thread.

A POA with a threading policy of ORB_CTRL_MODEL uses the automatic work queue. Requests are
automatically removed from this work queue; however, because ORB::run() blocks until the ORB
shuts down, an application can call this method to detect when shutdown is complete.

Both threading policies assume that the ORB and the application are using compatible threading
synchronization. All uses of the POA within the server must conform to its threading policy.

For information about creating a POA workqueue, see page 142.

Explicit Object Activation
If the POA has an activation policy of NO_IMPLICIT_ACTIVATION , the server must call either
activate_object() or activate_object_with_id() on the POA to activate objects. Either of these calls
registers an object in the POA with either a user-supplied or system-generated object ID, and maps that
object to the specified servant.

After you explicitly activate an object, you can obtain its object reference in two ways:

Use the object’s ID to call id_to_reference() on the POA where the object was activated.
id_to_reference() uses the object’s ID to obtain the information needed to compose an object
reference, and returns that reference to the caller.

Call _this() on the servant. Because the servant is already registered in the POA with an object
ID, the function composes an object reference from the available information and returns that
reference to the caller.

• •

• •

• •

• •

Explicit Object Activation

- 190/599 -

Implicit Object Activation
A server activates an object implicitly by calling _this() on the servant designated to incarnate that
object. _this() is valid only if the POA that maintains these objects has policies of RETAIN , SYSTEM_ID ,
and IMPLICIT_ACTIVATION ; otherwise, it raises a WrongPolicy exception. Thus, implicit activation is
generally a good option for a POA that maintains a relatively small number of transient objects.

Calling _this()
_this() performs two separate tasks:

Checks the POA to determine whether the servant is registered with an existing object. If it is not,
_this() creates an object from the servant’s interface, registers a new ID for this object in the
POA’s active object map, and maps this object ID to the servant.

Generates and returns an object reference.

In other words, the object is implicitly activated in order to return an object reference.

You can call _this() on a servant in two ways:

that is invoked on the servant’s object.

Outside an operation.

Calling _this() Inside an Operation
If called inside an operation, _this() returns a reference to the object on which the operation was
invoked. Thus, a servant can always obtain a reference to the object that it incarnates—for example, in
order to register the object as a callback with another object.

The following interface defines the get_self() operation, whose implementation returns a reference to
the same interface:

You might implement this operation as follows:

• •

• •

• •

• •

interface Whatever {
Whatever get_self();
};

Implicit Object Activation

- 191/599 -

Calling _this() Outside an Operation
You can activate an object and obtain a reference to it by calling _this() on a servant. This object
reference must include information that it obtains from the POA in which the object is registered: the
fully qualified POA name, protocol information, and the object ID that is registered in the POA’s active
object map. _this() determines which POA to use by calling _default_POA() on the servant.

_default_POA() is inherited from the ServantBase class:

Servant inheritance of _default_POA() implementation
All skeleton classes and the servants that implement them derive from Servant , and therefore inherit its
implementation of _default_POA() . The inherited _default_POA() always returns the root POA. Thus,
calling _this() on a servant that does not override _default_POA() returns a transient object reference
that points back to the root POA. All invocations on that object are processed by the root POA.

As seen earlier, an application typically creates its own POAs to manage objects and client requests. For
example, to create and export persistent object references, you must create a POA with a PERSISTENT
lifespan policy and use it to generate the desired object references. If this is the case, you must be sure
that the servants that incarnate those objects also override _default_POA() ; otherwise, calling _this()
on those servants returns transient object references whose mappings to servants are handled by the
root POA.

To avoid ambiguity concerning the POA in which an object is implicitly activated, call
servant_to_reference() on the desired POA instead of _this() . While using servant_to_reference()
requires you to narrow to the appropriate object, the extra code is worth the extra degree of clarity
that you achieve.

Whatever get_self() throws org.omg.CORBA.SystemException
{
return _this(); // Return reference to self
}

public class org.omg.PortableServerServant {
public POA _default_POA() {}
// ...
};

Note

Calling _this() Outside an Operation

- 192/599 -

Overriding _default_POA()
To ensure that _this() uses the right POA to generate object references, an application’s servants must
override the default POA. You can do this three ways:

Override _default_POA() to throw a system exception.
For example, _default_POA() can return system exception CORBA::INTERNAL . This prevents use of _this()
to generate any object references for that servant.

By overriding _default_POA() to throw an exception, you ensure that attempts to use _this() yield an
immediate error instead of a subtly incorrect behavior that must be debugged later. Instead, you must
create object references with calls to either create_reference() or create_reference_with_id() (see page
186), then explicitly map objects to servants—for example, through a servant manager, or via the active
object map by calling activate_object_with_id . () .

Disabling _default_POA() also prevents you from calling _this() to obtain an existing object reference
for a servant. To obtain the reference, you must call servant_to_reference() .

Override _default_POA() in each servant to return the correct POA.
Calls to _this() are guaranteed to use the correct POA. This approach also raises a WrongPolicy
exception if the POA that you set for a servant has invalid policies for implicit activation. such as
USER_ID .

This approach requires the application to maintain a reference for the servant’s POA. If all servants use
the same POA, you can set the reference in a global variable or a static private member. However, if a
server uses unique POAs for different groups of servants, each servant must carry the overhead of an
additional (non-static) data member.

Override _default_POA() in a common base class.
Servant classes that need to override _default_POA() can inherit from a common base class that
contains an override definition. This approach to overriding _default_POA() has two advantages:

You only need to write the overriding definition of _default_POA() once.

If you define a servant class that inherits from multiple servant classes, you avoid inheriting
conflicting definitions of the _default_POA() method.

• •

• •

Calling _this() Outside an Operation

- 193/599 -

Managing Request Flow
Each POA is associated with a POAManager object that determines whether the POA can accept and
process object requests. When you create a POA, you specify its manager by supplying it as an
argument to create_POA() . This manager remains associated with the POA throughout its life span.

create_POA() can specify either an existing POA manager, or null to create a POAManager object. You can
obtain the POAManager object of a given POA by calling the_POAManager() on it. By creating POA managers
and using existing ones, you can group POAs under different managers according to their request
processing needs. Any POA in the POA hierarchy can be associated with a given manager; the same
manager can be used to manage POAs in different branches.

POA manager states
A POA manager can be in four different states. The POAManager interface provides four operations to
change the state of a POA manager, as shown in Table 10.

Table 10: POA manager states and interface operations

Managing Request Flow

- 194/599 -

Holding state
The POA manager of the root POA is initially in a holding state, as is a new POA manager. Until you call
activate() on a POA’s manager, all requests sent to that POA are queued. activate() can also reactivate
a POA manager that has reverted to a holding state (due to a hold_requests() call) or is in a discarding
state (due to a discard_requests() call).

If a new POA is associated with an existing active POA manager, it is unnecessary to call activate() .
However, it is generally a good idea to put a POA manager in a holding state before creating a new POA
with it.

The queue for a POA manager that is in a holding state has limited capacity, so this state should be
maintained for a short time only. Otherwise, the queue is liable to fill to capacity with pending requests.
When this happens, all subsequent requests return to the client with a TRANSIENT exception.

State Operation Description

Active activate(
)

Incoming requests are accepted for processing. When a POA
manager is created, it is initially in a holding state. Until you
call activate() on a POA’s manager, all requests sent to
that POA are queued.

Holding hold_requ
ests()

All incoming requests are queued. If the queue fills to
capacity, incoming requests are returned with an exception of
TRANSIENT .

Discarding discard_r
equests()

All incoming requests are refused and a system exception of
TRANSIENT is raised to clients so they can reissue their

requests. A POA manager is typically in a discarding state
when the application detects that an object or the POA in
general cannot keep pace with incoming requests. A POA
manager should be in a discarding state only temporarily. On
resolution of the problem that required this call, the
application should restore the POA manager to its active state
with activate() .

Inactive deactivate
()

The POA manager is shutting down and destroying all POAs
that are associated with it. Incoming requests are rejected
with the exception CORBA::OBJ_ADAPTER .

Holding state

- 195/599 -

Work Queues
Orbix provides two proprietary policies, which allow you to associate a WorkQueue with a POA and
thereby control the flow of incoming requests for that POA:

DispatchWorkQueuePolicy
associates a work queue with an ORB_CTRL_MODEL POA. All work items for the POA are processed by the
work queue in a thread owned by the work queue.

WorkQueuePolicy
associates a work queue with any POA. The specified work queue will be used by the underlying
network transports for reading requests from the POA.

Interface
A work queue has the following interface definition:

Work Queues

- 196/599 -

WorkQueue types
You can implement your own WorkQueue interface, or use the supplied WorkQueue factories to create one
of two WorkQueue types:

ManualWorkQueue

AutomaticWorkQueue

ManualWorkQueue
A ManualWorkQueue is a work queue that holds incoming requests until they are explicitly dequeued. It
allows the developer full control over how requests are processed by the POA.

IDL
The interface is defined as follows:

// IDL
interface WorkQueue
{
readonly attribute long max_size;
readonly attribute unsigned long count;
boolean enqueue(in WorkItem work, in long timeout);
boolean enqueue_immediate(in WorkItem work);
boolean is_full();
boolean is_empty();
boolean activate();
boolean deactivate();
boolean owns_current_thread();
void flush();
};

• •

• •

WorkQueue types

- 197/599 -

Creating
You create a ManualWorkQueueFactory by calling resolve_initial_references("IT_ManualWorkQueueFactory") .
The ManualWorkQueueFactory has the following interface:

create_work_queue takes the following argument:

max_size
is the maximum number of work items that the queue can hold. If the queue becomes full, the
transport considers the server to be overloaded and tries to gracefully close down connections to
reduce the load.

How requests are processed
Applications that use a ManualWorkQueue must periodically call dequeue() or do_work() to ensure that
requests are processed. The developer is in full control of time between calls and if the events are
processed by multiple threads or in a single thread. If the developer chooses a multithreaded
processing method, they are responsible for ensuring that the code is thread safe.

A false return value from either do_work() or dequeue() indicates that the timeout for the request has
expired or that the queue has shut down.

\\ IDL
interface ManualWorkQueue : WorkQueue
{
boolean dequeue(out WorkItem work, in long timeout);
boolean do_work(in long number_of_jobs, in long timeout);
void shutdown(in boolean process_remaining_jobs);
};

interface ManualWorkQueueFactory
{
ManualWorkQueue create_work_queue(in long max_size);
};

ManualWorkQueue

- 198/599 -

AutomaticWorkQueue
An AutomaticWorkQueue is a work queue that feeds a thread pool. Automatic work queues process
requests in the same way that the standard ORB does; however, it does allow the developer to assign a
customized thread pool to a particular POA. Also, the developer can implement several automatic work
queues to process different types of requests at different priorities.

IDL
The interface is defined as follows:

Creating
You create an AutomaticWorkQueue through the AutomaticWorkQueueFactory , obtained by calling
resolve_initial_references("IT_AutomaticWorkQueue") . The AutomaticWorkQueueFactory has the following
interface:

create_work_queue() takes these arguments:

// IDL
interface AutomaticWorkQueue : WorkQueue
{
readonly attribute unsigned long threads_total;
readonly attribute unsigned long threads_working;
attribute long high_water_mark;
attribute long low_water_mark;
void shutdown(in boolean process_remaining_jobs);
};

interface AutomaticWorkQueueFactory
{
AutomaticWorkQueue create_work_queue(
in long max_size,
in unsigned long initial_thread_count,
in long high_water_mark,
in long low_water_mark);
AutomaticWorkQueue create_work_queue_with_thread_stack_size(
in long max_size,
in unsigned long initial_thread_count,
in long high_water_mark,
in long low_water_mark,
in long thread_stack_size);
};

AutomaticWorkQueue

- 199/599 -

max_size
is the maximum number of work items that the queue can hold. To specify an unlimited queue size,
supply a value of -1 .

initial_thread_count
is the initial number of threads in the thread pool; the ORB automatically creates and starts these
threads when the workqueue is created.

high_water_mark
specifies the maximum number of threads that can be created to process work queue items. To specify
an unlimited number of threads, supply a value of -1 .

low_water_mark
lets the ORB remove idle threads from the thread pool, down to the value of low_water_mark . The
number of available threads is never less than this value.

If you wish to have greater control of the size of the work queue’s thread stack, use
create_work_queue_with_thread_stack() . It adds one argument, thread_stack_size , to the end of the
argument list. This argument specifies the size of the workqueues thread stack.

How requests are processed
Applications that use an AutomaticWorkQueue do not need to explicitly dequeue work items; instead, work
items are automatically dequeued and processed by threads in the thread pool.

If all threads are busy and the number of threads is less than high_water_mark , the ORB can start
additional threads to process items in the work queue, up to the value of high_water_mark . If the number
of threads is equal to high_water_mark and all are busy, and the work queue is filled to capacity, the
transport considers the server to be overloaded and tries to gracefully close down connections to
reduce the load.

Using a WorkQueue

Creating the WorkQueue
To create a POA with a WorkQueue policy, follow these steps:

Create a work queue factory by calling resolve_initial_references() with the desired factory type by
supplying an argument of IT_AutomaticWorkQueueFactory or IT_ManualWorkQueueFactory .

Set work queue parameters.

Create the work queue by calling create_work_queue() on the work queue factory.

1. 1.

2. 2.

3. 3.

Using a WorkQueue

- 200/599 -

Insert the work queue into an Any .

Add a work queue policy object to a POA’s PolicyList .

Example 2 illustrates these steps:

4. 4.

5. 5.

Example2Creating a POA with a WorkQueue policy

import com.iona.corba.IT_WorkQueue.*;
import com.iona.corba.IT_PortableServer.*;

[1](#creating-the-
workqueue)

// get an automatic work queue factory
org.omg.CORBA.Object obj =
orb.resolve_initial_references(
"IT_AutomaticWorkQueueFactory");
AutomaticWorkQueueFactory wqf =
AutomaticWorkQueueFactoryHelper.narrow(obj);

[2](#creating-the-
workqueue)

// set work queue parameters
int max_size = 20;
int init_thread_count = 1;
int high_water_mark = 10;
int low_water_mark = 2;

[3](#creating-the-
workqueue)

// create work queue
AutomaticWorkQueue auto_wq =
wqf.create_work_queue(
max_size,
init_thread_count,
high_water_mark,
low_water_mark);

[4](#creating-the-
workqueue)

// insert the work queue into an any
org.omg.CORBA.Any work_queue_policy_val =
orb.create_any();
work_queue_policy_val.insert_Object(auto_wq);
// set other POA policies set
// ...
// create PolicyList
org.omg.CORBA.Policy[] policies=new
org.omg.CORBA.Policy[];

Using a WorkQueue

- 201/599 -

Processing events in a manual work queue
When using a manual work queue, the developer must implement the loop which removes requests
from the queue.

Example 3 demonstrates one way to remove requests from a manual work queue. The code loops
indefinitely and continuously polls the queue for requests. When there are requests on the queue, they
are removed from the queue using the dequeue() method and then they processed with the execute()
method of the WorkItem object returned from dequeue() .

[5](#creating-the-
workqueue)

// add work queue policy object to POA’s
PolicyList
orb.create_policy(DISPATCH_WORKQUEUE_POLICY_ID.va
lue, work_queue_policy_val),
// add other POA policies to PolicyList
// ...

Using a WorkQueue

- 202/599 -

Alternatively, you remove requests from the queue using the do_work() method. The difference is that
using do_work() you can process several requests at one time.

Processing events in an automatic work queue
Automatic work queues handle request processing under the covers. Therefore, the developer does not
need to implement any request handling logic.

Example3Removing requests from a work queue.

WorkQueue::WorkItem work_item;
while (1)
{
if (wq.is_empty())
{
// Since there are no requests to process
// the object can sleep, or do whatever other work
// the developer needs done.
....
}
else
{
manual_work_queue.dequeue(work_item, 5000);
work_item.execute();
// no need to explicitly destroy as execute deletes the
// work item once completed.
}
}

Using a WorkQueue

- 203/599 -

Controlling POA Proxification

The Firewall Proxy Service is deprecated as of Orbix 6.3.12.

The default behavior of the firewall proxy service, if it is activated, is to proxify all POAs. This can
consume resources and degrade performance of a system if a large number of POAs are placed behind
the firewall proxy service. In many instances only specific POAs will need to face outside the firewall.
Using the InterdictionPoilcy you can control if a specific POA is proxified.

Policy
The InterdictionPolicy controls the behavior of the firewall proxy service plug-in, if it is loaded. The
policy has two settings:

Example
The following code samples demonstrate how to set the InterdictionPolicy on a POA. In the examples,
the policy is set to DISABLE .

Java

Note

ENABLE This is the default behavior of the firewall proxy service plug-in. A POA with its
InterdictionPolicy set to ENABLE will be proxified.

DISABLE This setting tells the firewall proxy service plug-in to not proxify the POA. A POA
with its InterdictionPolicy set to DISABLE will not use the firewall proxy
service and requests made on objects under its control will come directly from
the requesting clients.

import com.iona.corba.IT_FPS.*;
// Create a PREVENT interdiction policy.
Any interdiction = m_orb.create_any();
InterdictionPolicyValueHelper.insert(interdiction,
InterdictionPolicyValue.DISABLE);
Policy[] policies = new Policy[1];
polices[0] = m_orb.create_policy(INTERDICTION_POLICY_ID.value, interdiction);
// Create and return new POA.
return m_poa.create_POA("no_fps_poa", null, policies);

Controlling POA Proxification

- 204/599 -

Developing a Client

A CORBA client initializes the ORB runtime, handles object references, invokes operations on objects, and
handles exceptions that these operations throw.

For information about exception handling, see Exceptions.

Mapping IDL Interfaces to Proxies
When you compile IDL, the compiler maps each IDL interface to a client-side Java interface of the same
name. A class of the name _interface-nameStub implements this interface and acts as the client-side
proxy for the corresponding server object. Proxy classes implement the client-side call stubs that
marshal parameter values and send operation invocations to the correct destination object. When a
client invokes on a proxy method that corresponds to an IDL operation, Orbix conveys the call to the
corresponding server object, whether remote or local.

The client application accesses proxy methods only through an object reference. When the client brings
an object reference into its address space, the client runtime ORB instantiates a proxy to represent the
object. In other words, a proxy acts as a local ambassador for the remote object.

For example, interface Bank::Acount has this IDL definition:

Given this IDL, the IDL compiler generates the following definitions for the client implementation:

module BankDemo
{
typedef float CashAmount;
exception InsufficientFunds {};
// ...
interface Account{
void withdraw(in CashAmount amount)
raises (InsufficientFunds);
// ... other operations not shown
};
};

Developing a Client

- 205/599 -

This proxy class demonstrates several characteristics that are true of all proxy classes:

Member methods derive their names from the corresponding interface operations—in this case,
withdrawal() .

The proxy class inherits from org.omg.CORBA.portable.ObjectImpl , so the client can access all the
inherited functionality of a CORBA object.

Using Object References
For each IDL interface definition, a POA server can generate and export references to the
corresponding object that it implements. To access this object and invoke on its methods, a client must
obtain an object reference—generally, from a CORBA naming service.

package BankDemo;
public interface AccountOperations {
java.lang.String account_id();
// ...
void withdraw(float amount)
throws BankDemo.AccountPackage.InsufficientFunds;
// other operations not shown ...
}
package BankDemo;
public interface Account
extends AccountOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity {}
package BankDemo;
public class _AccountStub
extends org.omg.CORBA.portable.ObjectImpl
implements Account {
public void withdraw(float amount)
throws BankDemo.AccountPackage.InsufficientFunds {
// implementation details not shown...
}
}

• •

• •

Using Object References

- 206/599 -

Object Reference Operations
Because all object references inherit from CORBA::Object , you can invoke its operations on any object
reference. CORBA::Object is a pseudo-interface with this definition:

Mappings
In Java, these operations are mapped to org.omg.CORBA.Object member methods as follows:

_duplicate() and _release() are not implemented in the Java version of Orbix . To duplicate an object
reference In Java, simply assign the original object reference to the new reference. For example:

Given JVM garbage collection, _release() is redundant.

module CORBA{ //PIDL
// ..
interface Object{
Object duplicate()
void release();
boolean is_nil();
boolean is_a(in string repository_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
boolean hash(in unsigned long max);
// ...
}
};

package org.omg.CORBA;
public interface Object {
boolean _is_a(String Identifier);
boolean _is_equivalent(Object that);
boolean _non_existent();
int _hash(int maximum);
org.omg.CORBA.Object _duplicate();
void _release();
// ...
}

Account acct1 = ...; // Get ref from somewhere...
Account acct2; // acc2 has undefined contents
acc2 = acct1; // Both reference same Account

Object Reference Operations

- 207/599 -

Operation descriptions
The following sections describe the remaining operations.

_is_a()
is similar to narrow() in that it lets you to determine whether an object supports a specific interface. For
example:

The test for null in this code example prevents the client program from making a call via a null object
reference.

_is_a() lets applications manipulate IDL interfaces without static knowledge of the IDL—that is, without
having linked the IDL-generated stubs. Most applications have static knowledge of IDL definitions, so
they never need to call _is_a() . In this case, you can rely on the helper class’s narrow() method to
ascertain whether an object supports the desired interface.

_non_existent()
tests whether a CORBA object exists. _non_existent() returns true if an object no longer exists. A return
of true denotes that this reference and all copies are no longer viable and should be released.

If _non_existent() needs to contact a remote server, the operation is liable to raise system exceptions
that have no bearing on the object’s existence—for example, the client might be unable to connect to
the server.

If you invoke a user-defined operation on a reference to a non-existent object, the ORB raises the
OBJECT_NOT_EXIST system exception. So, invoking an operation on a reference to a non-existent object is
safe, but the client must be prepared to handle errors.

_is_equivalent()
tests whether two references are identical. If _is_equivalent() returns true, you can be sure that both
references point to the same object.

A false return does not necessarily indicate that the references denote different objects, only that the
internals of the two references differ in some way. The information in references can vary among
different ORB implementations. For example, one vendor might enhance performance by adding
cached information to references, to speed up connection establishment. Because _is_equivalent()
tests for absolute identity, it cannot distinguish between vendor-specific and generic information.

org.omg.CORBA.Object obj = ...; // Get a reference
if (obj != null && obj._is_a("IDL:BankDemo/Account:1.0"))
// It's an Account object...
else
// Some other type of object...

Object Reference Operations

- 208/599 -

_hash()
returns a hash value in the range 0..max-1 . The hash value remains constant for the lifetime of the
reference. Because the CORBA specifications offer no hashing algorithm, the same reference on
different ORBs can have different hash values.

_hash() is guaranteed to be implemented as a local operation—that is, it will not send a message on the
wire.

_hash() is mainly useful for services such as the transaction service, which must be able to determine
efficiently whether a given reference is already a member of a set of references. _hash() permits
partitioning of a set of references into an arbitrary number of equivalence classes, so set membership
testing can be performed in (amortized) constant time. Applications rarely need to call this method.

Narrowing Object References
Before a client can use an object reference, it must narrow it to the appropriate interface. For each IDL
interface, the IDL compiler generates a helper class with a narrow() method that returns the narrowed
object reference. Each helper class name has the format Interface-nameHelper , with the first letter
capitalized.

For example, the IDL compiler generates the AccountHelper class for the Account interface. The
AccountHelper class defines the following narrow() method to return Account objects:

Narrowing Object References

- 209/599 -

A client program might call this narrow() method as follows:

If the parameter that is passed to AccountHelper.narrow() is not of class Account or one of its derived
classes, Account.narrow() raises the CORBA.BAD_PARAM exception.

public static BankDemo.Account narrow(
org.omg.CORBA.Object _obj
) throws org.omg.CORBA.BAD_PARAM {
if (_obj == null) {
return null;
}
if (_obj instanceof BankDemo.Account) {
return (BankDemo.Account)_obj;
}
if (_obj instanceof BankDemo._AccountStub) {
return (BankDemo._AccountStub)_obj;
}
if (_obj._is_a(id())) {
BankDemo._AccountStub _ref =
new BankDemo._AccountStub();
_ref._set_delegate(
 ((org.omg.CORBA.portable.ObjectImpl)_obj)._get_delegate());
return _ref;
}
else {
throw new org.omg.CORBA.BAD_PARAM();
}
}

org.omg.CORBA.Object obj = ...; // get object reference somehow
// Narrow obj to an Account object
Account acct = AccountHelper.narrow(obj);
// do stuff with Account object
// ...

Narrowing Object References

- 210/599 -

String Conversions
Object references can be converted to and from strings, which facilitates persistent storage. When a
client obtains a stringified reference, it can convert the string back into an active reference and contact
the referenced object. The reference remains valid as long as the object remains viable. When the
object is destroyed, the reference becomes permanently invalid.

Operations
The object_to_string() and string_to_object() operations are defined in Java as follows:

object_to_string()
For example, the following code stringifies an Account object reference:

This code prints an IOR (interoperable reference) string whose format is similar to this:

The stringified references returned by object_to_string() always contain the prefix IOR: , followed by an
even number of hexadecimal digits. Stringified references do not contain any unusual characters, such
as control characters or embedded newlines, so they are suitable for text I/O.

package org.omg.CORBA;
public abstract class ORB {
public abstract org.omg.CORBA.Object
string_to_object(String str);
public abstract String
object_to_string(org.omg.CORBA.Object obj);

BankDemo.Account acct = ...; // Account reference
// Write reference as a string to stdout
try {
java.lang.String str = orb.object_to_string(acct);
System.out.println(str);
} catch (Exception ex) {
// Deal with error...
}

IOR:
010000002000000049444c3a61636d652e636f6d2f4943532f436f6e74726f6c
c65723a312e300001000000000000004a000000010102000e0000003139322e3
36382e312e3231300049051b0000003a3e0231310c01000000c7010000234800
008000000000000000000010000000600000006000000010000001100

String Conversions

- 211/599 -

string_to_object()
To convert a string back into a reference, call string_to_object() :

The CORBA specification defines the representation of stringified IOR references, so it is interoperable
across all ORBs that support the Internet Inter-ORB Protocol (IIOP).

Although the IOR shown earlier looks large, its string representation is misleading. The in-memory
representation of references is much more compact. Typically, the incremental memory overhead for
each reference in a client can be as little as 30 bytes.

You can also stringify or destringify a null reference. Null references look like one of the following
strings:

Constraints
IOR string references should be used only for these tasks:

Store and retrieve an IOR string to and from a storage medium such as disk or tape.

Conversion to an active reference.

It is inadvisable to rely on IOR string references as database keys for the following reasons:

Actual implementations of IOR strings can vary across different ORBs—for example, vendors can
add proprietary information to the string, such as a time stamp. Given these differences, you
cannot rely on consistent string representations of any object reference.

// Assume stringified reference is in accv[0]
try {
org.omg.CORBA.Object obj;
obj = orb.string_to_object(accv[0]);
if (obj == null)
System.exit(1);
BankDemo.Account acct = BankDemo.AccountHelper.narrow(obj);
if (acct = null)
System.exit(1); // Not an Account reference
// Use acct reference
// ...
} catch (Exception ex) {
// Deal with error...
}

IOR:00000000000000010000000000000000
IOR:01000000010000000000000000000000

• •

• •

• •

String Conversions

- 212/599 -

The actual size of IOR strings—between 200 and 600 bytes— makes them prohibitively expensive
to use as database keys.

In general, you should not compare one IOR string to another. To compare object references, use
is_equivalent() (see page 152).

Stringified IOR references are one way to make references to initial objects known to clients.
However, distributing strings as e-mail messages or writing them into shared file systems is
neither a distributed nor a scalable solution. More typically, applications obtain object references
through the naming service (see Naming Service).

Using corbaloc URL strings
string_to_object() can also take as an argument a corbaloc-formatted URL, and convert it into an object
reference. A corbaloc URL denotes objects that can be contacted by IIOP or
resolve_initial_references() .

A corbaloc URL uses one of the following formats:

rir-argument:
A value that is valid for resolve_initial_references() , such as NameService .

iiop-address:

Identifies a single IIOP address with the following format:

IIOP version information is optional; if omitted, version 1.0 is assumed. host-spec can specify either a
DNS-style host name or a numeric IP address; specification of port-num is optional.

key-string:
corresponds to the octet sequence in the object key member of a stringified object reference, or an
object’s named key that is defined in the implementation repository.

• •

Note

corbaloc:rir:/rir-argument
corbaloc:iiop-address[, iiop-address].../key-string

[iiop]:[major-version-num.minor-version-num@]host-spec[:port-num]

String Conversions

- 213/599 -

For example, if you register the named key BankService for an IOR in the implementation repository, a
client can access an object reference with string_to_object() as follows:

The following code obtains an object reference to the naming service:

You can define a named key in the implementation repository through the •itadmin named_key create
command. For more information, see the Application Server Platform Administrator’s Guide.

Initializing and Shutting Down the ORB
Before a client application can start any CORBA-related activity, it must initialize the ORB runtime by
calling org.omg.CORBA.ORB.init() . ORB.init() returns an object reference to the ORB object; this, in turn,
lets the client obtain references to other CORBA objects, and make other CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for both servers and clients. For detailed
information, see ORB Initialization and Shutdown.

Invoking Operations and Attributes
For each IDL operation in an interface, the IDL compiler generates a method with the name of the
operation in the corresponding proxy. It also maps each unqualified attribute to a pair of overloaded
methods with the name of the attribute, where one method acts as an accessor and the other acts as a
modifier. For readonly attributes, the compiler generates only an accessor method.

An IDL attribute definition is functionally equivalent to a pair of set/get operation definitions, with this
difference: attribute accessors and modifiers can only raise system exceptions, while user exceptions
apply only to operations.

For example, the following IDL defines a single attribute and two operations in interface Test::Example :

// assume that xyz.com specifies a location domain’s host
global_orb.string_to_object
("corbaloc:iiop:xyz.com/BankService");

global_orb.string_to_object("corbaloc:rir:/NameService");

Initializing and Shutting Down the ORB

- 214/599 -

The IDL compiler maps this definition’s members to the following methods in the Java interface
ExampleOperations , which is inherited by the generated interface Example . A client invokes on these
methods as if their implementations existed within its own address space:

Passing Parameters in Client Invocations
IDL in parameters always map directly to the corresponding Java type. This mapping is possible
because in parameters are always passed by value, and Java supports by-value passing of all types.
Similarly, IDL return values always map directly to the corresponding Java type.

IDL inout and out parameters must be passed by reference because they might be modified during an
operation call, and do not map directly into the Java parameter passing mechanism. In the IDL-to-Java
mapping, IDL inout and out parameters are mapped to Java holder classes. Holder classes simulate
passing by reference. For each IDL out or inout parameter, the client supplies an instance of the
appropriate Java holder class. The contents of the holder instance are modified by the call, and the
client uses the contents when the call returns.

module Test {
interface Example {
attribute string name;
oneway void set_address(in string addr);
string get_address();
};
};

package Test;
public interface ExampleOperations {
java.lang.String name();
void name(java.lang.String _val);
void set_address(java.lang.String addr);
java.lang.String get_address();
}
package Test;
public interface Example
extends ExampleOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity {}

Passing Parameters in Client Invocations

- 215/599 -

Holder Class Types
There are two categories of holder classes:

Holders for basic types.

Holders for user-defined types.

Holders for basic types
Holder classes for basic Java types and the Java string type are available in the package org.omg.CORBA .
Each holder class is named TypeHolder , where Type is the name of a basic Java type with the first letter
capitalized. For example, the IntHolder class is defined for int types as follows:

Holders for user-defined types
Holder classes for user-defined types, including IDL interface types, are generated by the Java mapping.
The name format is typeHolder . For example, given the user-defined interface Account , the following
holder class is generated:

• •

• •

package org.omg.CORBA;
import org.omg.CORBA.portable.Streamable;
import org.omg.CORBA.portable.InputStream;
import org.omg.CORBA.portable.OutputStream;
public final class IntHolder implements Streamable {
public int value;
public IntHolder() {
}
public IntHolder(int initial) {
value = initial;
}
public void _read(InputStream input) {
value = input.read_long();
}
public void _write(OutputStream output) {
output.write_long(value);
}
public org.omg.CORBA.TypeCode _type() {
return ORB.init().get_primitive_tc(TCKind.tk_long);
}
}

Holder Class Types

- 216/599 -

Holder Class Members
All Holder classes, basic and user-defined, contain these members:

value contains the value that the client supplies as the out or inout argument, and which the
server runtime ORB resets before the operation returns.

A constructor for out parameters that initializes a new holder object’s value to empty—for
example, 0 for numeric types and null for string.

A constructor for inout parameters that initializes a new holder object’s value field to the supplied
argument’s value.

_read() reads unmarshalled data from input and assigns it to value .

_write() marshals the data in value .

_type() returns the TypeCode object that corresponds to value’ s data type.

public final class AccountHolder
implements org.omg.CORBA.portable.Streamable {
public BankDemo.Account value;
public AccountHolder() {}
public AccountHolder(BankDemo.Account value) {
this.value = value;
}
public void _read(
org.omg.CORBA.portable.InputStream _stream) {
value = BankDemo.AccountHelper.read(_stream);
}
public void _write(
org.omg.CORBA.portable.OutputStream _stream) {
BankDemo.AccountHelper.write(_stream, value);
}
public org.omg.CORBA.TypeCode _type() {
return BankDemo.AccountHelper.type();
}
}

• •

• •

• •

• •

• •

• •

Holder Class Members

- 217/599 -

Invoking an Operation With Holder Classes
A client that invokes operations with inout and out parameters must supply holder objects as
arguments for those parameters. For each IDL out or inout parameter, the client program instantiates
the appropriate holder class and supplies it to the method call. On return, the client can evaluate the
contents of the holder object.

For out parameters, the client calls the default constructor, so the holder object’s value field is
initialized to empty. The servant’s implementation of the invoked operation resets the holder
object’s value on return.

For inout parameters, the client initializes each holder with a valid value by calling the
appropriate constructor.

For example, the following IDL modifies the create_account() operation in the BankDemo module so
that it supplies two out parameters, the account object and the new account’s ID:

The IDL compiler maps create_account() to the Java method BankDemo.Bank.create_account() ; the
operation’s two out parameters require two holder classes: AccountHolder and StringHolder , so
the client program can pass these two parameters by reference to a Bank object servant:

The servant sets the two out parameter values; when the invocation returns, the client receives
these values.

The following client code shows how this operation might be invoked:

• •

• •

// IDL
module BankDemo {
// ...
// Forward declaration of Account
interface Account;
interface Bank {
void create_account(
(in string name, out Account acct, out string acc_id)
// ...
}
// ...
}

public void create_account(
java.lang.String name, BankDemo.AccountHolder acct,
org.omg.CORBA.StringHolder acc_id);

Invoking an Operation With Holder Classes

- 218/599 -

In the server, the servant implementation of create_account() receives the holder object for type
Account and can manipulate its value field. For information about how servants handle out and
in / out parameter types, see Handling Output Parameters.

import org.omg.CORBA.SystemException;
public class client {
org.omg.CORBA.ORB global_orb;
public static void main (java.lang.String[] args) {
try {
global_orb = org.omg.CORBA.ORB.init(args, null);
Bank b_ref = ...; // get object reference to bank
if (b_ref == null)
System.exit(1);
}
// create holder objects
StringHolder acct_id_holder = new StringHolder();
AccountHolder acct_holder = new AccountHolder();
try {
// create a bank account
b_ref.create_account(
"Joe", acct_holder, acct_id_holder);
}
catch (SystemException se) {
System.out.println ("Unexpected exception on bind");
System.out.println ("Exception: " + se);
System.exit(1);
}
// Retrieve values from holder objects
Account acct_ref = acct_holder.value;
java.lang.String acct_id = acct_id_holder.value
try {
// invoke operations on account object
// not shown ...
}
catch (SystemException se) {
// catch clauses not shown ...
}
}

Invoking an Operation With Holder Classes

- 219/599 -

Client Policies
Orbix supports a number of quality of service policies, which can give a client programmatic control
over request processing:

RebindPolicy specifies whether the ORB transparently reopens closed connections and rebinds
forwarded objects.

SyncScopePolicy determines how quickly a client resumes processing after sending one-way
requests.

Timeout policies offer different degrees of control over the length of time that an outstanding
request remains viable.

You can set quality of service policies at three scopes, in descending order of precedence:

On individual objects, so they apply only to invocations on those objects.

On a given thread, so they apply only to invocations on that thread

On the client ORB, so they apply to all invocations.

You can set policies in any combination at all three scopes; the effective policy is determined on each
invocation. If settings are found for the same policy type at more than one scope, the policy at the
lowest scope prevails.

For detailed information about setting these and other policies on a client, see Setting Client Policies.

RebindPolicy
A client’s RebindPolicy determines whether the ORB can transparently reconnect and rebind. A client’s
rebind policy is set by a RebindMode constant, which describes the level of transparent binding that can
occur when the ORB tries to carry out a remote request:

TRANSPARENT
The default policy: the ORB silently reopens closed connections and rebinds forwarded objects.

NO_REBIND
The ORB silently reopens closed connections; it disallows rebinding of forwarded objects if client-visible
policies have changed since the original binding. Objects can be explicitly rebound by calling
CORBA::Object::validate_connection() on them.

• •

• •

• •

a. 1.

b. 2.

c. 3.

Client Policies

- 220/599 -

NO_RECONNECT
The ORB disallows reopening of closed connections and rebinding of forwarded objects. Objects can be
explicitly rebound by calling CORBA::Object::validate_connection() on them.

Currently, Orbix requires rebinding on reconnection. Therefore, NO_REBIND and NO_RECONNECT policies
have the same effect.

SyncScopePolicy
A client’s SyncScopePolicy determines how quickly it resumes processing after sending one-way
requests. You specify this behavior with one of these SyncScope constants:

SYNC_NONE
The default policy: Orbix clients resume processing immediately after sending one-way requests,
without knowing whether the request was processed, or whether it was even sent over the wire.

SYNC_WITH_TRANSPORT
The client resumes processing after a transport accepts the request. This policy is especially helpful
when used with store-and-forward transports. In that case, this policy offer clients assurance of a high
degree of probable delivery.

SYNC_WITH_SERVER
The client resumes processing after the request finds a server object to process it—that is, the server
ORB sends a NO_EXCEPTION reply. If the request must be forwarded, the client continues to block until
location forwarding is complete.

SYNC_WITH_TARGET
The client resumes processing after the request processing is complete. This behavior is equivalent to a
synchronous (two-way) operation. With this policy in effect, a client has absolute assurance that a its
request has found a target and been acted on. The object transaction service (OTS) requires this policy
for any operation that participates in a transaction.

This policy only applies to GIOP 1.2 (and higher) requests.

Note

Note

SyncScopePolicy

- 221/599 -

Timeout Policies
A responsive client must be able to specify timeouts in order to abort invocations. Orbix supports
several standard OMG timeout policies, as specified in the Messaging module; it also provides
proprietary policies in the IT_CORBA module that offer more fine-grained control. Table 11 shows which
policies are supported in each category:

Table 11: Timeout Policies

If a request’s timeout expires before the request can complete, the client receives the system exception
CORBA::TIMEOUT .

When using these policies, be careful that their settings are consistent with each other. For example,
the RelativeRoundtripTimeoutPolicy specifies the maximum amount of time allowed for round-trip
execution of a request.

Orbix also provides its own policies, which let you control specific segments of request execution—for
example, BindingEstablishmentPolicy lets you set the maximum time to establish bindings.

It is possible to set the maximum binding time to be greater than the maximum allowed for roundtrip
request execution. Although these settings are inconsistent, no warning is issued; and Orbix silently
adheres to the more restrictive policy.

OMG
Timeout
Policies

[RelativeRoundtripTimeoutPolicy]
(#relativeroundtriptimeoutpolicy) [ReplyEndTimePolicy]
(#replyendtimepolicy) [RelativeRequestTimeoutPolicy]
(#relativerequesttimeoutpolicy) [RequestEndTimePolicy]
(#requestendtimepolicy)

Proprietary
Timeout
Policies

[BindingEstablishmentPolicy](#bindingestablishmentpolicy) [
RelativeBindingExclusiveRoundtripTimeoutPolicy]
(#relativebindingexclusiveroundtriptimeoutpolicy) [Relative
BindingExclusiveRequestTimeoutPolicy]
(#relativebindingexclusiverequesttimeoutpolicy) [RelativeCo
nnectionCreationTimeoutPolicy]
(#relativeconnectioncreationtimeoutpolicy) [InvocationRetry
Policy](#invocationretrypolicy)

Note

Timeout Policies

- 222/599 -

Setting absolute and relative times
Two policies, RequestEndTimePolicy and ReplyEndTimePolicy , set absolute deadlines for request and reply
delivery, respectively, through the TimeBase::UtcT type. Other policies set times that are relative to a
specified event—for example, RelativeRoundtripTimeoutPolicy limits how much time is allowed to deliver
a request and its reply, starting from the request invocation.

Orbix libraries include the com.iona.common.time.UTCUtility helper class, which provides static utility
methods for working with the types defined in the TimeBase module. For example, future_time() lets
you get an absolute time that is relative to the current time.

You can specify absolute times in long epoch (15 Oct. 1582 to ~30000AD) Universal Time Coordinated
(UTC), or relative times in 100 nano-seconds units using the OMG Time Service’s TimeBase::UtcT type.
You can also convert times to short epoch (Jan. 1 1970 to ~2038) UTC in millisecond units. All times
created have zero displacement from GMT.

For more information, refer to the CORBA Programmer’s Reference.

Imported Java packages
Programs that use timeout policies typically include the following import statements:

The examples that follow all assume that these packages are imported.

Policies

RelativeRoundtripTimeoutPolicy
specifies how much time is allowed to deliver a request and its reply. Set this policy’s value in 100-
nanosecond units. No default is set for this policy; if it is not set, a request has unlimited time to
complete.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout unit
(millisecond unit).

The timeout countdown begins with the request invocation, and includes the following activities:

Marshalling in/inout parameters

import org.omg.Messaging.*;
import org.omg.Timebase.*;
import com.iona.corba.IT_CORBA.*;

Note

• •

Timeout Policies

- 223/599 -

Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of reply data, all received reply data
is discarded. In some cases, the client might attempt to cancel the request by sending a GIOP
CancelRequest message.

For example, the following code sets a RelativeRoundtripTimeoutPolicy override on the ORB
PolicyManager, setting a four-second limit on the time allowed to deliver a request and receive the
reply:

ReplyEndTimePolicy
sets an absolute deadline for receipt of a reply. This policy is otherwise identical to
RelativeRoundtripTimeoutPolicy . Set this policy’s value with a TimeBase::UtcT type (see Setting absolute
and relative times).

No default is set for this policy; if it is not set, a request has unlimited time to complete.

• •

long relative_expiry = 4L * 10000000L; // 4 seconds
try{
Any relative_roundtrip_timeout_value = orb.create_any();
TimeTHelper.insert(
relative_roundtrip_timeout_value,
relative_expiry
);
Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(
 RELATIVE_RT_TIMEOUT_POLICY_TYPE.value,
relative_roundtrip_timeout_value);
policy_manager.set_policy_overrides(
policies,
SetOverrideType.ADD_OVERRIDE);
}
catch(PolicyError pe){
System.exit(1);
}
catch(InvalidPolicies ip){
System.exit(1);
}
catch(SystemException se){
System.exit(1);
}

Timeout Policies

- 224/599 -

RelativeRequestTimeoutPolicy
specifies how much time is allowed to deliver a request. Request delivery is considered complete when
the last fragment of the GIOP request is sent over the wire to the target object. The timeout-specified
period includes any delay in establishing a binding. This policy type is useful to a client that only needs
to limit request delivery time. Set this policy’s value in 100-nanosecond units.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout unit
(millisecond unit).

No default is set for this policy; if it is not set, request delivery has unlimited time to complete.

For example, the following code sets a RelativeRequestTimeoutPolicy override on the ORB PolicyManager,
setting a three-second limit on the time allowed to deliver a request:

Note

Timeout Policies

- 225/599 -

RequestEndTimePolicy
sets an absolute deadline for request delivery. This policy is otherwise identical to
RelativeRequestTimeoutPolicy . Set this policy’s value with a TimeBase::UtcT type (see Setting absolute and
relative times).

No default is set for this policy; if it is not set, request delivery has unlimited time to complete.

BindingEstablishmentPolicy
limits the amount of effort Orbix puts into establishing a binding. The policy equally affects transparent
binding (which results from invoking on an unbound object reference), and explicit binding (which
results from calling Object::_validate_connection() .

A client’s BindingEstablishmentPolicy is determined by the members of its
BindingEstablishmentPolicyValue , which is defined as follows:

long relative_expiry = 3L * 10000000L; // 3 seconds
try{
Any relative_request_timeout_value = orb.create_any();
TimeTHelper.insert(
relative_request_timeout_value,
relative_expiry);
Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(
 RELATIVE_REQ_TIMEOUT_POLICY_TYPE.value,
relative_request_timeout_value);
policy_manager.set_policy_overrides(
policies,
SetOverrideType.ADD_OVERRIDE);
}
catch(PolicyError pe){
System.exit(1);
}
catch(InvalidPolicies ip){
System.exit(1);
}
catch(SystemException se){
System.exit(1);
}

Timeout Policies

- 226/599 -

relative_expiry limits the amount of time allowed to establish a binding. Set this member in 100-
nanosecond units. The default value is infinity.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout
unit (millisecond unit).

max_binding_iterations limits the number of times the client tries to establish a binding. Set to -1
to specify unlimited retries. The default value is 5.

If location forwarding requires that a new binding be established for a forwarded IOR, only one
iteration is allowed to bind the new IOR. If the first binding attempt fails, the client reverts to the
previous IOR. This allows a load balancing forwarding agent to redirect the client to another,
more responsive server.

max_forwards limits the number of forward tries that are allowed during binding establishment.
Set to -1 to specify unlimited forward tries. The default value is 20.

initial_iteration_delay sets the amount of time, in 100-nanosecond units, between the first and
second tries to establish a binding. The default value is 0.1 seconds.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout
unit (millisecond unit).

backoff_ratio lets you specify the degree to which delays between binding retries increase from
one retry to the next. The successive delays between retries form a geometric progression:

struct BindingEstablishmentPolicyValue
{
TimeBase::TimeT relative_expiry;
unsigned short max_binding_iterations;
unsigned short max_forwards;
TimeBase::TimeT initial_iteration_delay;
float backoff_ratio;
};

• •

Note

• •

Note

• •

• •

Note

• •

Timeout Policies

- 227/599 -

The default value is 2.

For example, the following code sets an BindingEstablishmentPolicy override on an object reference:

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
initial_iteration_delay x backoff_ratio(max_binding_iterations - 2)

Timeout Policies

- 228/599 -

RelativeBindingExclusiveRoundtripTimeoutPolicy
limits the amount of time allowed to deliver a request and receive its reply, exclusive of binding
attempts. The countdown begins immediately after a binding is obtained for the invocation. This
policy’s value is set in 100-nanosecond units.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout unit
(millisecond unit).

// ...
import com.iona.corba.util.ObjectHelper
try
{
Any bind_est_value = orb.create_any();
BindingEstablishmentPolicyValueHelper.insert(
bind_est_value,
new BindingEstablishmentPolicyValue(
(long) 30 * 10000000; // 30 seconds
(short)5, // 5 binding tries
(short)20, // 20 forwards
(long)1000000, // 0.1s delay
(float)2.0) // back-off ratio
);
Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(
 BINDING_ESTABLISHMENT_POLICY_ID.value,
bind_est_value);
org.omg.CORBA.Object o =
ObjectHelper.set_policy_overrides(obj_ref,
policies,
SetOverrideType.ADD_OVERRIDE);
}
catch(PolicyError pe){
System.exit(1);
}
catch(InvalidPolicies ip){
System.exit(1);
}
catch (SystemException se){
System.exit(1);
}

Note

Timeout Policies

- 229/599 -

RelativeBindingExclusiveRequestTimeoutPolicy
limits the amount of time allowed to deliver a request, exclusive of binding attempts. Request delivery is
considered complete when the last fragment of the GIOP request is sent over the wire to the target
object. This policy’s value is set in 100-nanosecond units.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout unit
(millisecond unit).

RelativeConnectionCreationTimeoutPolicy
specifies how much time is allowed to resolve each address in an IOR, within each binding iteration.
Defaults to 8 seconds.

An IOR can have several TAG_INTERNET_IOP (IIOP transport) profiles, each with one or more addresses,
while each address can resolve via DNS to multiple IP addresses. Furthermore, each IOR can specify
multiple transports, each with its own set of profiles.

This policy applies to each IP address within an IOR. Each attempt to resolve an IP address is regarded
as a separate attempt to create a connection. The policy’s value is set in 100-nanosecond units.

The programmatic timeout unit (100-nanosecond unit) differs from the configuration timeout unit
(millisecond unit).

InvocationRetryPolicy
applies to invocations that receive the following exceptions:

A TRANSIENT exception with a completion status of COMPLETED_NO triggers a transparent
reinvocation.

A COMM_FAILURE exception with a completion status of COMPLETED_NO triggers a transparent rebind
attempt.

A client’s InvocationRetryPolicy is determined by the members of its InvocationRetryPolicyValue , which is
defined as follows:

Note

Note

• •

• •

Timeout Policies

- 230/599 -

If an application uses the InvocationRetryPolicyValue structure type, all members must be assigned
an appropriate value. The defaults are only applied, if you choose to use this policy without setting
the InvocationRetryPolicyValue structure.

max_retries limits the number of transparent reinvocation that are attempted on receipt of a
TRANSIENT exception. The default value is 5.

max_rebinds limits the number of transparent rebinds that are attempted on receipt of a
COMM_FAILURE exception. The default value is 5.

This setting is valid only if the effective RebindPolicy is TRANSPARENT ; otherwise, no rebinding
occurs.

max_forwards limits the number of forward tries that are allowed for a given invocation. Set to -1
to specify unlimited forward tries. The default value is 20.

initial_retry_delay sets the amount of time, in 100-nanosecond units, between the first and second
retries. The default value is 0.1 seconds.

The delay between the initial invocation and first retry is always 0.

This setting only affects the delay between transparent invocation retries; it has no affect on
rebind or forwarding attempts.

backoff_ratio lets you specify the degree to which delays between invocation retries increase from
one retry to the next. The successive delays between retries form a geometric progression:

struct InvocationRetryPolicyValue
{
unsigned short max_retries;
unsigned short max_rebinds;
unsigned short max_forwards;
TimeBase::TimeT initial_retry_delay;
float backoff_ratio;
};

Note

• •

• •

Note

• •

• •

Note

• •

Timeout Policies

- 231/599 -

The default value is 2.

For example, the following code sets an InvocationRetryPolicy override on an object reference:

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
initial_iteration_delay x backoff_ratio(max_retries - 2)

Timeout Policies

- 232/599 -

Implementing Callback Objects
Many CORBA applications implement callback objects on a client so that a server can notify the client of
some event. You implement a callback object on a client exactly as you do on a server, by activating it in
a client-side POA (see Activating CORBA Objects). This POA’s LifeSpanPolicy should be set to TRANSIENT .
Thus, all object references that the POA exports are valid only as long as the POA is running. This
ensures that a late server callback is not misdirected to another client after the original client shuts
down.

// ...
import com.iona.corba.util.ObjectHelper
try
{
Any no_retries_value = orb.create_any();
InvocationRetryPolicyValueHelper.insert(
no_retries_value,
new InvocationRetryPolicyValue(
(short)0, // 0 retries
(short)5, // 5 rebinds
(short)20, // 20 forwards
(long)1000000, // 0.1s delay
(float)2.0)); // back-off ratio
Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(
INVOCATION_RETRY_POLICY_ID.value,
no_retries_value);
org.omg.CORBA.Object o =
ObjectHelper.set_policy_overrides(obj_ref,
policies,
SetOverrideType.ADD_OVERRIDE);
}
catch(PolicyError pe){
System.exit(1);
}
catch(InvalidPolicies ip){
System.exit(1);
}
catch (SystemException se){
System.exit(1);
}

Implementing Callback Objects

- 233/599 -

It is often appropriate to use a client’s root POA for callback objects, inasmuch as it always exports
transient object references. If you do so, make sure that your callback code is thread-safe; otherwise,
you must create a POA with policies of SINGLE_THREAD_MODEL and TRANSIENT .

Implementing Callback Objects

- 234/599 -

Managing Servants

A POA that needs to manage a large number of objects can be configured to incarnate servants only as they
are needed. Alternatively, a POA can use a single servant to service all requests.

A POA’s default request processing policy is USE_ACTIVE_OBJECT_MAP_ONLY . During POA initialization, the
active object map must be populated with all object-servant mappings that are required during the
POA’s lifetime. The active object map maintains object-servant mappings until the POA shuts down, or
an object is explicitly deactivated.

For example, you might implement the BankDemo::Account interface so that at startup, a server
instantiates a servant for each account and activates all the account objects. Thus, a servant is always
available for any client invocation on that account—for example, balance() or withdraw() .

Drawbacks of active object map usage
Given the potential for many thousands of accounts, and the likelihood that account information
changes—accounts are closed down, new accounts are created—the drawbacks of this static approach
become obvious:

Code duplication: For each account, the same code for servant creation and activation must be
repeated, increasing the potential for errors.

Inflexibility: For each change in account information, you must modify and recompile the server
code, then stop and restart server processes.

Startup time: The time required to create and activate a large number of servants prolongs server
startup and delays its readiness to process client requests.

Memory usage: An excessive amount of memory might be required to maintain all servants
continuously.

This scenario makes it clear that you should usually configure a POA to rely exclusively on an
active object map only when it maintains a small number of objects.

• •

• •

• •

• •

Managing Servants

- 235/599 -

Policies for managing many objects
If a POA is required to maintain a large number of objects, you should set its request processing policy
to one of the following:

USE_SERVANT_MANAGER specifies that servants are instantiated on demand.

USE_DEFAULT_SERVANT specifies a default servant that handles requests for any objects that are not
registered in the active object map, or for all requests in general.

This chapter shows how to implement both policies.

Using Servant Managers

Servant manager types
A POA whose request processing policy is set to USE_SERVANT_MANAGER supplies servants on demand for
object requests. The POA depends on a servant manager to map objects to servants. Depending on its
servant retention policy, the POA can implement one of two servant manager types, either a servant
activator or servant locator:

A servant activator is registered with a POA that has a RETAIN policy. The servant activator supplies
a servant for an inactive object on receiving an initial request for it. The active object map retains
the mapping between the object and its servant until the object is deactivated.

A servant locator is registered with a POA that has a policy of NON_RETAIN . The servant locator
supplies a servant for an inactive object each time the object is requested. In the absence of an
active object map, the servant locator must deactivate the object and delete the servant from
memory after the request returns.

Because a servant activator depends on the active object map to maintain the servants that it
supplies, its usefulness is generally limited to minimizing an application’s startup time. In almost
all cases, you should use a servant locator for applications that must dynamically manage large
numbers of objects.

• •

• •

• •

• •

Policies for managing many objects

- 236/599 -

Registering a servant manager
An application registers its servant manager —whether activator or locator— with the POA by calling
set_servant_manager() on it; otherwise, an OBJ_ADAPTER exception is returned to the client on attempts to
invoke on one of its objects.

The following sections show how to implement the BankDemo::Account interface with a servant activator
and a servant locator. Both servant manager types activate account objects with instantiations of
servant class AccountImpl , which inherits from skeleton class AccountPOA :

Registering a servant manager

- 237/599 -

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import demos.servant_management.BankDemo.AccountPackage.*;
import demos.servant_management.BankDemo.*;
public class AccountImpl
extends AccountPOA
{
public AccountImpl(String account_id,
AccountDatabase account_db)
{
m_account_db = account_db;
m_account_id = account_id;
m_balance = m_account_db.read_account(m_account_id);
}
protected void finalize()
{
m_account_db.write_account(m_account_id, m_balance);
}
protected void save_all()
{
m_account_db.write_account(m_account_id, m_balance);
}
public void withdraw(float amount) throws InsufficientFunds
{
if (amount > m_balance)
{
throw new InsufficientFunds();
}
m_balance -= amount;
}
public void deposit(float amount)
{
m_balance += amount;
}
public String account_id()
{
return m_account_id;
}
public float balance()
{
return m_balance;
}
private String m_account_id;
private float m_balance;

Registering a servant manager

- 238/599 -

Servant Activators
A POA with policies of USE_SERVANT_MANAGER and RETAIN uses a servant activator as its servant manager.
The POA directs the first request for an inactive object to the servant activator. If the servant activator
returns a servant, the POA associates it with the requested object in the active object map and thereby
activates the object. Subsequent requests for the object are routed directly to its servant.

Figure 19 On the first request on an object, the servant activator returns a servant to the POA, which
establishes the mapping in its active object map.

Servant activators are generally useful when a server can hold all its servants in memory at once, but
the servants are slow to initialize, or they are not all needed each time the server runs. In both cases,
you can expedite server startup by deferring servant activation until it is actually needed.

ServantActivator interface
The PortableServer::ServantActivator interface is defined as follows:

private AccountDatabase m_account_db;
}

Servant Activators

- 239/599 -

A POA can call two methods on its servant activator:

incarnate() is called by the POA when it receives a request for an inactive object, and should
return an appropriate servant for the requested object.

etherealize() is called by the POA when an object is deactivated or the POA shuts down. In either
case, it allows the application to clean up resources that the servant uses.

Implementing a servant activator
You can implement a servant activator as follows:

interface ServantActivator : ServantManager
{
Servant
incarnate(
in ObjectId oid,
in POA adapter
raises (ForwardRequest);
void
etherealize(
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations
;
};

• •

• •

Servant Activators

- 240/599 -

Example1Servant activator implementation

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import
demos.servant_management.BankDemo.AccountPackage.
*;
import demos.servant_management.BankDemo.*;
public class AccountServantActivatorImpl
extends LocalObject
implements ServantActivator
{
// servant activator constructor
public AccountServantActivatorImpl(
AccountDatabase account_db,
org.omg.CORBA.ORB orb)
{
m_account_db = account_db;
m_orb = orb;
}

[1](#activating-
objects)

public Servant incarnate(
byte[] oid,
POA adapter) throws ForwardRequest
{
String account_id = new String(oid);

[2](#activating-
objects)

SingleAccountImpl account =
new SingleAccountImpl(account_id, m_account_db);
return account;
}

Servant Activators

- 241/599 -

In this example, the servant activator’s constructor takes two arguments that enable interaction
between Account objects and persistent account data: an Account Database object, and the
application’s ORB

Activating objects
incarnate() instantiates a servant for a requested object and returns the servant to the POA. The POA
registers the servant with the object’s ID, thereby activating the object and making it available to
process requests on it.

In the implementation shown in Example 1, incarnate() performs these tasks:

Takes the object ID of a request for a BankDemo::Account object, and the POA that relayed the request.

Instantiates an SingleAccountImpl servant, passing account information to the servant’s constructor,
and returns the servant to the POA.

Deactivating objects
The POA calls etherealize() when an object deactivates, either because the object is destroyed or as
part of general cleanup when the POA itself deactivates or is destroyed.

Because Java automatically disposes of servants for deactivated objects, the method is generally used
to perform required cleanup or database interaction before objects deactivate. For example, it can
check the cleanup_in_progress parameter to determine whether etherealization results from POA
deactivation or destruction; this lets you differentiate between this and other reasons to etherealize a
servant.

public void etherealize(byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations)
{ }
private AccountDatabase m_account_db;
private org.omg.CORBA.ORB m_orb;
}

1. 1.

2. 2.

Servant Activators

- 242/599 -

Setting deactivation policies
By default, a POA that uses a servant activator lets an object deactivate (and its servant to etherealize)
only after all pending requests on that object return. You can modify the way the POA handles incoming
requests for a deactivating object by creating an Orbix-proprietary ObjectDeactivationPolicy object and
attaching it to the POA’s PolicyList (see Setting proprietary policies for a POA).

Three settings are valid for this Policy object:

DELIVER:
(default) The object deactivates only after processing all pending requests, including any requests that
arrive while the object is deactivating. This behavior complies with CORBA specifications.

DISCARD:
The POA rejects incoming requests with an exception of TRANSIENT . Clients should be able to reissue
discarded requests.

HOLD:
Requests block until the object deactivates. A POA with a HOLD policy maintains all requests until the
object reactivates. However, this policy can cause deadlock if the object calls back into itself.

Setting a POA’s servant activator
The following example shows how you can establish a POA’s servant activator in two steps:

Example2Java Setting the POA’s Servant Activator

...
AccountDatabase account_database = new
AccountDatabase();

[1](#setting-a-poas-servant-
activator)

// instantiate servant activator
org.omg.PortableServer.ServantActivator
activator =
new
AccountServantActivatorImpl(account_datab
ase, orb);

Servant Activators

- 243/599 -

Instantiate the servant activator.

Call set_servant_manager() on the target POA and supply the servant activator.

Servant Locators
A server that needs to manage a large number of objects might only require short-term access to
them. For example, the operations that are likely to be invoked on most customer bank accounts—such
as withdrawals and deposits—are usually infrequent and of short duration. Thus, it is unnecessary to
keep account objects active beyond the lifetime of any given request. A POA that services requests like
this can use a servant locator, which activates an object for each request, and deactivates it after the
request returns.

Required policies
A POA with policies of USE_SERVANT_MANAGER and NON_RETAIN uses a servant locator as its servant manager.
Because the POA lacks an active object map, it directs each object request to the servant locator, which
returns a servant to the POA in order to process the request. The POA calls the request operation on the
servant; when the operation returns, the POA deactivates the object and returns control to the servant
locator. From the POA’s perspective, the servant is active only while the request is being processed.

Figure 20 The POA directs each object request to the servant locator, which returns a servant to the POA
to process the request.

[2](#setting-a-poas-servant-
activator)

// Associate the activator with the
accounts POA
acct_poa.set_servant_manager(activator);

1. 1.

2. 2.

Servant Locators

- 244/599 -

Controlling servant lifespan
An application that uses a servant locator has full control over servant creation and deletion,
independently of object activation and deactivation. Your application can assert this control in a number
of ways. For example:

Servant caching: A servant locator can manage a cache of servants for applications that have a
large number of objects. Because the locator is called for each operation, it can determine which
objects are requested most recently or frequently and retain and remove servants accordingly.

Application-specific object map: A servant locator can implement its own object-servant mapping
algorithm. For example, a POA’s active object map requires a unique servant for each interface.
With a servant locator, an application can implement an object map as a simple fixed table that
maps multiple objects with different interfaces to the same servant. Objects can be directed to the
appropriate servant through an identifier that is embedded in their object IDs. For each incoming
request, the servant locator extracts the identifier from the object ID and directs the request to
the appropriate servant.

ServantLocator interface
The PortableServer:ServantLocator interface is defined as follows:

A servant locator processes each object request with a pair of methods, preinvoke() and postinvoke() :

• •

• •

interface ServantLocator : ServantManager
{
native Cookie;
Servant
preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie
raises (ForwardRequest);
void
postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant
;
};

Servant Locators

- 245/599 -

preinvoke() is called on a POA’s servant locator when the POA receives a request for an object.
preinvoke() returns an appropriate servant for the requested object.

postinvoke() is called on a POA’s servant locator to dispose of the servant when processing of the
object request is complete. For example, the postinvoke() implementation can cache the servant
for later reuse.

Implementing a servant locator
The following code implements a servant locator that handles account objects:

• •

• •

Example3Servant locator implementation

package demos.servant_management;
import org.omg.CORBA.*;
import org.omg.PortableServer.POA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.*;
import demos.servant_management.BankDemo.AccountPackage.*;
import demos.servant_management.BankDemo.*;

public class AccountServantLocatorImpl
extends LocalObject
implements ServantLocator
{
public AccountServantLocatorImpl(AccountDatabase account_db,
org.omg.CORBA.ORB orb)
{
m_account_db = account_db;
m_orb = orb;
}

Servant Locators

- 246/599 -

Each request is guaranteed a pair of preinvoke() and postinvoke() calls. This can be especially useful for
applications with database transactions. For example, a database server can use a servant locator to
direct concurrent operations to the same servant; each database transaction is opened and closed
within the preinvoke() and postinvoke() operations.

The signatures of preinvoke() and postinvoke() are differentiated from those of invoke() and
incarnate() by two parameters, the_cookie and operation :

public org.omg.PortableServer.Servant preinvoke(
byte[] oid,
POA adapter,
String operation,
CookieHolder the_cookie)
throws ForwardRequest
{
String account_id = new String(oid);
SingleAccountImpl account =
new SingleAccountImpl(account_id, m_account_db);
return account;
}

public void postinvoke(
byte[] oid,
POA adapter,
String operation,
java.lang.Object the_cookie,
org.omg.PortableServer.Servant the_servant)
{
if (the_servant instanceof SingleAccountImpl)
{
SingleAccountImpl account =
(SingleAccountImpl)the_servant;
account.save_all();
}
}

AccountDatabase m_account_db;
org.omg.CORBA.ORB m_orb;
}

Servant Locators

- 247/599 -

the_cookie
lets you explicitly map data between preinvoke() and its corresponding postinvoke() call. This can be
useful in a multi-threaded environment and in transactions where it is important to ensure that a pair of
preinvoke() and postinvoke() calls operate on the same servant. For example, each preinvoke() call can
set its the_cookie parameter to data that identifies its servant; the postinvoke() code can then compare
that data to its the_servant parameter.

operation
contains the name of the operation that is invoked on the CORBA object, and thus provides the context
of the servant’s instantiation. The servant can use this to differentiate between different operations and
execute the appropriate code.

Setting a POA’s servant locator
You establish a POA’s servant locator in two steps, as shown in the following example:

Instantiate the servant locator.

Call set_servant_manager() on the target POA and supply the servant locator.

Example4Java Setting a POA’s Servant Locator

[1](#setting-a-poas-servant-
locator)

// instantiate a servant locator
org.omg.PortableServer.ServantLocator
locator =
new
AccountServantLocatorImpl(account_database
, orb);

[2](#setting-a-poas-servant-
locator)

// Associate the locator with the accounts
POA
acct_poa.set_servant_manager(locator);

1. 1.

2. 2.

Servant Locators

- 248/599 -

Using a Default Servant
If a number of objects share the same interface, a server can most efficiently handle requests on them
through a POA that provides a single default servant. This servant processes all requests on a set of
objects. A POA with a request processing policy of USE_DEFAULT_SERVANT dispatches requests to the
default servant when it cannot otherwise find a servant for the requested object. This can occur
because the object’s ID is not in the active object map, or the POA’s servant retention policy is set to
NON_RETAIN .

For example, all customer account objects in the bank server share the same BankDemo::Account
interface. Instead of instantiating a new servant for each customer account object as in previous
examples, it might be more efficient to create a single servant that processes requests on all accounts.

Obtaining the current object
A default servant must be able to differentiate the objects that it is serving. The PortableServer::Current
interface offers this capability:

You can call a PortableServer::Current operation only in the context of request processing. Thus, each
Bank::Account operation such as deposit() or balance() can call PortableServer::Current::get_object_id()
to obtain the current object’s account ID number.

module PortableServer
{
interface Current : CORBA::Current
{
exception NoContext{};
POA get_POA () raises (NoContext);
ObjectID get_object_id() raises (NoContext);
};
...
}

Using a Default Servant

- 249/599 -

Implementing a default servant
To implement a default servant for account objects, modify the code as follows:

The SingleAccountImpl constructor identifies the ORB instead of an object’s account ID.

Each Account operation calls resolve_initial_references() on the ORB to obtain a reference to the
PortableServer::Current object, and uses this reference to identify the current account object.

So, you might use the following servant code to implement an account object:

• •

• •

Example5Implementation of a default servant

package demos.servant_management;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import demos.servant_management.BankDemo.AccountPackage.*;
import demos.servant_management.BankDemo.*;

public class SingleAccountImpl extends AccountPOA
{
// constructor
public SingleAccountImpl(ORB orb,
AccountDatabase account_db)
{
m_account_db = account_db;
m_orb = orb;
}

protected void update_balance(float balance)
{
m_account_db.write_account(get_account_id(), balance);
}

public float balance()
{
float balance =
m_account_db.read_account(get_account_id());
return balance;
}

Implementing a default servant

- 250/599 -

In this implementation, the servant constructor takes a single argument, a reference to the ORB. Each
method such as balance() calls the private helper method get_account_id(), which obtains a reference
to the current object (PortableServer::Current) and gets its object ID. The method converts the object ID
to a string and returns with this string.

This implementation assumes that account object IDs are generated from account ID strings. See
Creating Inactive Objects to see how you can create object IDs from a string and use them to generate
object references.

public void withdraw(float amount) throws InsufficientFunds
{
float balance = balance();
if (amount > balance)
{
throw new InsufficientFunds();
}
update_balance(get_account_id(), balance - amount);
}

private String get_account_id()
{
org.omg.CORBA.Object obj =
m_orb.resolve_initial_references("POACurrent");
org.omg.PortableServer.Current poa_current =
org.omg.PortableServer.CurrentHelper.narrow(obj);
try {
byte[] account_oid = poa_current.get_object_id();
} catch (org.omg.PortableServer.Current.NoContext) {
// ...
}
return new String(account_oid);
}

private ORB m_orb;
private AccountDatabase m_account_db;
}

Implementing a default servant

- 251/599 -

Setting a Default Servant
You can establish a POA’s default servant by instantiating the desired servant class and supplying it as
an argument to set_servant() , which you invoke on that POA. The following code fragment from the
server’s main() instantiates servant def_serv from servant class SingleAccountImpl , and sets this as the
default servant for POA acct_poa :

Setting a Default Servant

- 252/599 -

Creating Inactive Objects
An application that uses a servant manager or default servant typically creates objects independently of
the servants that incarnate them. The various implementations shown earlier in this chapter assume
that all account objects are available before they are associated with servants in the POA. Thus, the
account objects are initially inactive—that is, servants are unavailable to process any requests that are
invoked on them.

You can create inactive objects by calling either create_reference() or create_reference_with_id() on a
POA. In the next example, the POA that is to maintain these objects has an ID assignment policy of
USER_ID ; therefore, the server code calls create_reference_with_id() to create objects in that POA:

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// Instantiate default account object servant
SingleAccountImpl def_serv(orb);
...
// Set default servant for POA
acct_poa->set_servant(&def_serv);
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
// ...
// Initialize the ORB
public static ORB orb = ORB.init(args, null);
// create account POA with policy of DEFAULT_SERVANT policy
// (not shown)
// ...
// Instantiate default account object servant
try {
SingleAccountImpl def_serv = new SingleAccountImpl(orb);
...
// Set default servant for POA
acct_poa.set_servant(def_serv);
}
catch (org.omg.PortableServer.WrongPolicy ex) {
// wrong policy for default servant
}
// ...

Creating Inactive Objects

- 253/599 -

The repetitive mechanism used in this example to create objects is used only for illustrative
purposes. A real application would probably use a factory object to create account objects from
persistent data.

Note

Creating Inactive Objects

- 254/599 -

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public static main(String args[]) {
// initialize ORB
ORB orb = ORB.init(args, null);
// get object reference to the root POA
org.omg.CORBA.Object obj =
orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(obj);
// set policies for persistent POA that uses servant locator
Policy[] policies = new Policy[] {
root_poa.create_lifespan_policy(
LifespanPolicyValue.PERSISTENT);
root_poa.create_id_assignment_policy(
IdAssignmentPolicyValue.USER_ID);
root_poa.create_servant_retention_policy(
ServantRetentionPolicyValue.NON_RETAIN);
root_poa.create_request_processing_policy(
 RequestProcessingPolicyValue.USE_SERVANT_MANAGER);
};
// create the accounts POA
POA acct_poa = root_poa.create_POA(
"acct_poa", null, policies);
// instantiate a servant locator
org.omg.PortableServer.ServantLocator locator =
new AccountServantLocatorImpl(orb);
// Associate the locator with the accounts POA
acct_poa.set_servant_manager(locator);
// Set Bank Account interface repository ID
String repository_id = "IDL:BankDemo/Account:1.0";
// create account object
String acct_id = "112-1110001";
byte[] acct_oid = acct_id.getBytes();
org.omg.CORBA.Object acct_obj =
acct_poa.create_reference_with_id(
acct_oid, repository_id);
// Export object reference to Naming Service (not shown)
// create another account object
acct_id = "112-1110002";
acct_oid = acct_id.getBytes();
acct_obj = acct_poa.create_reference_with_id(
acct_oid, repository_id);
// Export object reference to Naming Service (not shown)
// Repeat for each account object...
// Start ORB
orb.run();

Creating Inactive Objects

- 255/599 -

As shown, main() executes as follows:

Creates all account objects in acct_poa without incarnating them.

Calls run() on the ORB so it starts listening to requests.

As the POA receives requests for objects, it passes them on to the servant locator. The servant locator
instantiates a servant to process each request.

After the request returns from processing, the servant locator destroys its servant.

return 0;
}

1. 1.

2. 2.

3. 3.

4. 4.

Creating Inactive Objects

- 256/599 -

Exceptions

Implementations of IDL operations and attributes throw exceptions to indicate when a processing error
occurs.

An IDL operation can throw two types of exceptions:

User-defined exceptions are defined explicitly in your IDL definitions.

System exceptions are predefined exceptions that all operations can throw.

While IDL operations can throw user-defined and system exceptions, accessor methods for IDL
attributes can only throw system-defined exceptions.

Example IDL
This chapter shows how to throw and catch both types of exceptions. The Bank interface is modified to
include two user-defined exceptions:

AccountNotFound
is defined by find_account() .

AccountAlreadyExists
is defined by create_account() .

The account_id member in both exceptions indicates an invalid account ID:

• •

• •

Exceptions

- 257/599 -

Exception Code Mapping
All CORBA exceptions ultimately derive from java.lang.Exception , as shown in Figure 21, and can be
instantiated and manipulated like any Java exception object:

Figure 21 The Java mapping arranges exceptions into a hierarchy

module BankDemo
{
...
interface Bank {
exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };
Account find_account(in AccountId account_id)
raises(AccountNotFound);
Account create_account(
in AccountId account_id,
in CashAmount initial_balance
) raises (AccountAlreadyExists);
};
};

Exception Code Mapping

- 258/599 -

Subclasses
CORBA exceptions are subdivided into two subclasses:

System exceptions are subclasses of org.omg.CORBA.SystemException . All system exceptions are
defined by the OMG.

User exceptions are described in the IDL that you write; these are subclasses of
org.omg.CORBA.UserException . The IDL compiler places user exceptions into Java packages that are
scoped to the interface or module in which the exception was defined.

Given this hierarchy, you can catch all CORBA exceptions in a single catch handler. Alternatively,
you can catch system and user exceptions separately, or handle specific exceptions individually.

User-Defined Exceptions
Operations are defined to raise one or more user exceptions to indicate application-specific error
conditions. An exception definition can contain multiple data members to convey specific information
about the error, if desired. For example, you might include a graphic image in the exception data in
order to display an error icon.

Exception design guidelines
When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions.
Do not throw exceptions for expected outcomes. For example, a database lookup operation should not
throw an exception if a lookup does not locate anything; it is normal for clients to occasionally look for
things that are not there. It is harder for the caller to deal with exceptions than return values, because
exceptions break the normal flow of control. Do not force the caller to handle an exception when a
return value is sufficient.

Exceptions carry complete information.
Ensure that exceptions carry all the data the caller requires to handle an error. If an exception carries
insufficient information, the caller must make a second call to retrieve the missing information.
However, if the first call fails, it is likely that subsequent calls will also fail.

• •

• •

Subclasses

- 259/599 -

Exceptions only carry useful information.
Do not add exception members that are irrelevant to the caller.

Exceptions carry precise information
Do not lump multiple error conditions into a single exception type. Instead, use a different exception for
each semantic error condition; otherwise, the caller cannot distinguish between different causes for an
error.

Java mapping for user exceptions
If an exception is defined within an interface, then its Java class name is defined within a package that
corresponds to the IDL interface’s name. Thus, exception class AccountAlreadyExists is defined within
package BankDemo.BankPackage :

Java mapping for user exceptions

- 260/599 -

Constructors
Three constructors are provided:

The default constructor takes no arguments.

The user-defined constructor takes an argument for each exception member—in this case,
account_id .

The full constructor contains an additional reason parameter that is concatenated to the ID before
calling the superclass constructor.

package BankDemo.BankPackage;
public final class AccountAlreadyExists
extends org.omg.CORBA.UserException
{
public java.lang.String account_id;
public AccountAlreadyExists() {
super(AccountAlreadyExistsHelper.id());
}
public AccountAlreadyExists(
java.lang.String account_id
)
{
super(AccountAlreadyExistsHelper.id());
this.account_id = account_id;
}
public AccountAlreadyExists(
java.lang.String _reason,
java.lang.String account_id
)
{
super(AccountAlreadyExistsHelper.id() + " " + _reason);
this.account_id = account_id;
}
}

• •

• •

• •

Constructors

- 261/599 -

Handling Exceptions
Client code uses standard try and catch blocks to isolate processing logic from exception handling
code. You can associate multiple catch blocks with each try block. You should write the code so that
handling for specific exceptions takes precedence over handling for other unspecified exceptions.

This section contains the following subsections:

Handling User Exceptions
If an operation might throw a user exception, its caller should be prepared to handle that exception
with an appropriate catch clause.

Example 6 shows how you might program a client to catch exceptions. In it, the handler for the
AccountAlreadyExists exception outputs an error message and exits the program.

Handling User Exceptions page 192

Handling System Exceptions page 193

Evaluating System Exceptions page 195

Handling Exceptions

- 262/599 -

Example6Programming a client to catch user exceptions

protected void do_create() // create bank account
{
try {
System.out.println("Enter account name :");
String name = m_input.readLine();
System.out.println("Enter account starting balance :");
String balance = m_input.readLine();
Float balance_converter = new Float(balance);
float float_balance = balance_converter.floatValue();
System.out.println("Calling create account with " +
float_balance);
Account account = m_bank.create_account(
name, float_balance);
AccountMenu sub_menu = new AccountMenu(account);
sub_menu.run();
}

catch (
BankDemo.BankPackage.AccountAlreadyExists already_exists)
{
System.err.println("This account already exists.");
return;
}

Handling User Exceptions

- 263/599 -

Handling System Exceptions
A client often provides a handler for a limited set of anticipated system exceptions. It also must provide
a way to handle all other unanticipated system exceptions that might occur.

Precedence of exception handlers
The Java runtime first tries to match an exception to a catch block that specifies that exception;
otherwise it matches the exception’s superclass. Because all CORBA exceptions are derived from
java.lang.Exception , catch blocks with specific exception handling must precede more general catch
blocks.

The following client code specifically tests for a COMM_FAILURE exception; it can also handle any other
system and I/O exceptions:

catch (java.io.IOException io_exc) {
System.err.println("Bank menu IO exception.");
return;
}
}

Example7Handling system exception COMM_FAILURE

public void run() {
if (m_bank == null) {
System.err.println(
"Cannot proceed bank reference is null.");
return;
}

else {
for (;;) {
System.err.println("");
System.err.println("0 - quit");
System.err.println("1 - create account");
System.err.println("2 - find account");
System.err.println("Selection [0-2] :");

Handling System Exceptions

- 264/599 -

try {
String user_selection = m_input.readLine();
System.out.println(
"You choose [" + user_selection + "]");
if (user_selection.equals("0")) {
return;
}
else {
if (user_selection.equals("1")) {
do_create();
}
else {
if (user_selection.equals("2")) {
do_find();
}
}
}
}
catch (org.omg.CORBA.COMM_FAILURE com) {
System.err.println(
"Communication failure exception"+com);
return;
}

Handling System Exceptions

- 265/599 -

Evaluating System Exceptions
Each system exception has two members that let a client evaluate the status of an invocation:

completed
is set to an integer value that indicates how far the operation or attribute call progressed. You can
obtain this value by calling org.omg.CORBA.CompletionStatus.value() on it.

minor
offers more detail about the particular system exception that was thrown.

Obtaining invocation completion status
Each standard exception includes a completion_status code that takes one of the following integer
values:

catch (org.omg.CORBA.SystemException sys_exc) {
System.err.println(
"System exception in bank menu"+sys_exc);
return;
}
catch (java.io.IOException io_exc) {
System.err.println("IO exception in bank menu");
return;
}
}
}
}

abstract public class SystemException extends
java.lang.RuntimeException {
public int minor;
public CompletionStatus completed;
...
}

Evaluating System Exceptions

- 266/599 -

COMPLETED_NO:
The system exception was thrown before the operation or attribute call began to execute.

COMPLETED_YES:
The system exception was thrown after the operation or attribute call completed execution.

COMPLETED_MAYBE:
It is uncertain whether or not the operation or attribute call started to execute, and if so, whether
execution completed. For example, the status is COMPLETED_MAYBE if a client’s host receives no indication
of success or failure after transmitting a request to a target object on another host.

Evaluating minor codes
minor() returns an IDL unsigned long that offers more detail about the particular system exception
thrown. For example, if a client catches a COMM_FAILURE system exception, it can access the system
exception’s minor field to determine why this occurred

All standard exceptions have an associated minor code that provides more specific information about
the exception in question. Given these minor codes, the ORB is not required to maintain an exhaustive
list of all possible exceptions that might arise at runtime.

Minor exception codes are defined as an unsigned long that contains two components:

20-bit vendor minor code ID (VMCID)

Minor code that occupies the 12 low order bits

All minor codes are based on the vendor minor code ID (IONA_VMCID), which is 0x49540000 . The
space reserved to IONA ends at 0x49540FFF .

The VMCID assigned to OMG standard exceptions is 0x4f4d000 . You can obtain the minor code
value for any exception by OR'ing the VMCID with the minor code for the exception in question. All
minor code definitions are associated with readable strings.

Subsystem minor codes
Orbix defines minor codes within each subsystem. When an exception is thrown, the current subsystem
associates the exception with a valid minor code that maps to a unique error condition. Table 12 lists
Orbix subsystems and base values for their minor codes:

Table 12: Base minor code values for Orbix subsystems

• •

• •

Evaluating System Exceptions

- 267/599 -

Subsystem Logging ID Minor Code ID

IT_ACTIVATOR IT_ACTIVATOR IONA_VMCID +
0xD00

IT_ARM IT_ARM IONA_VMCID +
0xE80

IT_ATLI_IOP *None* IONA_VMCID +
0x440

IT_ATLI_MULTICAST IT_ATLI_MULTICAST IONA_VMCID +
0x980

IT_ATLI_SHM IT_ATLI_SHM IONA_VMCID +
0x880

IT_ATLI_TCP IT_ATLI_TCP IONA_VMCID +
0x480

IT_ATLI2_HTTP IT_ATLI2_HTTP IONA_VMCID +
0x7C0

IT_ATLI2_IOP IT_ATLI2_IOP IONA_VMCID +
0x4C0

IT_ATLI2_IP IT_ATLI2_IP IONA_VMCID +
0x3C0

IT_ATLI2_SHM IT_ATLI2_SHM IONA_VMCID +
0x5C0

IT_ATLI2_ITRP IT_ATLI2_ITRP IONA_VMCID +
0x6C0

IT_ATLI2_SOAP IT_ATLI2_SOAP IONA_VMCID +
0xAC0

IT_ATLI2_TLS IT_ATLI2_TLS IONA_VMCID +
0x7C0

IT_CODESET IT_CODESET IONA_VMCID +
0x280

IT_CONFIG_REP IT_CONFIG_REP IONA_VMCID +
0x140

Evaluating System Exceptions

- 268/599 -

Subsystem Logging ID Minor Code ID

IT_Core IT_CORE IONA_VMCID +
0x100

IT_CPLM IT_CPLM IONA_VMCID +
0xF40

IT_CSI IT_CSI IONA_VMCID +
0xD80

IT_Daemon IT_DAEMON IONA_VMCID +
0xE00

IT_EGMIOP IT_EGMIOP IONA_VMCID +
0xC80

IT_EGMIOP_Component IT_EGMIOP_COMPONENT IONA_VMCID +
0xB80

IT_EVENT IT_EVENT IONA_VMCID +
0x2C0

IT_FPS IT_FPS IONA_VMCID +
0xD40

IT_GIOP IT_GIOP IONA_VMCID +
0x200

IT_GSP IT_GSP IONA_VMCID +
0x1C0

IT_IFR IT_IFR

IT_IIOP IT_IIOP IONA_VMCID +
0x300

IT_IIOP_PROFILE IT_IIOP_PROFILE IONA_VMCID +
0x400

IT_IIOP_TLS IT_IIOP_TLS IONA_VMCID +
0xA40

iPAS subsystems IT_iPAS_* IONA_VMCID +
0x740

Evaluating System Exceptions

- 269/599 -

Subsystem Logging ID Minor Code ID

IT_JAVA_SERVER IT_JAVA_SERVER *None*

IT_JTA IT_JTA IONA_VMCID +
0xE40

IT_KDM IT_KDM IONA_VMCID +
0xC40

IT_LEASE IT_LEASE *None*

IT_LOCATOR IT_LOCATOR IONA_VMCID +
0xB00

IT_ManagementLogging IT_MANAGEMENT_LOGGING IONA_VMCID +
0x8C0

IT_MANAGEMENT_MBEAN_MONI
TORING

IT_MANAGEMENT_MBEAN_MONI
TORING

IONA_VMCID +
0xDC0

IT_MGMT IT_MGMT *None*

IT_MGMT_SVC IT_MGMT_SVC *None*

IT_MVS IT_MVS IONA_VMCID +
0xF80

IT_NAMING IT_NAMING IONA_VMCID +
0xF00

IT_NodeDaemon IT_NODE_DAEMON IONA_VMCID +
0xB40

IT_NOTIFICATION IT_NOTIFICATION IONA_VMCID +
0x840

IT_OPAL IT_OPAL IONA_VMCID +
0xA80

IT_OTS IT_OTS IONA_VMCID +
0x900

IT_OTS_Encina IT_OTS_ENCINA IONA_VMCID +
0x680

Evaluating System Exceptions

- 270/599 -

Subsystem Logging ID Minor Code ID

IT_OTS_Lite IT_OTS_LITE IONA_VMCID +
0xA00

IT_OTS_RRS IT_OTS_RRS IONA_VMCID +
0xBC0

IT_OTS_TM IT_OTS_TM IONA_VMCID +
0x580

IT_POA IT_POA IONA_VMCID +
0x500

IT_POA_LOCATOR IT_POA_LOCATOR IONA_VMCID +
0xC00

IT_PortableInterceptor IT_PORTABLE_INTERCEPTOR IONA_VMCID +
0x540

IT_PSS IT_PSS IONA_VMCID +
0x800

IT_PSS_DB IT_PSS_DB IONA_VMCID +
0x700

IT_PSS_R IT_PSS_R IONA_VMCID +
0x600

IT_Rmi IT_RMI IONA_VMCID +
0xFC0

IT_SCHANNEL IT_SCHANNEL *None*

IT_SHMIOP IT_SHM_IOP IONA_VMCID +
0x780

IT_SOAP IT_SOAP IONA_VMCID +
0x080

IT_SOAP_Profile IT_SOAP_PROFILE IONA_VMCID +
0x180

Evaluating System Exceptions

- 271/599 -

For example, the locator subsystem defines a number of minor codes for the BAD_PARAM standard
exception. These distinguish among the various conditions under which the locator might throw the
BAD_PARAM exception.

Definitions for all subsystem minor codes can be found in the following directory:

OrbixInstallDir /asp/ Version /doc/minor_codes

OMG minor code constants are Orbix-specific mappings to minor codes that are set by the OMG. If
you define minor codes for your own application, make sure that they do not overlap the ranges that
are reserved for Orbix-defined minor codes.

Displaying minor code strings
In order to provide user-readable output for minor codes, Orbix provides helper class
com.iona.corba.util.SystemExceptionDisplayHelper . The following catch statement shows how a program
typically uses this class:

Subsystem Logging ID Minor Code ID

IT_TLS IT_TLS IONA_VMCID +
0x940

Thread/Synch Package IT_TS IONA_VMCID +
0x240

IT_WSDL IT_WSDL IONA_VMCID +
0x380

IT_XA IT_XA IONA_VMCID +
0x640

IT_ZIOP IT_ZIOP IONA_VMCID +
0xCC0

Note

Evaluating System Exceptions

- 272/599 -

This yields output such as the following:

Throwing Exceptions
Client code uses standard Java syntax to initialize and throw both user-defined and system exceptions.

This section modifies BankImpl.create_account() to throw an exception. You can implement
create_account() as follows:

// ...
catch (SystemException ex) {
System.err.println("Caught exception: " +
SystemExceptionDisplayHelper.toString(ex));
}

Caught exception: org.omg.CORBA.INITIALIZE
minor_code:1230242048 completed:No (IT_Core:ERROR_IN_DOMAIN)

Example8Throwing an exception

// create a new account given an id and initial balance
// throw AccountAlreadyExists if account already in database
public Account create_account(
String account_id, float initial_balance)
throws AccountAlreadyExists
{
System.out.println(
"Creating an account with account id of ["
+ account_id + "].");

Throwing Exceptions

- 273/599 -

Throwing System Exceptions
Occasionally, a server program might need to throw a system exception. Specific system exceptions
such as COMM_FAILURE inherit the SystemException constructor:

The following code uses this constructor to throw a COMM_FAILURE exception with minor code
SOCKET_WRITE_FAILED and completion status COMPLETED_NO :

if (!(m_account_db.create_account(account_id,
initial_balance))) {
throw new AccountAlreadyExists();
}
return create_account_ref(account_id);
}

abstract public class
SystemException extends java.lang.RuntimeException {
public int minor;
public CompletionStatus completed;
// constructor
protected SystemException(String reason,
int minor,
CompletionStatus completed) {
super(reason);
this.minor = minor;
this.completed = completed;
}
}
final public class
COMM_FAILURE extends org.omg.CORBA.SystemException {
...
public COMM_FAILURE(
int minor, CompletionStatus completed) { ... }
}

Throwing System Exceptions

- 274/599 -

// initiate a write for the message
//
try {
m_connection.write(
message_buffer, num_bytes_to_write, offset, timeout);
}
catch (Exception ex) {
// write failed
System.out.println("exception occurred during write: " + ex);
// synchronous write failed
//
throw new COMM_FAILURE(
SOCKET_WRITE_FAILED.value, // minor code
CompletionStatus.COMPLETED_NO);
}

Throwing System Exceptions

- 275/599 -

Using Type Codes

Orbix uses type codes to describe IDL types. The IDL pseudo interface CORBA::TypeCode lets you describe and
manipulate type code values.

Type codes are essential for the DII and DSI, to specify argument types. The interface repository also
relies on type codes to describe types in IDL declarations. In general, type codes figure importantly in
any application that handles CORBA::Any data types.

Type Code Components
Type codes are encapsulated in CORBA::TypeCode pseudo objects. Each TypeCode has two components:

kind:
A CORBA::TCKind enumerator that associates the type code with an IDL type. For example, enumerators
tk_short , tk_boolean , and tk_sequence correspond to IDL types short , boolean , and sequence ,
respectively.

description:
One or more parameters that supply information related to the type code’s kind. The number and
contents of parameters varies according to the type code.

The type code description for IDL type fixed<5,3> contains two parameters, which specify the
number of digits and the scale.

The type code description for a string or wstring contains a single parameter that specifies the
string’s bound, if any.

Type codes for primitive types require no description, and so have no parameters associated with
them—for example, tk_short and tk_long .

• •

• •

• •

Using Type Codes

- 276/599 -

TCKind enumerators
The CORBA::TCKind enumeration defines all built-in IDL types:

Most of these are self-explanatory—for example, a type code with a TCKind of tk_boolean describes the
IDL type boolean. Some, however, have no direct association with an IDL type:

tk_alias
describes an IDL type definition such as typedef string .

tk_null
describes an empty value condition. For example, if you construct an Any with the default constructor,
the Any ’s type code is initially set to tk_null .

tk_Principal
is deprecated for applications that are compliant with CORBA 2.3 and later; retained for backward
compatibility with earlier applications that use the BOA.

tk_TypeCode
describes another type code value.

tk_value
describes a value type.

tk_value_box
describes a value box type.

// In module CORBA
enum TCKind {
tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char, tk_octet, tk_any,
tk_TypeCode, tk_Principal, tk_objref, tk_struct, tk_union,
tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
tk_except, tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar,
tk_wstring, tk_fixed, tk_value, tk_value_box, tk_native,
tk_abstract_interface
};

TCKind enumerators

- 277/599 -

tk_void
is used by the interface repository to describe an operation that returns no value.

Table 13 shows type code parameters. The table omits type codes with an empty parameter list.

Table 13: Type Codes and Parameters

1 a.For unbounded sequences, strings, and wstrings, this value is 0

TCKind Parameters

tk_abstract_in
terface

repository-id, name

tk_alias repository-id, name, type-code

tk_array *type-code*, *length...*

tk_enum repository-id, name, { member-name }...

tk_except repository-id, name, { member-name, member-type-
code }...

tk_fixed digits, scale

tk_native repository-id, name

tk_objref repository-id, name

tk_sequence element-type-code, max-lengtha

tk_string tk_
wstring

max-length1

tk_struct repository-id, name, { member-name, member-type-
code }...

tk_union repository-id, name, switch-type-code, default-index,
{ member-label, member-name, member-type-code }...

tk_value repository-id, name, type-modifier, type-code,
{ member-name, member-type-code, visibility }...

tk_value_box repository-id, name, { member-name, member-type-
code} ...

TCKind enumerators

- 278/599 -

Type Code Operations
The CORBA::TypeCode interface provides a number of operations that you can use to evaluate and
compare TypeCode objects. These operations can be divided into two categories:

General type code operations that can be invoked on all TypeCode objects.

Type-specific operations that are associated with TypeCode objects of a specific TCKind , and raise a
BadKind exception if invoked on the wrong type code.

General Type Code Operations
The following operations are valid for all TypeCode objects:

equal(), equivalent()

get_compact_typecode()

kind()

equal(), equivalent()

equal() and equivalent() let you evaluate a type code for equality with the specified type code,
returning true if they are the same:

equal()
requires that the two type codes be identical in their TCKind and all parameters—member names, type
names, repository IDs, and aliases.

equivalent()
resolves an aliased type code (TCKind = tk_alias) to its base, or unaliased type code before it compares
the two type codes’ TCKind parameters. This also applies to aliased type codes of members that are
defined for type codes such as tk_struct .

For both operations, the following parameters are always significant and must be the same to return
true:

Number of members for TCKind s of tk_enum , tk_excep , tk_struct , and tk_union .

• •

• •

• •

• •

• •

boolean equal(in TypeCode tc);
boolean equivalent(in TypeCode tc);

• •

Type Code Operations

- 279/599 -

Digits and scale for tk_fixed type codes.

The value of the bound for type codes that have a bound parameter— tk_array , tk_sequence ,
tk_string and tk_wstring .

Default index for tk_union type codes.

Member labels for tk_union type codes. Union members must also be defined in the same order.

You must use equal() and equivalent() to evaluate a type code. For example, the following code
is illegal:

You can correct this code as follows:

get_compact_typecode()

get_compact_typecode() removes type and member names from a type code. This operation is
generally useful only to applications that must minimize the size of type codes that are sent over
the wire.

kind()

• •

• •

• •

• •

org.omg.CORBA.Any another_any =
org.omg.CORBA.ORB.init().create_any();
another_any.insert_string("Hello world");
org.omg.CORBA.TypeCode tc_string =
org.omg.CORBA.ORB.init().create_string_tc(0);
org.omg.CORBA.TypeCode t = another_any.type();
if (t==tc_string) { ... } // ERROR! Bad code.

org.omg.CORBA.Any another_any =
org.omg.CORBA.ORB.init().create_any();
another_any.insert_string("Hello world");
org.omg.CORBA.TypeCode tc_string =
org.omg.CORBA.ORB.init().create_string_tc(0);
org.omg.CORBA.TypeCode t = another_any.type();
//Test for exact equality
if (t.equal(tc_string)) { ... }
//Test for equality, ignoring aliases
if (t.equivalent(tc_string)) { ... }

TypeCode get_compact_typecode();

General Type Code Operations

- 280/599 -

kind() returns the TCKind of the target type code. You can call kind() on a TypeCode to determine
what other operations can be called for further processing:

Type-Specific Operations
Table 14 shows operations that can be invoked only on certain type codes. In general, each operation
gets information about a specific type-code parameter. If invoked on the wrong type code, these
operations raise an exception of BadKind .

Table 14: Type-Specific Operations

TCKind kind();

org.omg.CORBA.Any another_any = null;
// Create and initialize ’another_any’ (not shown)...
org.omg.CORBA.TypeCode t = another_any.type();
if (t.kind()==org.omg.CORBA.TCKind.tk_short) {
//...
}
else if (t.kind()==org.omg.CORBA.TCKind.tk_long) {
//...
}

TCKind Operations

tk_alias id() name() content_type()

tk_array length() content_type()

tk_enum id() name() member_count() member_name()

tk_except id() name() member_count() member_name() member_type()

tk_fixed fixed_digits() fixed_scale()

tk_native id() name()

tk_objref id() name()

tk_sequence length() content_type()

tk_string tk_
wstring

length()

General Type Code Operations

- 281/599 -

Table 15 briefly describes the information that you can access through type code-specific operations.
For detailed information about these operations, see the CORBA Programmer’s Reference.

Table 15: Information Obtained by Type-Specific Operations

TCKind Operations

tk_struct id() name() member_count() member_name() member_type()

tk_union id() name() member_count() member_name()
member_label() discriminator_type() default_index()

tk_value id() name() member_count() member_name() member_type()
type_modifier() concerte_base_type()
member_visibility()

tk_value_box id() name() member_name()

Operation Returns:

concrete_bas
e_type()

Type code of the concrete base for the target type code; applies only to
value types.

content_type(
)

For aliases, the original type. For sequences and arrays, the specified
member’s type.

default_index
()

Index to a union’s default member. If no default is specified, the operation
returns -1 .

discriminato
r_type()

Type code of the union’s discriminator.

fixed_digits(
)

Number of digits in a fixed-point type code.

fixed_scale() Scale of a fixed-point type code.

id() Type code’s repository ID.

length() Value of the bound for a type code with TCKind of tk_string , tk_ws
tring , tk_sequence , or tk_array .

member_count(
)

Number of members in the type code.

General Type Code Operations

- 282/599 -

Type Codes for Basic Types
The Java mapping provides the get_primitive_tc() method for generating basic type codes:

get_primitive_tc() takes one of the basic TCKind enumerated constants as an argument and returns a
reference to the corresponding basic type code.

For example, the following code obtains a reference to a boolean type code:

Operation Returns:

member_label(
)

An Any value that contains the value of the union case label for the
specified member.

member_name() Name of the specified member. If the supplied index is out of bounds
(greater than the number of members), the function raises the
TypeCode::Bounds exception.

member_type() Type code of the specified member. If the supplied index is out of bounds
(greater than the number of members), the function raises the
TypeCode::Bounds exception.

member_visib
ility()

The Visibility (PRIVATE_MEMBER or PUBLIC_MEMBER) of the
specified member.

name() Type code’s user-assigned unscoped name.

type_modifier
()

Value modifier that applies to the value type that the target type code
represents.

public org.omg.CORBA.TypeCode org.omg.CORBA.ORB.get_primitive_tc(
org.omg.CORBA.TCKind tcKind
);

Type Codes for Basic Types

- 283/599 -

Type Codes for User-Defined Types
For each user-defined type in your IDL, the IDL compiler generates a corresponding
user_defined_typeHelper class. A type code for user_defined_type is returned by the following method:

This method is useful when testing the contents of an any (see page 209).

For example, given the following IDL:

type codes for the user-defined types can be obtained as follows:

import org.omg.CORBA.*;
TypeCode tc_bool = ORB.init().get_primitive_tc(TCKind.tk_boolean);

public static org.omg.CORBA.TypeCode user_defined_typeHelper.type();

interface Interesting {
typedef long longType;
struct Useful
{
longType l;
};
};

import org.omg.CORBA.*;
TypeCode tc_Interesting = InterestingHelper.type();
TypeCode tc_longType = InterestingPackage.longTypeHelper.type();
TypeCode tc_Useful = InterestingPackage.UsefulHelper.type();

Type Codes for User-Defined Types

- 284/599 -

Using the Any Data Type

IDL’s any type lets you specify values that can express any IDL type.

This allows a program to handle values whose types are not known at compile time. The any type is
most often used in code that uses the interface repository or the dynamic invocation interface (DII).

IDL-Java mapping
The IDL any type maps to the Java org.omg.CORBA.Any class. Conceptually, this class contains the
following two instance variables:

type
is a TypeCode object that provides full type information for the value contained in the any . The Any class
provides a type() method to return the TypeCode object.

value
is the internal representation used to store Any values and is accessible via standard insertion and
extraction methods.

For example, the following interface, AnyDemo , contains an operation that defines an any parameter:

Given this interface, a client that calls passSomethingIn() constructs an any that specifies the desired IDL
type and value, and supplies this as an argument to the call. On the server side, the AnyDemo
implementation that processes this call can determine the type of value the any stores and extract its
value.

// IDL
interface AnyDemo {
// Takes in any type that can be specified in IDL
void passSomethingIn (in any any_type_parameter);
// Passes out any type specified in IDL
any getSomethingBack();
...
};

Using the Any Data Type

- 285/599 -

Constructing an Any Object
You must use the ORB class (in package org.omg.CORBA) to construct Any objects. This is illustrated by the
following example:

Inserting Basic Types
The Java class Any contains a number of insertion methods that you can use to insert any of the pre-
defined IDL types into an Any object. The insertion methods for basic types are:

import org.omg.CORBA.*;
Any a = ORB.init().create_any();

Constructing an Any Object

- 286/599 -

Assume that a client programmer wishes to pass an any containing an IDL short as the parameter to
the AnyDemo::passSomethingIn() operation. The following insertion method, which is a member of class
Any , can be used:

The client programmer can then write the following code:

// Class ’org.omg.CORBA.Any’ method signatures
public void insert_short(short s);
public void insert_long(int i);
public void insert_longlong(long l);
public void insert_ushort(short s);
public void insert_ulong(int i);
public void insert_ulonglong(long l);
public void insert_float(float f);
public void insert_double(double d);
public void insert_boolean(boolean b);
public void insert_char(char c);
public void insert_wchar(char c);
public void insert_octet(byte b);
public void insert_any(Any a);
public void insert_Object(Object o);
// throw exception when type code inconsistent with value
public void insert_Object(Object o, TypeCode t)
throws org.omg.CORBA.MARSHAL;
public void insert_string(String s)
throws org.omg.CORBA.DATA_CONVERSION,
org.omg.CORBA.MARSHAL;
public void insert_wstring(String s)
throws org.omg.CORBA.MARSHAL;
public void insert_TypeCode(TypeCode t);
public void insert_fixed(java.math.BigDecimal value);
public void insert_fixed(
java.math.BigDecimal value,
org.omg.CORBA.TypeCode type
)
throws org.omg.CORBA.BAD_INV_ORDER;

public void insert_short(short s);

Inserting Basic Types

- 287/599 -

Inserting User-Defined Types
Helper classes for user-defined types provide insert() methods to support the insertion of user-
defined types into an any . The general form of the signature for insert() is:

user-defined-type is the Java type mapped from the user-defined IDL type.

For example, consider the following Foo struct defined in IDL:

To pass the Foo struct inside an any parameter, the client programmer can write the following:

// Client.java
import org.omg.CORBA.*;
AnyDemo anyDemoObj = null;
Any a = ORB.init().create_any();
short toPass = 26;
try {
anyDemoObj = // initialize the object reference...
a.insert_short(toPass);
anyDemoObj.passSomethingIn(a);
}
catch (SystemException se) {
...
}

public void user-defined-typeHelper.insert(
org.omg.CORBA.Any a,
 user_defined_type value
);

// IDL
struct Foo {
string bar;
float number;
};

Inserting User-Defined Types

- 288/599 -

Type safety
These insertion methods provide a type-safe mechanism for insertion into an any . Both the type and
value of the Any are assigned at insertion. If an attempt is made to insert a value that has no
corresponding IDL type, it results in a compile-time error.

Extracting Basic Types
The Any Java class contains a number of methods for extracting pre-defined IDL types from an Any
object. These extraction methods are named extract_long() , extract_ulong() , extract_float() , and so
on. Each extraction method simply returns a value of the appropriate type.

For example, the signature of the method to extract an IDL short from an any is:

Example1Inserting a short into an Any

// Client.java,
import org.omg.CORBA.*;
AnyDemo anyDemoObj = null;
Any a = ORB.init().create_any();

// Initialize the ’Foo’ struct
Foo toPass = new Foo();
toPass.bar = "Bar";
toPass.number = (float) 34.5;

try {
anyDemoObj = // initialize the object reference...
FooHelper.insert(a, toPass);
anyDemoObj.passSomethingIn(a);
}
catch (SystemException se) {
...
}

Type safety

- 289/599 -

The BAD_OPERATION system exception is thrown if the type inside the any does not match the type you are
trying to extract.

You can extract a basic type from an any as follows:

Before extracting the value from an any , you must check its type code with org.omg.CORBA.Any.type() .
For basic types, it is enough to check the kind() field of the type code.

// Defined in class ’org.omg.CORBA.Any’
public short extract_short()
throws org.omg.CORBA.BAD_OPERATION;

Example2Extracting a basic type from an Any

// Client.java
import org.omg.CORBA.*;
AnyDemo anyDemoObj = null;
Any a;
short toReceive;

try {
anyDemoObj = // initialize the object reference...
a = anyDemoObj.getSomethingBack();
// extract a short value
if ((a.type()).kind() == TCKind.tk_short) {
toReceive = a.extract_short();
}
}

catch (org.omg.CORBA.BAD_OPERATION bo) {
...
}
catch (SystemException se) {
...
}

Extracting Basic Types

- 290/599 -

Extracting User-Defined Types
User-defined type helper classes provide extract() methods, which support the extraction of user-
defined types from an any . The general form of the signature for extract() is:

user_defined_type is the Java type mapped from the user-defined IDL type. The BAD_OPERATION system
exception is thrown if the type inside the any does not match the type you are trying to extract.

For example, consider the following LongSeq sequence defined in IDL:

To extract the LongSeq sequence from an any parameter, you can write the following:

public user_defined_type user_defined_typeHelper.extract(
org.omg.CORBA.Any a
)
throws org.omg.CORBA.BAD_OPERATION;

// IDL
typedef sequence<long, 10> LongSeq;

Example3Extracting a user-defined type from an Any

// Client.java
AnyDemo anyDemoObj = null;
org.omg.CORBA.Any a;
long[] toReceive;

try {
anyDemoObj = // initialize the object reference...
a = anyDemoObj.getSomethingBack();
// extract a sequence of longs
if ((a.type()).equal(LongSeqHelper.type())) {
toReceive = LongSeqHelper.extract(a);
}
}

Extracting User-Defined Types

- 291/599 -

Orbix does not destroy the value of an any after extraction. You can therefore extract the value of an
any more than once.

Inserting and Extracting Bounded String Aliases
Bounded strings are usually given an alias using an IDL typedef declaration. For example, consider the
following definition of the BoundedString IDL type:

Inserting a bounded string
When the IDL is compiled, a BoundedStringHelper class is generated. You can insert a bounded string of
BoundedString type into an any using the standard approach for user-defined types. For example:

catch (org.omg.CORBA.BAD_OPERATION bo) {
...
}
catch (SystemException se) {
...
}

//IDL
typedef string<128> BoundedString;

Inserting and Extracting Bounded String Aliases

- 292/599 -

Extracting a bounded string
Extraction is performed in a similar way to other user-defined types. To extract the bounded string
alias, you can use the extract() method of the BoundedStringHelper class. For example:

Extracting Object References
You can use two methods to extract object references from an any :

extract() is defined on the associated Helper class.

extract_Object() is defined on the Any class.

The examples in the following sections use the following two IDL interfaces, BaseIntf and
DerivedIntf :

extract()

DerivedIntfHelper.extract() is used to extract an object reference when the most derived type of
the object is DerivedIntf . It follows the usual pattern for extracting user-defined types. For
example:

import org.omg.CORBA.*;
Any a = ORB.init().create_any();
//...
BoundedStringHelper.insert(a, "Less than 128 characters.");

import org.omg.CORBA.*;
Any a = ORB.init().create_any();
//...
if ((a.type()).equal(BoundedStringHelper.type())) {
String s = BoundedStringHelper.extract(a);
}

• •

• •

//IDL
interface BaseIntf { };
interface DerivedIntf : BaseIntf { };

Extracting a bounded string

- 293/599 -

extract_Object()

Any.extract_Object() is useful when you need to perform a polymorphic extraction from an any —
that is, the any contains a derived object reference type and you want to extract it as a base type.

The following example extracts a DerivedIntf object reference as a BaseIntf object reference:

Example1Extracting an object reference

AnyDemo anyDemoObj = null;
org.omg.CORBA.Any a;
DerivedIntf toReceive = null;

try {
anyDemoObj = // initialize the object reference...
// ’a’ contains a ’DerivedIntf’ object reference
a = anyDemoObj.getSomethingBack();
// extract a ’DerivedIntf’ object reference
if ((a.type()).kind()==org.omg.CORBA.TCKind.tk_objref) {
toReceive = DerivedIntfHelper.extract(a);
}
}

catch (org.omg.CORBA.BAD_OPERATION bo) {
...
}
catch (SystemException se) {
...
}

Example1Extracting a derived object reference type

// Client.java
AnyDemo anyDemoObj = null;
org.omg.CORBA.Any a;
BaseIntf toReceive = null;

Extracting Object References

- 294/599 -

The any is extracted to obj of type CORBA.Object using Any.extract_Object() . The obj object
reference is then narrowed to type BaseInt .

The remote DerivedIntf object can now be invoked on polymorphically, using the object reference
of BaseIntf type.

Any as a Parameter or Return Value
The mapping for IDL any operation parameters and return values are illustrated by the following IDL
operation:

This IDL operation maps to the following Java method:

try {
org.omg.CORBA.Object obj;
anyDemoObj = // initialize the object reference...
// ’a’ contains a ’DerivedIntf’ object reference
a = anyDemoObj.getSomethingBack();
// extract a ’DerivedIntf’ object reference as a ’BaseIntf’
if ((a.type()).kind()==org.omg.CORBA.TCKind.tk_objref) {
obj = a.extract_Object();
toReceive = BaseIntfHelper.narrow(obj);
}
}

catch (org.omg.CORBA.BAD_OPERATION bo) {
...
}
catch (SystemException se) {
...
}

// IDL
any op1 (in any a1, out any a2, inout any a3);

Any as a Parameter or Return Value

- 295/599 -

Both inout and out parameters map to type AnyHolder as explained in Holder Class Types.

Using DynAny Objects
The DynAny interface allows applications to compose and decompose any type values dynamically. With
DynAny , you can compose a value at runtime whose type was unknown when the application was
compiled, and transmit that value as an any . Conversely, an application can receive a value of type any
from an operation, and interpret its type and extract its value without compile-time knowledge of its IDL
type.

Interface hierarchy
The DynAny API consists of nine interfaces. One of these, interface DynAnyFactory , lets you create DynAny
objects. The rest of the DynAny API consists of the DynAny interface itself and derived interfaces, as
shown in Figure 22.

Figure 22 Interfaces that derive from the DynAny interface

The derived interfaces correspond to complex, or constructed IDL types such as array and struct . Each
of these interfaces contains operations that are specific to the applicable type.

The DynAny interface contains a number of operations that apply to all DynAny objects; it also contains
operations that apply to basic IDL types such as long and string .

The DynStruct interface is used for both IDL struct and exception types.

import org.omg.CORBA.Any;
import org.omg.CORBA.AnyHolder;
public Any op1 (Any a1, AnyHolder a2, AnyHolder a3);

Using DynAny Objects

- 296/599 -

Generic operations
The DynAny interface contains a number of operations that can be invoked on any basic or constructed
DynAny object:

assign()
initializes one DynAny object’s value from another. The value must be compatible with the target DynAny ’s
type code; otherwise, the operation raises an exception of TypeMismatch .

copy()
creates a DynAny whose value is a deep copy of the source DynAny ’s value.

destroy()
destroys a DynAny and its components.

equal()
returns true if the type codes of the two DynAny objects are equivalent and if (recursively) all component
DynAny objects have identical values.

from_any()
initializes a DynAny object from an existing any object. The source any must contain a value and its type
code must be compatible with that of the target DynAny ; otherwise, the operation raises an exception of
TypeMismatch .

interface DynAny {
exception InvalidValue{};
exception TypeMisMatch {};
// ...
void assign(in DynAny dyn_any) raises (TypeMismatch);
DynAny copy();
void destroy();
boolean equal(in DynAny da);
void from_any(
in any value) raises(TypeMismatch, InvalidValue);
any to_any();
CORBA::TypeCode type();
// ...
};

Generic operations

- 297/599 -

to_any()
initializes an any with the DynAny ’s value and type code.

type()
obtains the type code associated with the DynAny object. A DynAny object’s type code is set at the time of
creation and remains constant during the object’s lifetime.

Creating a DynAny
The DynAnyFactory interface provides two creation operations for DynAny objects:

Create operations
The create operations return a DynAny object that can be used to manipulate any objects:

create_dyn_any()
is a generic create operation that creates a DynAny from an existing any and initializes it from the any ’s
type code and value.

The type of the returned DynAny object depends on the any ’s type code. For example: if the any
contains a struct, create_dyn_any() returns a DynStruct object.

module DynamicAny {
interface DynAny; // Forward declaration
//...
interface DynAnyFactory
{
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises (InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises (InconsistentTypeCode);
};
};

Creating a DynAny

- 298/599 -

create_dyn_any_from_type_code()
creates a DynAny from a type code. The value of the DynAny is initialized to an appropriate default value
for the given type code. For example, if the DynAny is initialized from a string type code, the value of the
DynAny is initialized to "" (empty string).

Returned types
The type of the returned DynAny object depends on the type code used to initialize it. For example: if a
struct type code is passed to create_dyn_any_from_type_code() , a DynStruct object is returned.

If the returned DynAny type is one of the constructed types, such as a DynStruct , you can narrow the
returned DynAny before processing it further.

create_dyn_any()
create_dyn_any() is typically used when you need to parse an any to analyze its contents. For example,
given an any that contains an enum type, you can extract its contents as follows:

Example2Creating a DynAny

//Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
public void get_any_val(org.omg.CORBA.Any a) {
org.omg.DynamicAny.DynAnyFactory dyn_fact = null;

// Get a reference to a ’DynamicAny::DynAnyFactory’
object
try {

[1]
(#create_dyn_any)

org.omg.CORBA.Object obj
= orb.resolve_initial_references("DynAnyFactory");
dyn_fact
=
org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);
// Get the Any’s type code
org.omg.CORBA.TypeCode tc = a.type();
if (tc.kind()==TCKind.tk_enum) {

Returned types

- 299/599 -

The code executes as follows:

To obtain an initial reference to the DynAnyFactory object, call
resolve_initial_references("DynAnyFactory") .

The orb refers to an existing ORB object that has been initialized prior to this code fragment.

The plain org.omg.CORBA.Object object reference must be narrowed to the DynAnyFactory type before it
is used.

The DynAny created in this step is initialized with the same type and value as the given CORBA.Any data
type.

Because the any argument of create_dyn_any() contains an enum , the return type of create_dyn_any()
is a DynEnum . The return value can therefore be narrowed to this type.

destroy() must be invoked on the DynAny object when you are finished with it.

[2]
(#create_dyn_any)

org.omg.DynamicAny.DynAny da
= dyn_fact.create_dyn_any(a);
org.omg.DynamicAny.DynEnum de
= org.omg.DynamicAny.DynEnumHelper.narrow(da);
// ...

[3]
(#create_dyn_any)

de.destroy();
}
else if (tc.kind()== ...) {
//...
}
}
catch (SystemException se) {
// error: handle exception
}
catch (Exception ex) {
// error: handle exception
}
}

1. 1.

2. 2.

3. 3.

create_dyn_any()

- 300/599 -

create_dyn_any_from_type_code()
create_dyn_any_from_type_code() is typically used to create an any when stub code is not available for the
particular type.

For example, consider the IDL string<128> bounded string type. In Java there is no Helper type available
to insert this anonymous bounded string type. You can create an any containing this type as follows:

Example3Inserting an anonymous bounded string.

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
org.omg.DynamicAny.DynAnyFactory dyn_fact =
null;
// Get a reference to a
’DynamicAny::DynAnyFactory’ object
try {

[1]
(#create_dyn_any_from_type_
code)

org.omg.CORBA.Object obj
=
orb.resolve_initial_references("DynAnyFacto
ry");
dyn_fact
=
org.omg.DynamicAny.DynAnyFactoryHelper.narr
ow(obj);
// Create type code for an anonymous bounded
string type
int bound = 128;

[2]
(#create_dyn_any_from_type_
code)

TypeCode tc_v =
orb.create_string_tc(bound);
// Initialize a ’DynAny’ containing a
bounded string

[3]
(#create_dyn_any_from_type_
code)

org.omg.DynamicAny.DynAny dyn_bounded_str
=
dyn_fact.create_dyn_any_from_type_code(tc_v)
;

create_dyn_any_from_type_code()

- 301/599 -

The code can be explained as follows:

The initialization service gets an initial reference to the DynAnyFactory object by calling
resolve_initial_references("DynAnyFactory") .

The orb refers to an existing ORB object that has been initialized prior to this code fragment.

The plain org.omg.CORBA.Object object reference must be narrowed to the DynAnyFactory type before it
is used.

The ORB class supports a complete set of functions for the dynamic creation of type codes. For
example, create_string_tc() creates bounded or unbounded string type codes. The argument of
create_string_tc() can be non-zero, to specify the bound of a bounded string, or zero, for unbounded
strings.

A DynAny object, called dyn_bounded_str , is created using create_dyn_any_from_type_code() .
dyn_bounded_str is initialized with its type equal to the given bounded string type code, and its value
equal to a blank string.

The value of dyn_bounded_str is set to the given argument of insert_string() . Insertion operations of
the form insert_BasicType are defined for all basic types, as described in Accessing basic DynAny
values.

The dyn_bounded_str object is converted to a plain any that is initialized with the same type and value
as the DynAny .

destroy() must be invoked on the DynAny object when you are finished with it.

[4]
(#create_dyn_any_from_type_
code)

dyn_bounded_str.insert_string("Less than 128
characters.");
// Convert ’DynAny’ to a plain ’any’

[5]
(#create_dyn_any_from_type_
code)

org.omg.CORBA.Any a =
dyn_bounded_str.to_any();
//...
// Cleanup ’DynAny’

[6]
(#create_dyn_any_from_type_
code)

dyn_bounded_str.destroy();
}
catch (SystemException se) {
// error: handle exception
}
catch (Exception ex) {
// error: handle exception
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

create_dyn_any_from_type_code()

- 302/599 -

A DynAny object’s type code is established at its creation and cannot be changed thereafter.

Inserting and Extracting DynAny Values
The interfaces that derive from DynAny such as DynArray and DynStruct handle insertion and extraction
of any values for the corresponding IDL types. The DynAny interface contains insertion and extraction
operations for all other basic IDL types such as string and long .

Accessing basic DynAny values
The DynAny interface contains two operations for each basic type code, to insert and extract basic
DynAny values:+

An insert operation is used to set the value of the DynAny . The data being inserted must match
the DynAny ’s type code.

The TypeMismatch exception is raised if the value to insert does not match the DynAny ’s type code.

The InvalidValue exception is raised if the value to insert is unacceptable—for example,
attempting to insert a bounded string that is longer than the acceptable bound. The InvalidValue
exception is also raised if you attempt to insert a value into a DynAny that has components when
the current position is equal to -1 . See Iterating Over DynAny Components.

Each extraction operation returns the corresponding IDL type.

The DynamicAny::DynAny::TypeMismatch exception is raised if the value to extract does not match the
DynAny ’s type code.

The DynamicAny::DynAny::InvalidValue exception is raised if you attempt to extract a value from a
DynAny that has components when the current position is equal to -1 . See Iterating Over DynAny
Components.

It is generally unnecessary to use a DynAny object in order to access any values, as it is always possible
to access these values directly (see page 210 and see page 212). Insertion and extraction operations for
basic DynAny types are typically used in code that iterates over components of a constructed DynAny , in
order to compose and decompose its values in a uniform way (Accessing Constructed DynAny Values).

The IDL for insertion and extraction operations is shown in the following sections.

Note

• •

• •

Inserting and Extracting DynAny Values

- 303/599 -

Insertion Operations
The DynAny interface supports the following insertion operations:

Insertion Operations

- 304/599 -

For example, the following code fragment invokes insert_string() on a DynAny to create an any value
that contains a string:

void insert_boolean(in boolean value)
raises (TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises (TypeMismatch, InvalidValue);
void insert_char(in char value)
raises (TypeMismatch, InvalidValue);
void insert_short(in short value)
raises (TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises (TypeMismatch, InvalidValue);
void insert_long(in long value)
raises (TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
raises (TypeMismatch, InvalidValue);
void insert_float(in float value)
raises (TypeMismatch, InvalidValue);
void insert_double(in double value)
raises (TypeMismatch, InvalidValue);
void insert_string(in string value)
raises (TypeMismatch, InvalidValue);
void insert_reference(in Object value)
raises (TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
raises (TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
raises (TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
raises (TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
raises (TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
raises (TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
raises (TypeMismatch, InvalidValue);
void insert_any(in any value)
raises (TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
raises (TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
raises (TypeMismatch, InvalidValue);

Insertion Operations

- 305/599 -

Example4Creating an any with insert_string()

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
org.omg.DynamicAny.DynAnyFactory dyn_fact = null;
try {
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
org.omg.CORBA.Object obj
= orb.resolve_initial_references("DynAnyFactory");
dyn_fact
= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);

// create DynAny with a string value
org.omg.DynamicAny.DynAny dyn_a;
dyn_a = dyn_fact.create_dyn_any_from_type_code(
orb.get_primitive_tc(TCKind.tk_string));
dyn_a.insert_string("not to worry!");

Insertion Operations

- 306/599 -

Extraction Operations
The IDL extraction operations supported by the DynAny interface are:

// convert DynAny to any
org.omg.CORBA.Any a = dyn_a.to_any();
//...
// destroy the DynAny
dyn_a.destroy();
}
catch (SystemException se) {
// error: handle exception
}
catch (Exception ex) {
// error: handle exception
}

Extraction Operations

- 307/599 -

For example, the following code converts a basic any to a DynAny . It then evaluates the DynAny ’s type
code in a switch statement and calls the appropriate get_ operation to obtain its value:

boolean get_boolean()
raises (TypeMismatch, InvalidValue);
octet get_octet()
raises (TypeMismatch, InvalidValue);
char get_char()
raises (TypeMismatch, InvalidValue);
short get_short()
raises (TypeMismatch, InvalidValue);
unsigned short get_ushort()
raises (TypeMismatch, InvalidValue);
long get_long()
raises (TypeMismatch, InvalidValue);
unsigned long get_ulong()
raises (TypeMismatch, InvalidValue);
float get_float()
raises (TypeMismatch, InvalidValue);
double get_double()
raises (TypeMismatch, InvalidValue);
string get_string()
raises (TypeMismatch, InvalidValue);
Object get_reference()
raises (TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
raises (TypeMismatch, InvalidValue);
long long get_longlong()
raises (TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises (InvalidValue,TypeMismatch);
long double get_longdouble()
raises (TypeMismatch, InvalidValue);
wchar get_wchar()
raises (TypeMismatch, InvalidValue);
wstring get_wstring()
raises (TypeMismatch, InvalidValue);
any get_any()
raises (TypeMismatch, InvalidValue);
DynAny get_dyn_any()
raises (TypeMismatch, InvalidValue);
ValueBase get_val()
raises (TypeMismatch, InvalidValue);

Extraction Operations

- 308/599 -

Example5Converting a basic any to a DynAny.

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
org.omg.DynamicAny.DynAnyFactory dyn_fact = null;
try {
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
org.omg.CORBA.Object obj
= orb.resolve_initial_references("DynAnyFactory");
dyn_fact
= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);
org.omg.CORBA.Any a = ...; // get Any from somewhere

// create DynAny from Any
org.omg.DynamicAny.DynAny dyn_a = dyn_fact.create_dyn_any(a);
// get DynAny’s type code
TypeCode tcode = dyn_a.type();

// evaluate type code
if (tcode.kind()==TCKind.tk_short)
{
short s = dyn_a.get_short();
System.out.println("any contains short value of " + s);
}
else if (tcode.kind()==TCKind.tk_long)
{
int l = dyn_a.get_long();
System.out.println("any contains long value of " + l);
}
// other cases follow
//...

Extraction Operations

- 309/599 -

Iterating Over DynAny Components
Five types of DynAny objects contain components that must be accessed to insert or extract values:
DynStruct , DynSequence , DynArray , DynUnion , and DynValue . On creation, a DynAny object holds a current
position equal to the offset of its first component. The DynAny interface has five operations that let you
manipulate the current position to iterate over the components of a complex DynAny object:

component_count()
returns the number of components of a DynAny . For simple types such as long , and for enumerated and
fixed-point types, this operation returns 0 . For other types, it returns as follows:

sequence : number of elements in the sequence.

struct , exception and valuetype : number of members.

array : number of elements.

union : 2 if a member is active; otherwise 1.

dyn_a.destroy();
}
catch (SystemException se) {
// error: handle exception
}
catch (Exception ex) {
// error: handle exception
}

module DynamicAny {
//...
interface DynAny{
// ...
// Iteration operations
unsigned long component_count();
DynAny current_component() raises (TypeMismatch);
boolean seek(in long index);
boolean next();
void rewind();
};
};

• •

• •

• •

• •

Iterating Over DynAny Components

- 310/599 -

current_component()
returns the DynAny for the current component:

You can access each of the DynAny ’s components by invoking this operation in alternation with the
next() operation. An invocation of current_component() alone does not advance the current position.

If an invocation of current_component() returns a derived type of DynAny , for example, DynStruct , you can
narrow the DynAny to this type.

If you call current_component() on a type that has no components, such as a long , it raises the
TypeMismatch exception.

If you call current_component() when the current position of the DynAny is -1 , it returns a nil object
reference.

next()
advances the DynAny ’s current position to the next component, if there is one

:

The operation returns true if another component is available; otherwise, it returns false. Thus, invoking
next() on a DynAny that represents a basic type always returns false.

seek()
advances the current position to the specified component:

Like next() , this operation returns true if the specified component is available; otherwise, it returns
false.

rewind()
resets the current position to the DynAny object’s first component:

DynAny current_component()

boolean next();

boolean seek (in long index);

Iterating Over DynAny Components

- 311/599 -

It is equivalent to calling seek() with a zero argument.

Undefined current position
In some circumstances the current position can be undefined. For example, if a DynSequence object
contains a zero length sequence, both the current component and the value of the DynAny ’s current
position are undefined.

The special value -1 is used to represent an undefined current position.

When the current position is -1 , an invocation of current_component() yields a nil object reference.

The current position becomes undefined (equal to -1) under the following circumstances:

When the DynAny object has no components.

For example, a DynAny containing a zero-length sequence or array would have no components.

Immediately after next() returns false.

If seek() is called with a negative integer argument, or with a positive integer argument greater
than the largest valid index.

Implicit Iteration

If invoked on a complex DynAny object such as a DynStruct or DynEnum , the basic insert_ and get_
operations get the current component in the target DynAny and implicitly advance the pointer to the
next component. For example, given that dyn_s points to a DynStruct object, the following statement
extracts the boolean value from ds ’s current component, and advances the pointer to the next
component:

This is equivalent to the following code:

void rewind();

• •

• •

• •

boolean result = dyn_s->get_boolean();

Iterating Over DynAny Components

- 312/599 -

Accessing Constructed DynAny Values
Each interface that derives from DynAny , such as DynArray and DynStruct , contains its own operations
which enable access to values of the following DynAny types:

DynEnum

DynStruct

DynUnion

DynSequence and DynArray

DynFixed

DynValue

DynValueBox

DynEnum
The DynEnum interface enables access to enumerated any values:

The DynEnum interface defines the following operations:

get_as_string() and set_as_string()
let you access an enumerated value by its IDL string identifier or its ordinal value. For example, given
this enumeration:

DynamicAny::DynAny_var cur_component = dyn_s->current_component();
boolean result = cur_component->get_boolean();
dyn_s->next();

• •

• •

• •

• •

• •

• •

• •

module DynamicAny {
//...
interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string val) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long val)
raises(InvalidValue);
};
};

Accessing Constructed DynAny Values

- 313/599 -

set_as_string("NASD") sets the enum ’s value as NASD , while you can get its current string value by calling
get_as_string() .

get_as_ulong() and set_as_ulong()
provide access to an enumerated value by its ordinal value.

The following code uses a DynEnum to decompose an any value that contains an enumeration:

enum Exchange{ NYSE, NASD, AMEX, CHGO, DAX, FTSE };

Example1Using DynEnum

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
public void extract_any(org.omg.CORBA.Any a){
org.omg.DynamicAny.DynAnyFactory dyn_fact = null;
try {
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
org.omg.CORBA.Object obj
= orb.resolve_initial_references("DynAnyFactory");
dyn_fact
= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);
org.omg.DynamicAny.DynAny dyn_a
= dyn_fact.create_dyn_any(a);
TypeCode tcode = dyn_a.type();

if (tcode.kind()==TCKind.tk_enum)
{
org.omg.DynamicAny.DynEnum dyn_e
= org.omg.DynamicAny.DynEnumHelper.narrow(dyn_a);
String s = dyn_e.get_as_string();
System.out.println(s);
dyn_e.destroy();
}
// other cases follow
// ...
}

Accessing Constructed DynAny Values

- 314/599 -

DynStruct
The DynStruct interface is used for struct and exception types. The interface is defined as follows:

The DynStruct interface defines the following operations:

catch (SystemException se) {
// error: handle exception
}
catch (Exception ex) {
// error: handle exception
}
}

module DynamicAny {
// ...
typedef string FieldName;
struct NameValuePair{
FieldName id;
any value;
};
typedef sequence<NameValuePair> NameValuePairSeq;
struct NameDynAnyPair {
FieldName id;
DynAny value;
};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;
interface DynStruct : DynAny{
FieldName current_member_name()
raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members (in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(
in NameDynAnyPairSeq value
) raises(TypeMismatch, InvalidValue);
};
};

Accessing Constructed DynAny Values

- 315/599 -

set_members() and get_members() are used to get and set member values in a DynStruct . Members
are defined as a NameValuePairSeq sequence of name-value pairs, where each name-value pair
consists of the member’s name as a string, and an any that contains its value.

current_member_name() returns the name of the member at the current position, as established by
DynAny base interface operations. Because member names are optional in type codes,
current_member_name() might return an empty string.

current_member_kind() returns the TCKind value of the current DynStruct member’s type code.

get_members_as_dyn_any() and set_members_as_dyn_any() are functionally equivalent to get_members()
and set_members() , respectively. They operate on sequences of name- DynAny pairs. Use these
operations if you work extensively with DynStruct objects; doing so allows you to avoid converting
a constructed DynAny into an any before using the operations to get or set struct members.

The following code iterates over members in a DynStruct and passes each member over to
eval_member() for further decomposition:

DynUnion
The DynUnion interface enables access to any values of union type:

• •

• •

• •

• •

Example2Using a DynStruct

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
org.omg.DynamicAny.DynStruct dyn_s = ...;
TypeCode tcode = dyn_s.type();
CORBA::ULong counter = tcode.member_count();

for (CORBA::ULong i = 0; i < counter; i++) {
org.omg.DynamicAny.DynAny member = dyn_s.current_component();
eval_member(member);
dyn_s.next();
}

Accessing Constructed DynAny Values

- 316/599 -

The DynUnion interface defines the following operations:

get_discriminator()
returns the current discriminator value of the DynUnion .

set_discriminator()
sets the discriminator of the DynUnion to the specified value. If the type code of the parameter is not
equivalent to the type code of the union’s discriminator, the operation raises TypeMismatch .

set_to_default_member()
sets the discriminator to a value that is consistent with the value of the default case of a union; it sets
the current position to zero and causes component_count to return 2. Calling set_to_default_member() on a
union that does not have an explicit default case raises TypeMismatch .

set_to_no_active_member()
sets the discriminator to a value that does not correspond to any of the union’s case labels; it sets the
current position to zero and causes component_count to return 1. Calling set_to_no_active_member() on a
union that has an explicit default case or on a union that uses the entire range of discriminator values
for explicit case labels raises TypeMismatch .

has_no_active_member()
returns true if the union has no active member (that is, the union’s value consists solely of its
discriminator, because the discriminator has a value that is not listed as an explicit case label). Calling
this operation on a union that has a default case returns false. Calling this operation on a union that
uses the entire range of discriminator values for explicit case labels returns false.

module DynamicAny {
//...
typedef string FieldName;
interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member() raises(InvalidValue);
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);
};
};

Accessing Constructed DynAny Values

- 317/599 -

discriminator_kind()
returns the TCKind value of the discriminator’s TypeCode .

member()
returns the currently active member. If the union has no active member, the operation raises
InvalidValue . Note that the returned reference remains valid only as long as the currently active
member does not change. Using the returned reference beyond the life time of the currently active
member raises OBJECT_NOT_EXIST .

member_name()
returns the name of the currently active member. If the union’s type codedoes not contain a member
name for the currently active member, the operation returns an empty string. Calling member_name() on a
union that does not have an active member raises InvalidValue .

member_kind()
returns the TCKind value of the currently active member’s TypeCode . Calling this operation on a union
that does not have a currently active member raises InvalidValue .

DynSequence and DynArray
The interfaces for DynSequence and DynArray are virtually identical:

Accessing Constructed DynAny Values

- 318/599 -

You can get and set element values in a DynSequence or DynArray with operations get_elements() and
set_elements() , respectively. Members are defined as an AnySeq sequence of any objects.

Operations get_elements_as_dyn_any() and set_elements_as_dyn_any() are functionally equivalent to
get_elements() and set_elements() ; unlike their counterparts, they return and accept sequences of
DynAny elements.

DynSequence has two of its own operations:

get_length()
returns the number of elements in the sequence.

set_length()
sets the number of elements in the sequence.

If you increase the length of a sequence, new elements are appended to the sequence and default-
initialized. If the sequence’s current position is undefined (equal to -1), increasing the sequence length
sets the current position to the first of the new elements. Otherwise, the current position is not
affected.

If you decrease the length of a sequence, set_length() removes the elements from its end.

module DynamicAny {
//...
typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;
interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises (TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises (TypeMismatch, InvalidValue);
};
interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)
raises(InvalidValue);
// remaining operations same as for DynArray
// ...
};
};

Accessing Constructed DynAny Values

- 319/599 -

You can access elements with the iteration operations described in Iterating Over DynAny Components.
For example, the following code iterates over elements in a DynArray :

DynFixed
The DynFixed interface lets you manipulate an any that contains fixed-point values.

The DynFixed interface defines the following operations:

get_value()
returns the value of a DynFixed as a string.

set_value()
sets the value of a DynFixed . If val is an uninitialized string or contains a fixed point literal that exceeds
the scale of DynFixed , the InvalidValue exception is raised. If val is not a valid fixed point literal, the
TypeMismatch exception is raised.

//Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
//...
org.omg.DynamicAny.DynArray dyn_array = ...;
TypeCode tcode = dyn_array.type();
CORBA::ULong counter = tcode.length();
for (CORBA::ULong i = 0; i < counter; i++) {
org.omg.DynamicAny.DynAny elem
= dyn_array.current_component();
eval_member(member);
dyn_array.next();
}

interface DynAny{
...
interface DynFixed : DynAny{
string get_value();
void set_value(in string val)
raises (TypeMismatch, InvalidValue);
};
};

Accessing Constructed DynAny Values

- 320/599 -

DynValue
The DynValue interface lets you manipulate an any that contains a value type (excluding boxed value
types):

The DynValue interface defines the following operations:

current_member_name()
returns the name of the value type member indexed by the current position.

current_member_kind()
returns the type code kind for the value type member indexed by the current position.

module DynamicAny {
//...
typedef string FieldName;
struct NameValuePair
{
FieldName id;
any value;
};
typedef sequence<NameValuePair> NameValuePairSeq;
struct NameDynAnyPair
{
FieldName id;
DynAny value;
};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;
interface DynValue : DynAny
{
FieldName current_member_name()
raises (TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()
raises (TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq values)
raises (TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises (TypeMismatch, InvalidValue);
};
};

Accessing Constructed DynAny Values

- 321/599 -

get_members()
returns the complete list of value type members in the form of a NameValuePairSeq .

set_members()
sets the contents of the value type members using a NameValuePairSeq .

get_members_as_dyn_any()
is similar to get_members() , except that the result is returned in the form of a NameDynAnyPairSeq .

set_members_as_dyn_any()
is similar to set_members() , except that the contents are set using a NameDynAnyPairSeq .

DynValueBox
The DynValueBox interface lets you manipulate an any that contains a boxed value type:

The DynValue interface defines the following operations:

get_boxed_value()
returns the boxed value as an any .

set_boxed_value()
sets the boxed value as an any .

get_boxed_value_as_dyn_any()
returns the boxed value as a DynAny .

module DynamicAny {
//...
interface DynValueBox : DynAny
{
any get_boxed_value();
void set_boxed_value(in any val)
raises (TypeMismatch);
DynAny get_boxed_value_as_dyn_any();
void set_boxed_value_as_dyn_any(in DynAny val)
raises (TypeMismatch);
};
};

Accessing Constructed DynAny Values

- 322/599 -

set_boxed_value_as_dyn_any()
sets the boxed value as a DynAny .

Accessing Constructed DynAny Values

- 323/599 -

Generating Interfaces at Runtime

The dynamic invocation interface lets a client invoke on objects whose interfaces are known only at runtime;
similarly, the dynamic skeleton interface lets a server process requests on objects whose interfaces are known
only at runtime.

An application’s IDL usually describes interfaces to all the CORBA objects that it requires at runtime.
Accordingly, the IDL compiler generates the stub and skeleton code that clients and servers need in
order to issue and process requests. The client can issue requests only on those objects whose
interfaces are known when the client program is compiled; similarly, the server can process requests
only on those objects that are known when the server program is compiled.

Some applications cannot know ahead of time which objects might be required at runtime. In this case,
Orbix provides two interfaces that let you construct stub and skeleton code at runtime, so clients and
servers can issue and process requests on those objects:

The dynamic invocation interface (DII) builds stub code for a client so it can call operations on IDL
interfaces that were unknown at compile time.

The dynamic skeleton interface (DSI) builds skeleton code for a server, so it can receive operation or
attribute invocations on an object whose IDL interface is unknown at compile time.

Using the DII
Some application programs and tools must be able to invoke on objects whose interfaces cannot be
determined ahead of time—for example, browsers, gateways, management support tools, and
distributed debuggers.

With DII, invocations can be constructed at runtime by specifying the target object reference, the
operation or attribute name, and the parameters to pass. A server that receives a dynamically
constructed invocation request does not differentiate between it and static requests.

• •

• •

Generating Interfaces at Runtime

- 324/599 -

Clients that use DII
Two types of client programs commonly use the DII:

A client interacts with the interface repository to determine a target object’s interface, including
the name and parameters of one or all of its operations, then uses this information to construct
DII requests.

A client, such as a gateway, receives the details of a request. In the case of a gateway, the request
details might arrive as part of a network package. The gateway can then translate this into a DII
call without checking the details with the interface repository. If a mismatch occurs, an exception
is raised to the gateway, which in turn can report an error to the caller.

Steps
To invoke on an object with DII, follow these steps:

Construct a Request object with the operation’s signature.

Invoke the request.

Retrieve results of the operation.

Example IDL
The bank example is modified here to show how to use the DII. The Bank::newAccount() operation now
takes an inout parameter that sets a new account’s initial balance:

• •

• •

1. 1.

2. 2.

3. 3.

Clients that use DII

- 325/599 -

The following section shows how to construct a Request object that can deliver client requests for
newAccount() operations such as this one:

This section discusses the following topics:

// IDL
interface Account {
readonly attribute float balance;
void makeDeposit(in float f);
void makeWithdrawal(in float f);
};
interface Bank {
exception Reject {string reason;};
// Create an account
Account newAccount(
in string owner,
inout float initialBalance,
out long status)
raises (Reject);
// Delete an account
void deleteAccount(in Account a);
};

bank.newAccount(ownerName, initialBalance, status);

Constructing a Request Object page 238

Invoking a Request page 243

Retrieving Request Results page 243

Example IDL

- 326/599 -

Constructing a Request Object
To construct a Request object and set its data, you must first obtain a reference to the target object. You
then create a request object by invoking one of these methods on the object reference:

_request() returns an empty request object whose signature—return type and parameters—must
be set.

_create_request() returns with a request object that can contain all the data required to invoke the
desired request.

In this section
This section discusses the following topics:

_request()
You can use _request() to create a Request object in these steps:

Create a request object and set the name of its operation.

Set the operation’s return type.

Set operation parameters and supply the corresponding arguments.

Set exception type codes.

Set the operation’s context clause, if necessary.

Create a request object
Call _request() on the target object and specify the name of the operation to invoke:

Invoking Deferred Synchronous Requests page 244

• •

• •

_request() page 239

_create_request() page 241

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Constructing a Request Object

- 327/599 -

Set the operation’s return type
After you create a Request object, set the TypeCode of the operation’s return value by calling
set_return_type() on the Request object. set_return_type() takes a single argument, the TypeCode
constant of the return type. For example, given the Request object newAcctRequest , set the return type of
its newAccount() operation to Account as follows:

For information about supported TypeCode s, see Using Type Codes.

Set operation parameters
A request object uses an NVList to store the data for an operation’s parameters. To set the parameters
in the NVList you need to know the operations parameters and insert the proper values in the exact
order the parameters are specified in the operation’s IDL. The _request() operation creates an empty
NVList into which you insert the values needed by the operation.

To fill in the NVList you can use the following operations on the Request object:

These operations return a reference to an Any . For more information on inserting values into an Any
see Using the Any Data Type.

Example 3 on page 240 sets the parameter list for the newAccount operation.

// Get object reference
org.omg.CORBA.Object target = ... ;
// Create Request object for operation newAccount()
org.omg.CORBA.Request newAcctRequest =
target._request("newAccount");

newAcctRequest.set_return_type(_tc_Account);

add_in_arg();
any add_named_in_arg();
any add_inout_arg();
any add_named_inout_arg();
any add_out_arg();
any add_named_out_arg();

_request()

- 328/599 -

The values for the out parameters of an operation do not need to be set because they will be changed
when the operation returns. However, the values for all in and inout parameters must be specified.

You can also fill the NVList object using NVList::add_value() . This operation has the following signature:

The flags parameter is set to one of the following values:

CORBA::ARG_IN

CORBA::ARG_INOUT

CORBA::ARG_OUT

Set exception type codes
You must set the type codes for any exceptions defined for the Request object’s operation. To do this
use the add() operation defined for the Request object’s exceptions() list.

add() takes the exceptions type codes as its only argument. To add the Reject exception to
newAcctRequest use the following operation:

If the type code for the exception was not available in the stub code, you would need to dynamically
generate the exceptions type code.

Example3Setting the parameter list

//Java
newAcctRequest.add_in_arg().insert_string("Norman Fellows");
float initBal = 1000.00;
newAcctRequest.add_inout_arg().insert_float(initBal);
int status;
newAcctRequest.add_out_arg().insert_long(status);

NamedValue NVList::add_value(String item_name, Any val, int flags);

• •

• •

• •

newAcctRequest.exceptions().add(BankPackage.RejectHelper.type());

_request()

- 329/599 -

Set the operation’s context clause
If the IDL operation has a context clause, you can add a Context object to its Request object with
CORBA::Request::ctx() .

_create_request()
You can also create a Request object by calling _create_request() on an object reference and passing
the request details as arguments. The advantage of using _create_request() is that you can create a
Request object that contains all of the information needed to invoke a request. _create_request() has
the following signature:

At a minimum, you must provide two arguments when using _create_request() :

The name of the operation

A NamedValue that holds the operation’s return value

You can also supply a populated parameter list and a populated exception list to _create_request() . If
you supply null for either list, _create_request() creates an empty list for the returned Request object. In
this case you must populate the list as described above in _request().

Creating the parameter list
There are two operations provided by CORBA::ORB to create the NVList passed to _create_object() to
specify the Request object’s parameter list:

create_list()

create_operation_list()

create_list()

create_list() has the fololwing signiture:

Request _create_request(Context ctx,
String operation,
NVList arg_list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist);

• •

• •

• •

• •

_create_request()

- 330/599 -

The operation allocates the space for an NVList of the specified number of elements and returns a
pointer to the empty NVList . You then add the required parameters using the following operation on
the NVList :

create_operation_list()

create_operation_list() extends the functionality of create_list() by creating a prefilled parameter list
based on informaiton stored in the interface repository. It has the following signature:

Using the OperationDef object passed as a parameter, create_operation_list() retrieves the parameter
list for the specified operation from the interface repository. When create_operation_list() returns, the
NVList contains one NamedValue object for each operation parameter. Each NamedValue object contains
the parameter’s passing mode, name, and initial value of type Any .

Once you have the prefilled parameter list, you can modify the parameters by iterating over the NVList
elements with org.omg.NVList.item() . Use the appropriate insert operation to set each NamedValue ’s
value member.

Example
The code in Example 1 constructs a parameter list using create_operation_list() . It then uses the
parameter list to construct a Request object for invoking operation newAccount() :

NVList create_list(int count);

add()
add_item()
add_value()

NVList create_operation_list(OperationDef operation);

_create_request()

- 331/599 -

Invoking a Request
After you set a Request object’s data, you can use one of several methods to invoke the request on the
target object. The following methods are invoked on a Request object:

invoke()
blocks the client until the operation returns with a reply. Exceptions are handled the same as static
function invocations.

Example1Create a Request object using _create_request()

// get an object reference
org.omg.CORBA.Object target = ... ;
org.omg.CORBA.Request newAcctRequest;
// construct Any for return value
org.omg.CORBA.Any result_any = orb.create_any();
org.omg.CORBA.NamedValue result =
orb.create_named_value("result", result_any, ARG_OUT.value);
// Get OperationDef object from IFR
// reference to the IFR, ifr, obtained previously
org.omg.CORBA.Contained cont = ifr.lookup("Bank::newAccount");
org.omg.CORBA.OperationDef opDef =
org.omg.CORBA.OperationDefHelper._narrow(cont.in());
// Initialize the parameter list
org.omg.CORBA.NVList paramList = orb.create_operation_list(opDef,
paramList);
paramList.item(0).value.insert_string("Norman Fellows");
float initBal = 1000.00;
paramList.item(1).value.insert_float(initBal);
int status;
paramList.item(2).value.insert_long(status);
// Construct the Request object
newAcctRequest = target._create_request(null, "newAccount", paramList,
result);

Invoking a Request

- 332/599 -

send_deferred()
sends the request to the target object and allows the client to continue processing while it awaits a
reply. The client must poll for the request’s reply (see Invoking Deferred Synchronous Requests).

send_oneway()
invokes one-way operations. Because no reply is expected, the client resumes processing immediately
after the invocation.

The following methods are invoked on the ORB, and take a sequence of requests:

send_multiple_requests_deferred()
calls multiple deferred synchronous operations.

send_multiple_requests_oneway()
calls multiple oneway operations simultaneously.

For example:

Retrieving Request Results
When a request returns, Orbix updates out and inout parameters in the Request object’s NVList . To
get an operation’s output values:

Call arguments() on the Request object to get a reference to its NVList .

Iterate over the NamedValue items in the Request object’s NVList by successively calling item() on the
NVList . Each call to this methods returns a NamedValue reference.

Call value() on the NamedValue to get a pointer to the Any value for each parameter.

Extract the parameter values from the Any .

Example2Invoking on a request

try {
request.invoke())
}
catch (org.omg.CORBA.SystemException se) {
System.out.println("Unexpected exception" + se);
}

1. 1.

2. 2.

3. 3.

4. 4.

Retrieving Request Results

- 333/599 -

To get an operation’s return value, call return_value() on the request object. This operation returns the
request’s return value as an any .

For example, the following code gets an object reference to the new account returned by the
newAccount() operation:

Invoking Deferred Synchronous Requests
You can use the DII to make deferred synchronous operation calls. A client can call an operation,
continue processing in parallel with the operation, then retrieve the operation results when required.

You can invoke a request as a deferred synchronous operation as follows:

Construct a Request object and call send_deferred() on it.

Continue processing in parallel with the operation.

Check whether the operation has returned by calling poll_response() on the Request object. This
methods returns a non-zero value if a response has been received.

To get the result of the operation, call get_response() on the Request object.

Using the DSI
A server uses the dynamic skeleton interface (DSI) to receive operations or attribute invocations on an
object whose IDL interface is unknown to it at compile time. With DSI, a server can build the skeleton
code that it needs to accept these invocations.

The server defines a function that determines the identity of the requested object; the name of the
operation and the types and values of each argument are provided by the user. The function carries out
the task that is being requested by the client, and constructs and returns the result. Clients are unaware
that a server is implemented with the DSI.

This section discusses the following topics:

Example3Obtaining the return value from a request object

org.omg.CORBA.Object newAccount;
org.omg.CORBA.Any acct = request.return_value();
newAccount = acct.extract_Object();

1. 1.

2. 2.

3. 3.

4. 4.

Invoking Deferred Synchronous Requests

- 334/599 -

DSI Applications
The DSI is designed to help write gateways that accept operation or attribute invocations on any
specified set of interfaces and pass them to another system. A gateway can be written to interface
between CORBA and some non-CORBA system. This gateway is the only part of the CORBA system that
must know the non-CORBA system’s protocol; the rest of the CORBA system simply issues IDL calls as
usual.

Invoking on a gateway
The IIOP protocol lets an object invoke on objects in another ORB. If a non-CORBA system does not
support IIOP, you can use DSI to provide a gateway between the CORBA and non-CORBA systems. To
the CORBA system, this gateway appears as a CORBA-compliant server that contains CORBA objects. In
reality, the server uses DSI to trap incoming invocations and translate them into calls that the non-
CORBA system can understand.

Bidirectional gateways
You can use DSI and DII together to construct a bidirectional gateway. This gateway receives messages
from the non-CORBA system and uses the DII to make CORBA client calls. It uses DSI to receive requests
from clients on a CORBA system and translate these into messages in the non-CORBA system.

DSI has other uses. For example, a server might contain many non-CORBA objects that it wants to make
available to its clients. In an application that uses DSI, clients invoke on only one CORBA object for each
non-CORBA object. The server indicates that it uses DSI to accept invocations on the IDL interface.
When it receives an invocation, it identifies the target object, the operation or attribute to call, and its
parameters. It then makes the call on the non-CORBA object. When it receives the result, it returns it to
the client.

DSI Applications page 244

Programming a Server to Use DSI page 245

DSI Applications

- 335/599 -

Programming a Server to Use DSI
The DSI is implemented by servants that instantiate dynamic skeleton classes. All dynamic skeleton
classes are derived from CORBA.DynamicImplementation :

The ORB user must also provide an implementation to the _all_interfaces() method declared by the
Servant class.

A server program uses DSI as follows:

Instantiates one or more DSI servants and obtains object references to them, which it makes
available to clients.

Associates each DSI servant with a POA—for example, through a servant manager, or by registering it
as the default servant.

Dynamic implementation routine
When a client invokes on a DSI-generated object reference, the POA delivers the client request as an
argument to the DSI servant’s invoke() method—also known as the dynamic implementation routine
(DIR). invoke() takes a single argument, a CORBA::ServerRequest pseudo-object, which encapsulates all
data that pertains to the client request—the operation’s signature and arguments. CORBA::ServerRequest
maps to the following Java class:

package org.omg.PortableServer;
abstract public class DynamicImplementation extends Servant
{
abstract public void invoke(org.omg.CORBA.ServerRequest request);
}

Note

1. 1.

2. 2.

Programming a Server to Use DSI

- 336/599 -

invoke() processing
invoke() processing varies across different implementations, but it always includes the following steps:

Obtains the operation’s name by calling operation() on the ServerRequest object.

Builds an NVList that contains definitions for the operation’s parameters—often, from an interface
definition obtained from the interface repository. Then, invoke() populates the NVList with the
operation’s input arguments by calling arguments() on the ServerRequest object.

Reconstructs the client invocation and processes it.

If required, sets the operation’s output in one of two ways:

If the operation’s signature defines output parameters, invoke() sets the NVList as needed. If the
operation’s signature defines a return value, invoke() calls set_result() on the ServerRequest
object.

If the operation’s signature defines an exception, invoke() calls set_exception() on the
ServerRequest object.

invoke() can either set the operation’s output by initializing its output parameters and setting its
return value, or by setting an exception; however, it cannot do both.

package org.omg.CORBA;
public abstract class ServerRequest {
public String operation() {
...
}
public void arguments(NVList args) {
...
}
public void set_result(Any any) {
...
}
public void set_exception(Any any) {
...
}
public abstract Context ctx();
}

1. 1.

2. 2.

3. 3.

4. 4.

• •

• •

Note

Programming a Server to Use DSI

- 337/599 -

Using the Interface Repository

An Orbix application uses the interface repository for persistent storage of IDL interfaces and types. The
runtime ORB and Orbix applications query this repository at runtime to obtain IDL definitions.

The interface repository maintains full information about the IDL definitions that have been passed to
it. The interface repository provides a set of IDL interfaces to browse and list its contents, and to
determine the type information for a given object. For example, given an object reference, you can use
the interface repository to obtain all aspects of the object’s interface: its enclosing module, interface
name, attribute and operation definitions, and so on.

Benefits
These capabilities are important for a number of tools:

Browsers that allow designers and code writers to determine what types have been defined in the
system, and to list the details of chosen types.

CASE tools that aid software design, writing, and debugging.

Application level code that uses the dynamic invocation interface (DII) to invoke on objects whose
types were not known to it at compile time. This code might need to determine the details of the
object being invoked in order to construct the request using the DII.

A gateway that requires runtime information about the type of an object being invoked.

In order to populate the interface repository with IDL definitions, run the IDL compiler with the
-R option. For example, the following command populates the interface repository with the IDL
definitions in bank.idl :

• •

• •

• •

• •

Using the Interface Repository

- 338/599 -

Interface Repository Data
Interface repository data can be viewed as a set of CORBA objects, where the repository stores one
object for each IDL type definition. All interface repository objects are derived from the abstract base
interface IRObject ., which is defined as follows:

Attribute def_kind identifies a repository object’s type. For example, the def_kind attribute of an
interfaceDef object is dk_interface . The enumerate constants dk_none and dk_all are used to search for
objects in a repository. All other enumerate constants identify one of the repository object types in
Table 16, and correspond to an IDL type or group of types.

destroy() deletes an interface repository object and any objects contained within it. You cannot call
destroy() on the interface repository object itself or any PrimitiveDef object.

idl -R bank.idl

// In module CORBA
enum DefinitionKind
{
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember, dk_Native
};
...
interface IRObject
{
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void
destroy();
};

Interface Repository Data

- 339/599 -

Abstract Base Interfaces
Besides IRObject , the interface repository defines four other abstract base interfaces, all of which
inherit directly or indirectly from IRObject :

Container:
The interface for container objects. This interface is inherited by all interface objects that can contain
other objects, such as Repository , ModuleDef and InterfaceDef . These interfaces inherit from Container .
See Container Interface.

Contained:
The interface for contained objects. This interface is inherited by all objects that can be contained by
other objects—for example, attribute definition (AttributeDef) objects within operation definition
(OperationDef) objects. See Contained Interface.

IDLType:
All interface repository interfaces that hold the definition of a type inherit directly or indirectly from this
interface. See IDL-type objects.

TypedefDef:
The base interface for the following interface repository types that have names: StructDef , UnionDef ,
EnumDef , and AliasDef , which represents IDL typedef definitions.

Repository Object Types
Objects in the interface repository support one of the IDL types in Table 16:

Table 16: Interface Repository OIbject Types

Object type Description

Reposito
ry

The repository itself, in which all other objects are nested. A repository
definition can contain definitions of other types such as module and interface.
Table 17 lists all possible container components.

ModuleDef A module definition is logical grouping of interfaces and value types. The
definition has a name and can contain definitions of all types except Reposit
ory . Table 17 on page 254 lists all possible container components.

Abstract Base Interfaces

- 340/599 -

Object type Description

Interface
Def

An interface definition has a name, a possible inheritance declaration, and can
contain definitions of other types such as attribute, operation, and exception.
Table 17 lists all possible container components.

ValueDef A value type definition has a name, a possible inheritance declaration, and can
contain definitions of other types such as attribute, operation, and exception.
Table 17 lists all possible container components.

ValueBoxD
ef

A value box definition defines a value box type.

ValueMemb
erDef

A value member definition defines a member of a value.

Attribute
Def

An attribute definition has a name, a type, and a mode to indicate whether it is
readonly.

Operation
Def

An operation definition has a name, return value, set of parameters and,
optionally, raises and context clauses.

ConstantD
ef

A constant definition has a name, type, and value.

Exception
Def

An exception definition has a name and a set of member definitions.

StructDef A struct definition has a name, and holds the definition of each of its members.

UnionDef A union definition has a name, and holds a discriminator type and the
definition of each of its members.

EmumDef An enum definition has a name and a list of member identifiers.

AliasDef An aliased definition defines a typedef definition, which has a name and a type
that it maps to.

Primitive
Def

A primitive definition defines primitive IDL types such as short and long ,
which are predefined in the interface repository.

StringDef A string definition records its bound. Objects of this type are unnamed. If they
are defined with a typedef statement, they are associated with an AliasD
ef object. Objects of this type correspond to bounded strings.

Repository Object Types

- 341/599 -

Given an object of any interface repository type, you can obtain its full interface definition. For example,
InterfaceDef defines operations or attributes to determine an interface’s name, its inheritance
hierarchy, and the description of each operation and each attribute.

Figure 23 shows the hierarchy for all interface repository objects.

Figure 23 Hierarchy of interface repository objects

IDL-type objects
Most repository objects represent IDL types—for example, InterfaceDef objects represent IDL
interfaces, StructDef interfaces represent struct definitions, and so on. These objects all inherit, directly
or indirectly, from the abstract base interface IDLType :

Object type Description

SequenceD
ef

Each sequence type definition records its element type and its bound, where a
value of zero indicates an unbounded sequence type. Objects of this type are
unnamed. If they are defined with a typedef statement, they have an
associated AliasDef object.

ArrayDef Each array definition records its length and its element type. Objects of this
type are unnamed. If they are defined with a typedef statement, they are
associated with an AliasDef object. Each ArrayDef object represents one
dimension; multiple ArrayDef objects can represent a multi-dimensional
array type.

Repository Object Types

- 342/599 -

This base interface defines a single attribute that contains the TypeCode of the defined type.

IDL-type objects are themselves subdivided into two groups:

Named types

Unnamed types

Named types

The interface repository can contain these named IDL types:

For example, the following IDL defines enum type UD and typedef type AccountName , which the
interface repository represents as named object types EnumDef and AliasDef objects, respectively:

The following named object types inherit from the abstract base interface TypedefDef :

TypedefDef is defined as follows:

TypedefDef serves the sole purpose of enabling its derived object types to inherit Contained and
IDLType attributes and operations:

// In module CORBA
interface IDLType : IRObject {
readonly attribute TypeCode type;
};

• •

• •

AliasDef EnumDef InterfaceDef Na
tiveDef

StructDef UnionDef ValueBoxDef V
alueDef

// IDL
enum UD {UP, DOWN};
typedef string AccountName;

AliasDef EnumDef NativeDef StructDef ValueBoxDef UnionDef

// IDL
// In module CORBA
interface TypedefDef : Contained, IDLType {
};

Repository Object Types

- 343/599 -

Attribute Contained::name enables access to the object’s name. For example, the IDL enum
definition UD shown earlier is represented by the repository object EnumDef , whose inherited name
attribute is set to UD .

Operation Contained::describe() gets a detailed description of the object. For more information
about this operation, see Repository Object Descriptions.

Interfaces InterfaceDef and ValueDef are also named object types that inherit from three base
interfaces: Contained , Container , and IDLType .

Because IDL object and value references can be used like other types, IntefaceDef and ValueDef
inherit from the base interface IDLType . For example, given the IDL definition of interface Account ,
the interface repository creates an InterfaceDef object whose name attribute is set to Account . This
name can be reused as a type.

Unnamed types

The interface repository can contain the following unnamed object types:

Getting an object’s idl type

Repository objects that inherit the IDLType interface have their own operations for identifying
their type; you can also get an object’s type through the TypeCode interface. Repository objects
such as AttributeDef that do not inherit from IDLType have their own TypeCode or IDLType
attributes that enable access to their types.

For example the following IDL interface definition defines the return type of operation
getLongAddress as a string sequence:

getLongAddress() maps to an object of type OperationDef in the repository. You can query this
object for its return type’s definition— string —in two ways:

Method 1:

Get the object’s OperationDef::result_def attribute, which is an object reference of type IDLType .

Get the IDLType ’s def_kind attribute, which is inherited from IRObject . In this example, def_kind
resolves to dk_primitive .

Narrow the IDLType to PrimtiveDef .

• •

• •

ArrayDef FixedDef PrimitiveDef SequenceDef StringDef WStringDef

// IDL
interface Mailer {
string getLongAddress();
};

a. 1.

b. 2.

c. 3.

Repository Object Types

- 344/599 -

Get the PrimtiveDef ’s kind attribute, which is a PrimtiveKind of pk_string .

Method 2:

Get the object’s OperationDef::result attribute, which is a TypeCode .

Obtain the TypeCode ’s TCKind through its kind() operation. In this example, the TCKind is tk_string .

Containment in the Interface Repository
Most IDL definitions contain or are contained by other definitions, and the interface repository defines
its objects to reflect these relationships. For example, a module typically contains interface definitions,
while interfaces themselves usually contain attributes, operations, and other definition types.

Containment interfaces
The interface repository abstracts the properties of containment into two abstract base interfaces:

[Contained](#contained-interface)

[Container](#container-interface)

These interfaces provide operations and attributes that let you traverse the hierarchy of relationships in
an interface repository in order to list its contents, or ascertain a given object’s container. Most
repository objects are derived from one or both of Container or Contained ; the exceptions are instances
of PrimitiveDef , StringDef , SequenceDef , and ArrayDef .

Example
In the following IDL, module Finance is defined with two interface definitions, Bank and Account . In
turn, interface Account contains attribute and operation definitions:

d. 4.

1. 1.

2. 2.

• •

• •

Containment in the Interface Repository

- 345/599 -

The corresponding interface repository objects for these definitions are each described as Container or
Contained objects. Thus, the interface repository represents module Finance as a ModuleDef container
for InterfaceDef objects Account and Bank ; these, in turn, serve as containers for their respective
attributes and operations. ModuleDef object Finance is also viewed as a contained object within the
container object RepositoryDef .

Containment properties of interface repository objects
Table 17 shows the relationship between Container and Contained objects in the interface repository.

Table 17: Container and Contained Objects in the Interface Repository

1

Only a Repository is a pure Container . An interface repository server has only one Repository object, and
it contains all other definitions.

// IDL
module Finance {
interface Account {
readonly attribute float balance;
void makeDeposit(in float amount);
void makeWithdrawal(in float amount);
};
interface Bank {
Account newAccount();
};
};

Container object
type

Contained Objects

Repository ConstantDef TypedefDef ExceptionDef InterfaceDef* Modu
leDef* ValueDef*

ModuleDef ConstantDef TypedefDef ExceptionDef ModuleDef* Interfa
ceDef* ValueDef*

InterfaceDef ConstantDef TypedefDef ExceptionDef AttributeDef Opera
tionDef

ValueDef ConstantDef TypedefDef ExceptionDef AttributeDef Opera
tionDef ValueMemberDef

Containment properties of interface repository objects

- 346/599 -

Objects of type ModuleDef , InterfaceDef , and ValueDef are always contained within a Repository , while
InterfaceDef , and ValueDef can also be within a ModuleDef ; these objects usually contain other objects,
so they inherit from both Container and Contained .

All other repository object types inherit only from Contained .

1 * Also a Container object

Contained Interface
The Contained interface is defined as follows:

Contained Interface

- 347/599 -

Name attribute
Attribute Contained::name is of type Identifier , a typedef for a string, and contains the IDL object’s
name. For example, module Finance is represented in the repository by a ModuleDef object. Its inherited
ModuleDef::name attribute resolves to the string Finance . Similarly the makeWithdrawal operation is
represented by an OperationDef object whose OperationDef::name attribute resolves to makeWithdrawal .

defined_in attribute
Contained also defines the attribute defined_in , which stores a reference to an object’s Container .
Because IDL definitions within a repository must be unique, defined_in stores a unique Container
reference. However, given inheritance among interfaces, an object can be contained in multiple
interfaces. For example, the following IDL defines interface CurrentAccount to inherit from interface
Account :

//IDL
typedef string VersionSpec;
interface Contained : IRObject
{
// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;
// read interface
readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;
struct Description
{
DefinitionKind kind;
any value;
};
Description
describe();
// write interface
void
move(
in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);
};

Contained Interface

- 348/599 -

balance attribute
Given this definition, attribute balance is contained in interfaces Account and CurrentAccount ; however,
attribute balance is defined only in the base interface Account . Thus, if you invoke
AttributeDef::defined_in() on either Account::balance or CurrentAccount::balance , it always returns
Account as the Container object.

A Contained object can include more than containment information. For example, an OperationDef
object has a list of parameters associated with it and details of the return type. The operation
Contained::describe() provides access to these details by returning a generic Description structure (see
Repository Object Descriptions).

Container Interface
Interface Container is defined as follows:

//IDL
// in module Finance
interface CurrentAccount : Account {
readonly attribute overDraftLimit;
};

Container Interface

- 349/599 -

//IDL
enum DefinitionKind
{
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember, dk_Native
};
...
typedef sequence<Contained> ContainedSeq;
interface Container : IRObject
{
// read interface
...
Contained
lookup(
in ScopedName search_name
);
ContainedSeq
contents(
in DefinitionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq
lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
);
struct Description
{
Contained contained_object;
DefinitionKind kind;
any value;
};
typedef sequence<Description> DescriptionSeq;
DescriptionSeq
describe_contents(
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs
);

Container Interface

- 350/599 -

lookup operations
The container interface provides four lookup operations that let you browse a given container for its
contents: lookup() , lookup_name() , contents() , and describe_contents() . For more information about
these operations, see Browsing and listing repository contents.

Repository Object Descriptions
Each repository object, in addition to identifying itself as a Contained or Container object, also maintains
the details of its IDL definition. For each contained object type, the repository defines a structure that
stores these details. Thus, a ModuleDef object stores the details of its description in a ModuleDescription
structure, an InterfaceDef object stores its description in an InterfaceDescription structure, and so on.

How to obtain object descriptions
You can generally get an object’s description in two ways:

The interface for each contained object type often defines attributes that get specific aspects of
an object’s description. For example, attribute OperationDef::result gets an operation’s return
type.

You can obtain all the information stored for a given object through the inherited operation
Contained::describe() , which returns the general purpose structure Contained::Description . This
structure’s value member is of type any , whose value stores the object type’s structure.

For example, interface OperationDef has the following definition:

// write interface
... // operations to create container objects
};

• •

• •

Repository Object Descriptions

- 351/599 -

Accessing attributes
Interface OperationDef defines a number of attributes that allow direct access to specific aspects of an
operation, such as its parameters (params) and return type (result_def).

Invoking describe()
In a distributed environment, it is often desirable to obtain all information about an operation in a
single step by invoking describe() on the OperationDef object. This operation returns a
Contained::Description whose two members, kind and value , are set as follows:

kind
is set to dk_Operation .

value
is an any whose TypeCode is set to _tc_OperationDescription . The any ’s value is an OperationDescription
structure, which contains all the required information about an operation:

interface OperationDef : Contained
{
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;
};

Accessing attributes

- 352/599 -

OperationDescription structure

OperationDescription members store the following information:

TypeDescription structure

// IDL
struct OperationDescription
{
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;
};

name The operation’s name. For example, for operation
Account::makeWithdrawal() , name contains makeWithdrawal .

id RepositoryId for the OperationDef object.

defined_
in

The RepositoryId for the parent Container of the OperationDef object.

version Currently not supported. When implemented, this member allows the interface
repository to distinguish between multiple versions of a definition with the
same name.

result The TypeCode of the result returned by the defined operation.

mode Specifies whether the operation returns (OP_NORMAL) or is oneway (OP_ONEW
AY).

contexts Lists the context identifiers specified in the operation’s context clause.

paramete
rs

A sequence of ParameterDescription structures that contain details of
each operation parameter.

exceptio
ns

A sequence of ExceptionDescription structures that contain details of the
exceptions specified in the operation’s raises clause.

Invoking describe()

- 353/599 -

Several repository object types use the TypeDescription structure to store their information: EnumDef ,
UnionDef , AliasDef , and StructDef .

FullInterfaceDescription and FullValueDescription structures

Interfaces InterfaceDef and ValueDef contain extra description structures, FullInterfaceDescription and
FullValueDescription , respectively. These structures let you obtain a full description of the interface or
value and all its contents in one step. These structures are returned by operations
InterfaceDef::describe_interface() and ValueDef::describe_value() .

Retrieving Repository Information
You can retrieve information from the interface repository in three ways:

Given an object reference, find its corresponding InterfaceDef object and query its details.

Given an object reference to a Repository , browse its contents.

Given a RepositoryId , obtain a reference to the corresponding object in the interface repository
and query its details.

Getting a CORBA object’s interface
Given a reference to a CORBA object, you can obtain its interface from the interface repository by
invoking _get_interface() on it. For example, given CORBA object objVar , you can get a reference to its
corresponding InterfaceDef object as follows:

The member function _get_interface() returns a reference to an object within the interface repository.
You can then use this reference to browse the repository, and to obtain the details of an interface
definition.

• •

• •

• •

org.omg.CORBA.InterfaceDef ifVar =
objVar._get_interface();

Retrieving Repository Information

- 354/599 -

Browsing and listing repository contents
After you obtain a reference to a Repository object, you can browse or list its contents. To obtain a
Repository ’s object reference, invoke resolve_initial_references("InterfaceRepository") on the ORB. This
returns an object reference of type CORBA::Object , which you narrow to a CORBA::Repository reference.

The abstract interface Container has four operations that enable repository browsing:

[lookup()](#lookup)

[lookup_name()](#lookup_name)

[contents()](#contents)

[describe_contents()](#describe_contents)

Finding repository objects

Container operations lookup() and lookup_name() are useful for searching the contents of a repository
for one or more objects.

lookup()
conducts a search for a single object based on the supplied ScopedName argument, which contains the
entity’s name relative to other repository objects. A ScopedName that begins with :: is an absolute
scoped name—that is, it uniquely identifies an entity within a repository—for example,
::Finance::Account::makeWithdrawal . A ScopedName that does not begin with :: identifies an entity relative
to the current one.

For example, if module Finance contains attribute Account::balance , you can get a reference to the
operation’s corresponding AttributeDef object by invoking the module’s lookup() operation:

The ScopedName argument that you supply can specify to search outside the cope of the actual container
on which you invoke lookup() . For example, the following statement invokes lookup() on an
InterfaceDef in order to start searching for the newAccount operation from the Repository container:

• •

• •

• •

• •

org.omg.CORBA.Contained cVar;
cVar = moduleVar.lookup("Account::balance");

Browsing and listing repository contents

- 355/599 -

lookup_name()
searches the target container for objects that match a simple unscoped name. Because the name might
yield multiple matches, lookup() returns a sequence of Contained objects. lookup_name() takes the
following arguments:

Unlike lookup() , lookup_name() searches are confined to the target container.

Getting object descriptions

Container operations contents() and describe_contents() let you obtain object descriptions:

contents()
returns a sequence of Contained objects that belong to the Container . You can use this operation to
search a given container for a specific object. When it is found, you can call Contained::describe() , which
returns a Contained::Description for the contained object (see Repository Object Descriptions).

describe_contents()
combines operations Container::contents() and Contained::describe() , and returns a sequence of
Contained::Description structures, one for each of the Contained objects found.

org.omg.CORBA.Contained_var cVar;
cVar = ifVar.lookup("::Finance::Bank::newAccount");

search_na
me

A string that specifies the name of the objects to find. You can use asterisks
(*) to construct wildcard searches.

levels_to_
search

Specifies the number of levels of nested containers to include in the search. 1
restricts searching to the current object. -1 specifies an unrestricted search.

limit_type Supply a DefinitionKind enumerator to include a specific type of
repository object in the returned sequence. For example, set limit_type to
dk_operation to find only operations. To return all objects, supply dk_all .

You can also supply dk_none to match no repository objects, and dk_Typed
ef , which encompasses dk_Alias , dk_Struct , dk_Union , and
dk_Enum .

exclude_i
nherited

Valid only for InterfaceDef and ValueDef objects. Supply TRUE to
exclude inherited definitions, FALSE to include.

Browsing and listing repository contents

- 356/599 -

You can limit the scope of the search by contents() and describe_contents() by setting one or more of
the following arguments:

Finding an object using its repository id
You can use a repository ID to find any object in a repository by invoking Container::lookup_id() on that
repository. lookup_id() returns a reference to a Contained object, which can be narrowed to the
appropriate object reference type.

Sample Usage
This section contains code that uses the interface repository; it prints the list of operation names and
attribute names that are defined in a given object’s interface.

limit_type Supply a DefinitionKind enumerator to limit the contents list to a specific
type of repository object. To return all objects, supply dk_all . You can also
supply dk_none to match no repository objects, and dk_Typedef , which
encompasses dk_Alias , dk_Struct , dk_Union , and dk_Enum .

exclude_in
herited

Valid only for InterfaceDef and ValueDef objects. Supply TRUE to
exclude inherited definitions from the contents listing, FALSE to include.

max_return
ed_objs

Available only for describe_contents() , this argument specifies the
maximum length of the sequence returned.

Finding an object using its repository id

- 357/599 -

The example can be extended by finding the OperationDef object for an operation called doit() .
Operation Container::lookup_name() can be used as follows:

import org.omg.CORBA.*;
import java.io.*;
import org.omg.CORBA.InterfaceDefPackage.*;
int i;
Repository repository;
Contained contained;
InterfaceDef interface;
FullInterfaceDescription full;
org.omg.CORBA.Object obj;
try {
// get an object reference to the IFR
obj = orb.resolve_initial_references("InterfaceRepository");
repository = RepositoryHelper.narrow(obj);
// get the interface definition
contained = repository.lookup("grid");
interface = InterfaceDefHelper.narrow(contained);
// get a full interface description
full = interface.describe_interface();
// print out operation names
System.out.println ("The operation names are:");
for (i=0; i < full.operations.length(); i++)
System.out.println (full.operations[i].name);
// print out the attribute names
System.out.println ("The attribute names are:");
for (i=0; i < full.attributes.length(); i++)
System.out.println (full.attributes[i].name);
}
catch (SystemException ex) {
...
}

Sample Usage

- 358/599 -

Repository IDs and Formats
Each interface repository object that describes an IDL definition has a repository ID. A repository ID
globally identifies an IDL module, interface, constant, typedef, exception, attribute, or operation
definition. A repository ID is simply a string that identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However, repository IDs are not, in general,
required to be in one of these formats:

OMG IDL

DCE UUID

LOCAL

Contained[] opSeq;
OperationDef doitOp;
try {
System.out.println ("Looking up operation doit()");
opSeq = interface.lookup_name(
"doit", 1, dk_Operation, 0);
if (opSeq.length() != 1) {
System.out.println ("Incorrect result for lookup_name()");
exit(1);
} else {
// Narrow the result to an OperationDef
doitOp =
OperationDefHelper.narrow(opSeq[0])
}
...
}
catch (SystemException ex) {
...
}

• •

• •

• •

Repository IDs and Formats

- 359/599 -

OMG IDL
The default format used by Orbix, the OMG IDL format is derived from the IDL definition’s scoped
name:

This format contains three colon-delimited components:

The first component identifies the repository ID format as the OMG IDL format.

A list of identifiers specifies the scoped name, substituting backslash (/) for double colon (::).

version-number contains a version number with the following format:

major.minor

For example, given the following IDL definitions:

The IDL format repository ID for attribute Account::balance looks like this:

DCE UUID
The DCE UUID has the following format:

IDL:identifier[/identifier]...:version-number

• •

• •

• •

// IDL
interface Account {
readonly attribute float balance;
void makeDeposit(in float amount);
};

IDL:Account/balance:1.0

OMG IDL

- 360/599 -

LOCAL
Local format IDs are for local use within an interface repository and are not intended to be known
outside that repository. They have the following format:

Local format repository IDs can be useful in a development environment as a way to avoid conflicts with
repository IDs that use other formats.

Controlling Repository IDs with Pragma Directives
You can control repository ID formats with pragma directives in an IDL source file. Specifically, you can
use pragmas to set the repository ID for a specific IDL definition, and to set prefixes and version
numbers on repository IDs.

You can insert prefix and version pragma statements at any IDL scope; the IDL compiler assigns the
prefix or version only to objects that are defined within that scope. Prefixes and version numbers are
not applied to definitions in files that are included at that scope. Typically, prefixes and version numbers
are set at global scope, and are applied to all repository IDs.

ID pragma
You can explicitly associate an interface repository ID with an IDL definition, such as an interface name
or typedef. The definition can be fully or partially scoped and must conform with one of the IDL formats
approved by the OMG (see Repository IDs and Formats).

For example, the following IDL assigns repository ID idl:test:1.1 to interface test :

DCE:UUID:minor-version-number

LOCAL:ID

LOCAL

- 361/599 -

Prefix pragma
The IDL prefix pragma lets you prepend a unique identifier to repository IDs. This is especially useful
in ensuring against the chance of name conflicts among different applications. For example, you can
modify the IDL for the Finance module to include a prefix pragma as follows:

These definitions yield the following repository IDs:

module Y {
interface test {
// ...
};
#pragma ID test "idl:test:1.1"
};

// IDL
pragma prefix "USB"
module Finance {
interface Account {
readonly attribute float balance;
...
};
interface Bank {
Account newAccount();
};
};

Prefix pragma

- 362/599 -

Version pragma
A version number for an IDL definition’s repository ID can be specified with a version pragma. The
version pragma directive uses the following format:

name can be a fully scoped name or an identifier whose scope is interpreted relative to the scope in
which the pragma directive is included. If no version pragma is specified for an IDL definition, the
default version number is 1.0. For example:

These definitions yield the following repository IDs:

Version numbers are embedded in the string format of an object reference. A client can invoke on the
corresponding server object only if its interface has a matching version number, or has no version
associated with it.

You cannot populate the interface repository with two IDL interfaces that share the same name but
have different version numbers.

IDL:USB/Finance:1.0
IDL:USB/Finance/Account:1.0
IDL:USB/Finance/Account/balance:1.0
IDL:USB/Finance/Bank:1.0
IDL:USB/Finance/Bank/newAccount:1.0

#pragma version name major.minor

// IDL
module Finance {
#pragma version Account 2.5
interface Account {
// ...
};
};

IDL:Finance:1.0
IDL:Finance/Account:2.5

Note

Version pragma

- 363/599 -

Naming Service

The Orbix naming service lets you associate names with objects. Servers can register object references by
name with the naming service repository, and advertise those names to clients. Clients, in turn, can resolve the
desired objects in the naming service by supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming Service, which describes
how applications can map object references to names.

Benefits
Using the naming service can offer the following benefits:

Clients can locate objects through standard names that are independent of the corresponding
object references. This affords greater flexibility to developers and administrators, who can direct
client requests to the most appropriate implementation. For example, you can make changes to
an object’s implementation or its location that are transparent to the client.

The naming service provides a single repository for object references. Thus, application
components can rely on it to obtain an application’s initial references.

Many operations that are discussed here can also be executed administratively with Orbix tools.
For more information about these and related configuration options, refer to the Application
Server Platform Administrator’s Guide.

Naming Service Design

Naming graph organization
The naming service is organized into a naming graph, which is equivalent to a directory system. A
naming graph consists of one or more naming contexts, which correspond to directories. Each naming
context contains zero or more name-reference associations, or name bindings, each of which refers to
another node within the naming graph. A name binding can refer either to another naming context or
to an object reference. Thus, any path within a naming graph finally resolves to either a naming context
or an object reference. All bindings in a naming graph can usually be resolved via an initial naming
context.

• •

• •

Naming Service

- 364/599 -

Example
Figure 24 shows how the Account interface described in earlier chapters might be extended (through
inheritance) into multiple objects, and organized into a hierarchy of naming contexts. In this graph,
hollow nodes are naming contexts and solid nodes are application objects. Naming contexts are
typically intermediate nodes, although they can also be leaf nodes; application objects can only be leaf
nodes.

Figure 24 A naming graph is a hierarchy of naming contexts

Each leaf node in this naming graph associates a name with a reference to an account object such as a
basic checking account or a personal loan account. Given the full path from the initial naming context—
for example, Savings/Regular —a client can obtain the associated reference and invoke requests on it.

The operations and types that the naming service requires are defined in the IDL file CosNaming.idl . This
file contains a single module, CosNaming , which in turn contains three interfaces: NamingContext ,
NamingContextExt , and BindingIterator .

Defining Names

Name sequence
A naming graph is composed of Name sequences of NameComponent structures, defined in the CosNaming
module:

Example

- 365/599 -

A Name sequence specifies the path from a naming context to another naming context or application
object. Each name component specifies a single node along that path.

Name components
Each name component has two string members:

The id field acts as a name component’s principle identifier. This field must be set.

The kind member is optional; use it to further differentiate name components, if necessary.

Both id and kind members of a name component are used in name resolution. So, the naming
service differentiates between two name components that have the same ids but different kinds.

For example, in the naming graph shown in Figure 24 on page 268, the path to a Personal loan
account object is specified by a Name sequence in which only the id fields are set:

In order to bind another Personal account object to the same Loan naming context, you must
differentiate it from the existing one. You might do so by setting their kind fields as follows:

module CosNaming{
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
}
typedef sequence<NameComponent> Name;
...
};

• •

• •

Index id kind

0 Loans

1 Personal

Index id kind

0 Loans

1 Personal unsecured

Name components

- 366/599 -

If the kind field is unused, it must be set to an empty string.

Representing Names as Strings
The CosNaming::NamingContextExt interface defines a StringName type, which can represent a Name as a
string with the following syntax:

Name components are delimited by a forward slash (/); id and kind members are delimited by a
period (.). If the name component contains only the id string, the kind member is assumed to be an
empty string.

StringName syntax reserves the use of three characters: forward slash (/), period (.), and backslash (\).
If a name component includes these characters, you can use them in a StringFormat by prefixing them
with a backslash (\) character.

The CosNaming::NamingContextExt interface provides several operations that allow conversion between
StringName and Name data:

to_name() converts a StringName to a Name (see page 270).

to_string() converts a Name to a StringName (see page 271).

resolve_str() uses a StringName to find a Name in a naming graph and returns an object reference
(see page 277).

You can invoke these and other CosNaming::NamingContextExt operations only on an initial naming
context that is narrowed to CosNaming::NamingContextExt .

Index id kind

1 Personal secured

Note

id[.kind][/id[.kind]] ...

• •

• •

• •

Note

Representing Names as Strings

- 367/599 -

Initializing a Name
You can initialize a CosNaming::Name sequence in one of two ways:

Set the members of each name component.

Call to_name() on the initial naming context and supply a StringName argument. This operation
converts the supplied string to a Name sequence.

Setting name component members
Given the loan account objects shown earlier, you can set the name for an unsecured personal loan as
follows:

Converting a stringname to a name
The name shown in the previous example can also be set in a more straightforward way by calling
to_name() on the initial naming context (see Obtaining the Initial Naming Context):

The to_name() operation takes a string argument and returns a CosNaming::Name , which the previous
example sets as follows:

• •

• •

Example1Initializing a name

org.omg.CosNaming.NameComponent[] name =
new org.omg.CosNaming.NameComponent[]
{
new NameComponent("Loans", "");
new nameComponent("Personal", "unsecured");
};

Example2Using to_name() to initialize a Name

// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;
org.omg.CosNaming.NameComponent[] name =
root_cxt.to_name("Loans/Personal.unsecured");

Initializing a Name

- 368/599 -

Converting a Name to a StringName
You can convert a CosNaming::Name to a CosNamingExt::StringName by calling to_string() on the initial
naming context. This lets server programs to advertise human-readable object names to clients.

For example, the following code converts Name sequence name to a StringName :

Obtaining the Initial Naming Context
Clients and servers access a naming service through its initial naming context, which provides the
standard entry point for building, modifying, and traversing a naming graph. To obtain the naming
service’s initial naming context, call resolve_initial_references() on the ORB. For example:

Index id kind

0 Loans

1 Personal unsecured

Example3Converting a Name to a StringName

// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;
// initialize name
org.omg.CosNaming.NameComponent[] name = ...;
...
org.omg.CosNaming.NamingContextExt.StringName str_n;
str_n = root_cxt.to_string(name);

Converting a Name to a StringName

- 369/599 -

To obtain a reference to the naming context, narrow the result with
CosNaming.NamingContextExtHelper.narrow() :

A naming graph’s initial naming context is equivalent to the root directory. Later sections show how you
use the initial naming context to build and modify a naming graph, and to resolve names to object
references.

The NamingContextExt interface provides extra functionality over the NamingContext interface;
therefore, the code in this chapter assumes that an initial naming context is narrowed to the
NamingContextExt interface

Example4Obtaining the inital naming context

// Initialize the ORB
global_orb = org.omg.CORBA.ORB.init(args, null);
// Get reference to initial naming context
org.omg.CORBA.Object obj =
global_var.resolve_initial_references("NameService");

...
org.omg.CosNaming.NamingContextExt root_cxt;
if (root_cxt =
 org.omg.CosNaming.NamingContextExtHelper.narrow(obj)) {
} else {...} // Deal with failure to narrow()
...

Note

Obtaining the Initial Naming Context

- 370/599 -

Building a Naming Graph
A name binding can reference either an object reference or another naming context. By binding one
naming context to another, you can organize application objects into logical categories. However
complex the hierarchy, almost all paths within a naming graph hierarchy typically resolve to object
references.

In an application that uses a naming service, a server program often builds a multi-tiered naming graph
on startup. This process consists of two repetitive operations:

Bind naming contexts into the desired hierarchy.

Bind objects into the appropriate naming contexts.

Binding Naming Contexts
A server that builds a hierarchy of naming contexts contains the following steps:

Gets the initial naming context (see page 271).

Creates the first tier of naming contexts from the initial naming context.

Binds the new naming contexts to the initial naming context.

Adds naming contexts that are subordinate to the first tier:

Creates a naming context from any existing one.

Binds the new naming context to its designated parent.

The naming graph shown in Figure 24 on page 268 contains three naming contexts that are directly
subordinate to the initial naming context: Checking, Loans, and Savings. The following code binds the
Checking naming context to the initial naming context, as shown in Figure 25:

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

• •

• •

Building a Naming Graph

- 371/599 -

Figure 25 Checking context bound to initial naming context

Similarly, you can bind the Savings and Loans naming contexts to the initial naming context. The
following code uses the shortcut operation bind_new_context() , which combines new_context() and
bind() . It also uses the to_name() operation to set the Name variable.

Figure 26 Savings and Loans naming contexts bound to initial naming context

Example5Binding a naming context to the initial naming context

//get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;
// create naming context
org.omg.CosNaming.NamingContext checking_cxt =
root_cxt.new_context();
// initialize name
org.omg.CosNaming.NameComponent[] name = new NameComponent[1];
name[0] = new NameComponent("Checking", "");
// bind new context
root_cxt.bind_context(name, checking_cxt);

Example6Binding a naming context with bind_new_context()

org.omg.CosNaming.NamingContext savings_cxt, loan_cxt;
// create naming contexts
name = root_cxt.to_name("Savings");
savings_cxt = root_cxt.bind_new_context(name);
name = root_cxt.to_name("Loan");
loan_cxt = root_cxt.bind_new_context(name);

Binding Naming Contexts

- 372/599 -

Orphaned naming contexts
The naming service can contain naming contexts that are unbound to any other context. Because these
naming contexts have no parent context, they are regarded as orphaned. Any naming context that you
create with new_context() is orphaned until you bind it to another context. Although it has no parent
context, the initial naming context is not orphaned inasmuch as it is always accessible through
resolve_initial_references() , while orphan naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you are in the process of
constructing a new branch of naming contexts but wish to test it before binding it into the naming
graph. Other naming contexts might appear to be orphaned within the context of the current naming
service; however, they might actually be bound to a federated naming graph in another naming service
(see Federating Naming Graphs).

Erroneous usage of orphaned naming contexts
Orphaned contexts can also occur inadvertently, often as a result of carelessly written code. For
example, you can create orphaned contexts as a result of calling rebind() or rebind_context() to replace
one name binding with another (see Rebinding). The following code shows how you might orphan the
Savings naming context:

Binding Naming Contexts

- 373/599 -

An application can also create an orphan context by calling

unbind()

on a context without calling

destroy()

on the same context object (see

Maintaining the Naming Service

).

In both cases, if the application exits without destroying the context objects, they remain in the naming
service but are inaccessible and cannot be deleted.

Example7Orphaned naming contexts

//get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;
org.omg.CosNaming.NamingContext savings_cxt;
// initialize name
org.omg.CosNaming.NameComponent[] name = new NameComponent[1];
name[0] = new NameComponent("Savings", "");
// create and bind checking_cxt
savings_cxt = root_cxt.bind_new_context(name);
// make another context
org.omg.CosNaming.NamingContext savings_cxt2;
savings_cxt2 = root_cxt.new_context();
// bind savings_cxt2 to root context, savings_cxt now orphaned!
root_cxt.rebind_context(name, savings_cxt2);

Binding Naming Contexts

- 374/599 -

Binding Object References
After you construct the desired hierarchy of naming contexts, you can bind object references to them
with the bind() operation. The following example builds on earlier code to bind a Basic checking
account object to the Checking naming context:

Figure 27 Binding an object reference to a naming context

The previous code assumes the existence of a NamingContext variable for the Checking naming context
on which you can invoke bind() . Alternatively, you can invoke bind() on the initial naming context in
order to bind Basic into the naming graph:

Because the initial naming context is always available, it is the most reliable way to access all other
contexts within a naming graph.

Example8Binding an object reference

// object reference "basic_check" obtained earlier
...
name[0] = new NameComponent("Basic", "");
checking_cxt.bind(name, basic_check);

name = root_cxt.to_name("Checking/Basic");
root_cxt.bind(name, basic_check);

Note

Binding Object References

- 375/599 -

Rebinding
If you call bind() or bind_context() on a naming context that already contains the specified binding, the
naming service throws an exception of AlreadyBound . To ensure the success of a binding operation
whether or not the desired binding already exists, call one of the following naming context operations:

rebind() rebinds an application object.

rebind_context() rebinds a naming context.

Either operation replaces an existing binding of the same name with the new binding. Calls to rebind()
in particular can be useful on server startup, to ensure that the naming service has the latest object
references.

Calls to rebind_context() or rebind() can have the undesired effect of creating orphaned naming
contexts (see page 274). In general, exercise caution when calling either function.

Using Names to Access Objects
A client application can use the naming service to obtain object references in three steps:

Obtain a reference to the initial naming context (see Obtaining the Initial Naming Context).

Set a CosNaming::Name structure with the full path of the name associated with the desired object.

Resolve the name to the desired object reference.

Setting object names
You specify the path to the desired object reference in a CosNaming::Name . You can set this name in one
of two ways:

Explicitly set the id and kind members of each Name element.
For example, the following code sets the name of a Basic checking account object:

• •

• •

Note

1. 1.

2. 2.

3. 3.

Rebinding

- 376/599 -

Call to_name() on the initial naming context.
This option is available if the client code narrows the initial naming context to the NamingContextExt
interface. to_name() takes a CosNaming::CosNamingExt::StringName argument and returns a CosNaming::Name
as follows:

For more about using a StringName with to_name() , see Converting a stringname to a name.

Resolving names
Clients call resolve() on the initial naming context to obtain the object associated with the supplied
name:

Alternatively, the client can call resolve_str() on the initial naming context to resolve the same name
using its StringName equivalent:

Example9Setting object name components

org.omg.CosNaming.NameComponent[] name =
new NameComponent[2];
name[0] = new NameComponent("Checking", "");
name[1] = new NameComponent("Basic", "");

Example10Setting an object name with to_name()

org.omg.CosNaming.NameComponent[] name =
root_cxt.to_name("Checking/Basic");

Example11Calling resolve()

org.omg.CORBA.Object obj;
...
obj = root_cxt.resolve(name);

Resolving names

- 377/599 -

In both cases, the object returned in obj is an application object that implements the IDL interface
BasicChecking , so the client narrows the returned object accordingly:

Resolving names with corbaname
You can resolve names with a corbaname URL, which is similar to a corbaloc URL (see Using corbaloc
URL strings). However, a corbaname URL also contains a stringified name that identifies a binding in a
naming context. For example, the following code uses a corbaname URL to obtain a reference to a
BasicChecking object:

A corbaname URL has the following syntax:

Example12Calling resolve_str()

org.omg.CORBA.Object obj;
...
obj = root_cxt.resolve_str("Checking/Basic");

BasicChecking checking;
...
try {
checking = BasicCheckingHelper.narrow(obj);
// perform some operation on basic checking object
...
} // end of try clause, catch clauses not shown

Example13Resolving a name with corbaname

org.omg.CORBA.Object obj;
obj = orb.string_to_object(
"corbaname:rir:/NameService#Checking/Basic"
);

Resolving names with corbaname

- 378/599 -

string-name is a string that conforms to the format allowed by a CosNaming::CosNamingExt::StringName (see
Representing Names as Strings). A corbaname can omit the NameService specifier. For example, the
following call to string_to_object() is equivalent to the call shown earlier:

Exceptions Returned to Clients
Invocations on the naming service can result in the following exceptions:

NotFound
The specified name does not resolve to an existing binding. This exception contains two data members:

InvalidName
The specified name is empty or contains invalid characters.

CannotProceed
The operation fails for reasons not described by other exceptions. For example, the naming service’s
internal repository might be in an inconsistent state.

corbaname:rir:[/NameService]#string-name

obj = orb.string_to_object("corbaname:rir:#Checking/Basic");

why Explains why a lookup failed with one of the following values:

- missing_node : one of the name components specifies a non-existent
binding.

- not_context : one of the intermediate name components specifies a
binding to an application object instead of a naming context.

- not_object : one of the name components points to a non-existent object.

rest_of_na
me

Contains the trailing part of the name that could not be resolved.

Exceptions Returned to Clients

- 379/599 -

AlreadyBound
Attempts to create a binding in a context throw this exception if the context already contains a binding
of the same name.

Not Empty
Attempts to delete a context that contains bindings throw this exception. Contexts must be empty
before you delete them.

Listing Naming Context Bindings
In order to find an object reference, a client might need to iterate over the bindings in one or more
naming contexts. You can invoke the list() operation on a naming context to obtain a list of its name
bindings. This operation has the following signature:

list() returns with a BindingList , which is a sequence of Binding structures:

Iterating over binding list elements
Given a binding list, the client can iterate over its elements to obtain their binding name and type.
Given a Binding element’s name, the client application can call resolve() to obtain an object reference;
it can use the binding type information to determine whether the object is a naming context or an
application object.

For example, given the naming graph in Figure 24, a client application can invoke list() on the initial
naming context and return a binding list with three Binding elements:

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator it);

enum BindingType{ nobject, ncontext };
struct Binding{
Name binding_name
BindingType binding_type;
}
typedef sequence<Binding> BindingList

Listing Naming Context Bindings

- 380/599 -

Using a Binding Iterator

Limiting number of bindings returned by list()
In the previous example, list() returns a small binding list. However, an enterprise application is likely
to require naming contexts with a large number of bindings. list() therefore provides two parameters
that let a client obtain all bindings from a naming context without overrunning available memory:

how_many
sets the maximum number of elements to return in the binding list. If the number of bindings in a
naming context is greater than how_many , list() returns with its BindingIterator parameter set.

it
is a BindingIterator object that can be used to retrieve the remaining bindings in a naming context. If
list() returns with all bindings in its BindingList , this parameter is set to nil.

A BindingIterator object has the following IDL interface definition:

Obtaining remainder of bindings
If list() returns with a BindingIterator object, the client can invoke on it either next_n() to retrieve the
next specified number of remaining bindings, or next_one() to retrieve one remaining binding at a time.
Both functions return true if the naming context contains more bindings to fetch. Together, these
BindingIterator operations and list() let a client safely obtain all bindings in a context.

Index Name BindingType

0 Checking ncontext

1 Savings ncontext

2 Loan ncontext

interface BindingIterator{
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();
}

Using a Binding Iterator

- 381/599 -

The client is responsible for destroying an iterator. It also must be able to handle exceptions that
might return when it calls an iterator operation, inasmuch as the naming service can destroy an
iterator at any time before the client retrieves all naming context bindings.

The following client code gets a binding list from a naming context and prints each element’s binding
name and type:

Note

Example14Obtaining a binding list

// printing function
void
print_binding_list(org.omg.CosNaming.BindingListHolder bl)
{
// extract the list of bindings
org.omg.CosNaming.Binding[] list = bl.value;
// iterate through list
for(int i = 0; i < list.length; i++){
System.out.print(list[i].binding_name[0].id;
if(list[i].binding_name[0].kind != null)
System.out.print(
"(" + bl[i].binding_name[0].kind + ")");
if(bl[i].binding_type ==
org.omg.CosNaming.BindingType.ncontext)
System.out.println(": naming context");
else
System.out.println(": object reference");
}
}

void
get_context_bindings(omg.org.CosNaming.NamingContext cxt)
{
org.omg.CosNaming.BindingListHolder b_list;
org.omg.CosNaming.BindingIteratorHolder b_iter =
new org.omg.CosNaming.BindingIteratorHolder();
long MAX_BINDINGS = 50;

Using a Binding Iterator

- 382/599 -

When you run this code on the initial naming context shown earlier, it yields the following output:

// set up array to store binding list, put it in holder
org.omg.CosNaming.Binding[] binding_list =
new org.omg.CosNaming.Binding[MAX_BINDINGS];
b_list =
new org.omg.CosNaming.BindingListHolder(binding_list);
// get first set of bindings from cxt
cxt.list(MAX_BINDINGS, b_list, b_iter);

//print first set of bindings
print_binding_list(b_list);
// look for remaining bindings
if(b_iter.value != null) {
org.omg.CosNaming.BindingIterator it = b_iter.value;
do {
boolean more = it.next_n(MAX_BINDINGS, b_list);
// print next set of bindings
print_binding_list(b_list);
} while (more);

// get rid of iterator
it.destroy();
}
}

Using a Binding Iterator

- 383/599 -

Maintaining the Naming Service
Destruction of a context and its bindings is a two-step procedure:

Remove bindings to the target context from its parent contexts by calling unbind() on them.

Destroy the context by calling the destroy() operation on it. If the context contains bindings,
these must be destroyed first; otherwise, destroy() returns with a NotEmpty exception.

These operations can be called in any order; but it is important to call both. If you remove the bindings
to a context without destroying it, you leave an orphaned context within the naming graph that might
be impossible to access and destroy later (see Orphaned naming contexts). If you destroy a context but
do not remove its bindings to other contexts, you leave behind bindings that point nowhere, or dangling
bindings.

For example, given the partial naming graph in Figure 28, you can destroy the Loans context and its
bindings to the loan account objects as follows:

Checking: naming context
Savings: naming context
Loan: naming context

• •

• •

Example15Destroying a naming context

org.omg.CosNaming.NameComponent[] name;
// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

// assume availability of Loans naming context variable
org.omg.CosNaming.NamingContext loans_cxt = ... ;

// remove bindings to Loans context
name = root_cxt.to_name("Loans/Mortgage");
root_cxt.unbind(name);
name = root_cxt.to_name("Loans/Auto");
root_cxt.unbind(name);
name = root_cxt.to_name("Loans/Personal");
root_cxt.unbind(name);

Maintaining the Naming Service

- 384/599 -

Figure 28 Destroying a naming context and removing related bindings

Orbix provides administrative tools to destroy contexts and remove bindings. These are described in
the Application Server Platform Administrator’s Guide.

Federating Naming Graphs
A naming graph can span multiple naming services, which can themselves reside on different hosts.
Given the initial naming context of an external naming service, a naming context can transparently bind
itself to that naming service’s naming graph. A naming graph that spans multiple naming services is
said to be federated.

// remove binding from Loans context to initial naming context
name = root_cxt.to_name("Loans");
root_cxt.unbind(name);

// destroy orphaned Loans context
loans_cxt.destroy();

Note

Federating Naming Graphs

- 385/599 -

Benefits
A federated naming graph offers the following benefits:

Reliability: By spanning a naming graph across multiple servers, you can minimize the impact of a
single server’s failure.

Load balancing: You can distribute processing according to logical groups. Multiple servers can
share the work load of resolving bindings for different clients.

Scalability: Persistent storage for a naming graph is spread across multiple servers.

Decentralized administration: Logical groups within a naming graph can be maintained separately
through different administrative domains, while they are collectively visible to all clients across the
network.

Federation models
Each naming graph in a federation must obtain the initial naming context of other members in order to
bind itself to them. The binding possibilities are virtually infinite; however, two federation models are
widely used:

Hierarchal federation — All naming graphs are bound to a root server’s naming graph. Clients
access objects via the initial naming context of the root server.

Fully-connected federation — Each naming graph directly binds itself to all other naming graphs.
Typically, each naming graph binds the initial naming contexts of all other naming graphs into its
own initial naming context. Clients can access all objects via the initial naming context of their
local naming service.

Hierarchal federation
Figure 29 shows a hierarchal naming service federation that comprises three servers. The Deposits
server maintains naming contexts for checking and savings accounts, while the Loans server maintains
naming contexts for loan accounts. A single root server serves as the logical starting point for all
naming contexts.

Figure 29 A naming graph that spans multiple servers

• •

• •

• •

• •

• •

• •

Benefits

- 386/599 -

In this hierarchical structure, the naming graphs in the Deposits and Loans servers are federated
through an intermediary root server. The initial naming contexts of the Deposits and Loans servers are
bound to the root server’s initial naming context. Thus, clients gain access to either naming graph
through the root server’s initial naming context.

The following code binds the initial naming contexts of the Deposits and Loans servers to the root
server’s initial naming context:

Example16Federating naming graphs to a root server’s initial naming context

// Root server
...
public static void main (String[] args) {
org.omg.CosNaming.NamingContextExt
root_inc, deposits_inc, loans,_inc;
org.omg.CosNaming.NameComponent[] name = new NameComponent[1];
org.omg.CORBA.Object obj;
org.omg.CORBA.ORB global_orb;
String loans_inc_ior, deposits_inc_ior
...

Hierarchal federation

- 387/599 -

This yields the following bindings between the three naming graphs:

Figure 30 Multiple naming graphs are linked by binding initial naming contexts of several servers to a
root server.

try {
global_orb = org.omg.CORBA.global_orb.init(args, null);
// code to obtain stringified IORs of initial naming
// contexts for Loans and Deposits servers (not shown)
...

obj = global_orb.string_to_object(loans_inc_ior);
loans_inc =
org.omg.CosNaming.NamingContextExtHelper.narrow(obj);
obj = global_orb.string_to_object(deposits_inc_ior);
deposits_inc =
org.omg.CosNaming.NamingContextExtHelper.narrow(obj);

// get initial naming context for Root server
root_inc = ... ;
// bind Deposits initial naming context to root server’s
// initial naming context
name[0] = new NameComponent("Deposits", "");
root_inc.bind_context(name, deposits_inc);

// bind Loans initial naming context to root server’s
// initial naming context
name[0] = new NameComponent("Loans", "");
root_inc.bind_context(name, deposits_inc);
}
}

Hierarchal federation

- 388/599 -

Fully-connected federation
In a purely hierarchical model like the naming graph just shown, clients obtain their initial naming
context from the root server, and the root server acts as the sole gateway into all federated naming
services. To avoid bottlenecks, it is possible to modify this model so that clients can gain access to a
federated naming graph via the initial naming context of any member naming service.

The next code example shows how the Deposits and Loans servers can bind the root server’s initial
naming context into their respective initial naming contexts. Clients can use this binding to locate the
root server’s initial naming context, and then use root-relative names to locate objects.

Figure 31 shows how this federates the three naming graphs:

Figure 31 The root server’s initial naming context is bound to the initial naming contexts of other
servers, allowing clients to locate the root naming context.

The code for both Deposits and Loans server processes is virtually identical:

Fully-connected federation

- 389/599 -

Example17Federating naming graphs through the initial naming contexts of
multiple servers

public static void main (String[] args) {
org.omg.CosNaming.NamingContextExt root_inc, this_inc;
org.omg.CosNaming.NameComponent[] name =
new NameComponent[1];
org.omg.CORBA.Object obj;
org.omg.CORBA.ORB global_orb;
String root_inc_ior;
...

try {
global_orb = org.omg.CORBA.global_orb.init(args, null);
// code to obtain stringified IORs of root server’s
// initial naming context (not shown)
...

obj = global_orb.string_to_object(root_inc_ior);
root_inc =
org.omg.CosNaming.NamingContextExtHelper.narrow(obj);

// get initial naming context for this server
this_inc = ... ;
name[0] = new NameComponent("parent", "");

Fully-connected federation

- 390/599 -

Sample Code
The following sections show the server and client code that is discussed in previous sections of this
chapter.

Server code

// bind root server’s initial naming context to
// this server’s initial naming context
this_inc.bind_context(name, root_inc);
...
}

Example18Server naming service code

public static void main (String[] args) {
org.omg.CosNaming.NamingContextExt root_cxt;
org.omg.CosNaming.NamingContext
checking_cxt, savings_cxt, loan_cxt;
org.omg.CosNaming.NameComponent[] name;
org.omg.CORBA.ORB orb;
org.omg.CORBA.Object obj;
Checking basic_check, now_check, premium_check;

// Checking objects initialized from persistent data
// (not shown)

try {
// Initialize the ORB
orb = org.omg.CORBA.global_orb.init(args, null);

Sample Code

- 391/599 -

// Get reference to initial naming context
obj =
global_orb.resolve_initial_references("NameService");
root_cxt =
org.omg.CosNaming.NamingContextExtHelper.narrow(obj);
if(root_cxt != null) {
// build naming graph

// initialize name
name = root_cxt.to_name("Checking");
// bind new naming context to root
checking_cxt = root_cxt.bind_new_context(name);

// bind checking objects to Checking context
name = root_cxt.to_name("Checking/Basic");
checking_cxt.bind(name, basic_check);
name = root_cxt.to_name("Checking/Premium");
checking_cxt.bind(name, premium_check);
name = root_cxt.to_name("Checking/NOW");
checking_cxt.bind(name, now_check);

name = root_cxt.to_name("Savings");
savings_cxt = root_cxt.bind_new_context(name);

// bind savings objects to savings context
...
name = root_cxt.to_name("Loan");
loan_cxt = root_cxt.bind_new_context(name);

Server code

- 392/599 -

Client code

// bind loan objects to loan context
...
}
else {...} // deal with failure to narrow()
...
} // end of try clause, catch clauses not shown
...
}

Example19Client naming service code

public static void main (String[] args) {
org.omg.CosNaming.NamingContextExt root_cxt;
org.omg.CosNaming.NameComponent[] name;
BasicChecking_var checking;
org.omg.CORBA.Object obj;
org.omg.CORBA.ORB global_orb;
...

try {
global_orb = org.omg.CORBA.global_orb.init (args, null);

// Find the initial naming context
obj =
global_orb.resolve_initial_references("NameService");
root_cxt =
org.omg.CosNaming.NamingContextExtHelper.narrow(obj);
if(root_cxt != null) {
obj = root_cxt.resolve_str("Checking/Basic");
checking_var == BasicCheckingHelper.narrow(obj);

Client code

- 393/599 -

Object Groups and Load Balancing
The naming service defines a repository of names that map to objects. A name maps to one object only.
Orbix extends the naming service model to allow a name to map to a group of objects. An object group
is a collection of objects that can increase or decrease in size dynamically.

Selection algorithms
Each object group has a selection algorithm that is set when the object group is created (see page 292).
This algorithm is applied when a client resolves the name associated with the object group; and the
naming service directs client requests to objects accordingly.

Three selection algorithms are supported:

Round-robin:
The locator uses a round-robin algorithm to select from the list of active servers—that is, the first client
is sent to the first server, the second client to the second server, and so on.

Random:
The locator randomly selects an active server to handle the client.

Active load balancing:
Each object group member is assigned a load value. The naming service satisfies client resolve()
invocations by returning references to members with the lowest load values.

Figure 32 shows how a name can bind to multiple objects through an object group.

if(checking_var != null) {
// perform some operation on basic checking object
...
}
else { ... } // Deal with failure to narrow()
} else { ... } // Deal with failure to resolve object

} // end of try clause, catch clauses not shown
...
}

Object Groups and Load Balancing

- 394/599 -

Figure 32 Associating a name with an object group

Orbix supports object groups through its own IDL interfaces. These interfaces let you create object
groups and manipulate them: add objects to and remove objects from groups, and find out which
objects are members of a particular group. Object groups are transparent to clients.

Load balancing interfaces
IDL modules IT_LoadBalancing and IT_Naming , defined in orbix/load_balancing.idl and orbix/naming.idl ,
respectively, provide operations that allow access to Orbix load balancing:

Load balancing interfaces

- 395/599 -

module IT_LoadBalancing
{
exception NoSuchMember{};
exception DuplicateMember{};
exception DuplicateGroup{};
exception NoSuchGroup{};
typedef string MemberId;
typedef sequence<MemberId> MemberIdList;
enum SelectionMethod
{ ROUND_ROBIN_METHOD, RANDOM_METHOD, ACTIVE_METHOD };
struct Member
{
Object obj;
MemberId id;
};
typedef string GroupId;
typedef sequence<GroupId> GroupList;
interface ObjectGroup
{
readonly attribute string id;
attribute SelectionMethod selection_method;
Object pick();
void add_member (in Member mem)
raises (DuplicateMember);
void remove_member (in MemberId id)
raises (NoSuchMember);
Object get_member (in MemberId id)
raises (NoSuchMember);
MemberIdList members();
void destroy();
void update_member_load(
in MemberIdList ids,
in double curr_load
) raises (NoSuchMember);
double get_member_load(
in MemberId id
) raises (NoSuchMember);
void set_member_timeout(
in MemberIdList ids,
in long timeout_sec
) raises (NoSuchMember);
long get_member_timeout(
in MemberId id
) raises (NoSuchMember);
};
interface ObjectGroupFactory

Load balancing interfaces

- 396/599 -

For detailed information about these interfaces, see the CORBA Programmer’s Reference.

Using Object Groups in Orbix
The IT_LoadBalancing module lets servers perform the following tasks:

Create an object group and add objects to it.

Add objects to an existing object group.

Remove objects from an object group.

Remove an object group.

Set member load values and direct client requests accordingly.

Create an object group
You create an object group and add objects to it in the following steps:

Get a reference to a naming context such as the initial naming context and narrow to
IT_NamingContextExt .

Create an object group factory by calling og_factory() on the naming context object. This returns a
reference to an IT_LoadBalancing::ObjectGroupFactory object.

Create an object group by calling create_random() , create_round_robin() , or create_active() on the
object group factory. These operations return a reference to an object group of interface
IT_LoadBalancing::ObjectGroup that uses the desired selection algorithm.

Add application objects to the newly created object group by calling add_member() on it.

{
ObjectGroup create_round_robin (in GroupId id)
raises (DuplicateGroup);
ObjectGroup create_random (in GroupId id)
raises (DuplicateGroup);
ObjectGroup create_active (in GroupId id)
raises (DuplicateGroup);
ObjectGroup find_group (in GroupId id)
raises (NoSuchGroup);
GroupList rr_groups();
GroupList random_groups();
GroupList active_groups();
};
};

• •

• •

• •

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

Using Object Groups in Orbix

- 397/599 -

Bind a name to the object group by calling bind_object_group() on the naming context object created
in step 1.

When you create the object group, you must supply a group identifier. This identifier is a string value
that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a reference to the object and a
corresponding member identifier. This identifier is a string value that must be unique within the object
group.

In both cases, you decide the format of the identifier string. Orbix does not interpret these identifiers.

Add objects to an existing object group
Before you add objects to an existing object group, you must get a reference to the corresponding
IT_LoadBalancing::ObjectGroup object. You can do this by using either the group identifier or the name
that is bound to the object group. This section uses the group identifier.

To add objects to an existing object group:

Get a reference to a naming context such as the initial naming context.

Narrow the reference to IT_NamingContextExt .

Call og_factory() on the naming context object. This returns a reference to an ObjectGroupFactory
object.

Call find_group() on the object group factory, passing the identifier for the group as a parameter. This
returns a reference to the object group.

Add application objects to the object group by calling add_member() on it.

Remove objects from an object group
Removing an object from a group is straightforward if you know the object group identifier and the
member identifier for the object:

Get a reference to a naming context such as the initial naming context and narrow to
IT_NamingContextExt .

Call og_factory() on the naming context object. This returns a reference to an ObjectGroupFactory
object.

On the object group factory, call find_group() , passing the identifier for the target object group as a
parameter. This operation returns a reference to the object group.

Call remove_member() on the object group to remove the required object from the group. You must
specify the member identifier for the object as a parameter to this operation.

5. 5.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

1. 1.

2. 2.

3. 3.

4. 4.

Using Object Groups in Orbix

- 398/599 -

If you already have a reference to the object group, the first three steps are unnecessary.

Remove an object group
To remove an object group for which you have no reference:

Call unbind() on the initial naming context to unbind the name associated with the object group.

Call og_factory() on the initial naming context object. This returns a reference to an
ObjectGroupFactory object.

Call find_group() on the object group factory, passing the identifier for the target object group as a
parameter. This operation returns a reference to the object group.

Call destroy() on the object group to remove it from the naming service.

If you already have a reference to the target object group, steps 2 and 3 are unnecessary.

Set member load values
In an object group that uses active load balancing, each object group member is assigned a load value.
The naming service satisfies client resolve() invocations by returning references to members with the
lowest load values.

A member’s default load value can be set administratively through the configuration variable
plugins:naming:lb_default_initial_load . Thereafter, load counts should be updated with periodic calls to
ObjectGroup::update_member_load() . itadmin provides an equivalent command, nsog update_member_load , in
cases where manual intervention is required, or scripting is feasible.

You should also set or modify member timeouts with ObjectGroup::set_member_timeout() or with itadmin
nsog set_member_timeout . You can configure default timeout values with the configuration variable
plugins:naming:lb_default_load_timeout . If an object’s load value is not updated within its timeout
interval, its object reference becomes unavailable to client resolve() invocations. This typically happens
because the object itself or an associated process is no longer running, and therefore cannot update
the object’s load value.

A member reference can be made available again to client resolve() invocations by resetting its load
value with ObjectGroup::update_member_load() or itadmin nsog update_member_load . In general, an object’s
timeout should be set to an interval greater than the frequency of load count updates.

1. 1.

2. 2.

3. 3.

4. 4.

Using Object Groups in Orbix

- 399/599 -

Load Balancing Example
This section uses a simple stock market system to show how to use object groups in CORBA
applications. In this example, a CORBA object has access to all current stock prices. Clients request stock
prices from this CORBA object and display those prices to the end user.

A realistic stock market application needs to make available many stock prices, and provide many
clients with price updates immediately. Given such a high processing load, one CORBA object might be
unable to satisfy client requirements. You can solve this problem by replicating the CORBA object,
invisibly to the client, through object groups.

Figure 33 shows the architecture for the stock market system, where a single server creates two CORBA
objects from the same interface. These objects process client requests for stock price information.

Figure 33 Architecture of the stock market example

Defining the IDL for the application
The IDL for the load balancing example consists of a single interface StockMarketFeed , which is defined
in module ObjectGroupDemo :

Load Balancing Example

- 400/599 -

StockMarketFeed has one operation, read_stock() . This operation returns the current price of the stock
associated with string identifier stock_name , which identifies the desired stock.

Creating an Object Group and Adding Objects
After you define the IDL, you can implement the interfaces. Using object groups has no effect on how
you do this, so this section assumes that you define class StockMarketFeedServant , which implements
interface StockMarketFeed .

After you implement the IDL interfaces, you develop a server program that contains and manages
implementation objects. The application can have one or more servers that perform these tasks:

Creates two StockMarketFeed implementation objects.

Creates an object group in the naming service.

Adds the implementation objects to this group.

The server’s main() routine can be written as follows:

// IDL
module ObjectGroupDemo
{
exception StockSymbolNotFound{};
interface StockMarketFeed
{
double read_stock (in string stock_symbol)
raises(StockSymbolNotfound);
};
};

• •

• •

• •

Creating an Object Group and Adding Objects

- 401/599 -

Example20Load balancing server

org.omg.CORBA.ORB global_orb;
org.omg.PortableServer.POA the_poa;
String id1, id2;
public static void main (String[]
args) {
com.iona.IT_LoadBalancing.ObjectGroup
rr_og_var;
com.iona.IT_Naming.IT_NamingContextExt
it_ins_var;

// Initialize the ORB
try {
global_orb =
org.omg.CORBA.global_orb.init(args,
null);
}
catch (Exception ex) {
System.out.println("Could not
initialize the ORB");
System.out.println("Exception info: "+
ex);
System.exit(1);
}

// Get server name
String server_name = (args[0]);

Creating an Object Group and Adding Objects

- 402/599 -

// Initialize the POA and POA Manager
org.omg.PortableServer.POAManager
poa_manager;
try {
org.omg.CORBA.Object poa_obj =
global_orb.resolve_initial_references(
"RootPOA");
the_poa =
org.omg.PortableServer.POAHelper.narr
ow(poa_obj);
poa_manager =
the_poa.the_POAManager();
}

catch (Exception ex) {
System.out.println("Cannot obtain root
POA or POAManager");
System.out.println("Exception info: "
+ ex);
System.exit(1);
}

[1](#creating-an-object-group-
and-adding-objects)

// Create 2 stock object servants
called
// <server_name>:RR_Member1 and
<server_name>:RR_Member2:
id1 = server_name + ":RR_Member1";
id2 = server_name + ":RR_Member2";
StockServantFeedServant stk_svnt1 =
new StockServantFeedServant(id1);
StockServantFeedServant stk_svnt2 =
new StockServantFeedServant(id2);

Creating an Object Group and Adding Objects

- 403/599 -

[2](#creating-an-object-group-
and-adding-objects)

// Get initial naming context
com.iona.IT_LoadBalancing.ObjectGroup
Factory ogf_var;
org.omg.CORBA.Object ins_obj;
try {
ins_obj =
global_orb.resolve_initial_references(
"NameService");
it_ins_var =
com.iona.IT_Naming.IT_NamingContextEx
tHelper.narrow
(ins_obj);

[3](#creating-an-object-group-
and-adding-objects)

ogf_var = it_ins_var.og_factory();
}
catch (Exception ex) {
System.out.println("Could not narrow
reference to
IT_NamingContextExt interface. Is the
Naming Service
Running?");
System.out.println("Exception info: "
+ ex);
System.exit(1);
}

// Create a round robin object group
and bind it in
// the naming service
String rr_id_str = "StockFeedGroup";
try {

[4](#creating-an-object-group-
and-adding-objects)

rr_og_var =
ogf_var.create_round_robin(rr_id_str);
org.omg.CosNaming.NameComponent[] nm =
it_ins_var.to_name("stock_svc");

Creating an Object Group and Adding Objects

- 404/599 -

[5](#creating-an-object-group-
and-adding-objects)

it_ins_var.bind_object_group(nm,
rr_og_var);
}
catch (Exception ex) {
// OK: assume other server created
ObjectGroup and
// bound it in NS
rr_og_var =
ogf_var.find_group(rr_id_str);
}
// Add StockMarketFeed objects to the
object group

[6](#creating-an-object-group-
and-adding-objects)

try
{
com.iona.IT_LoadBalancing.member
member_info;
member_info.id = id1;
member_info.obj = stk_svnt1._this();
rr_og_var.add_member(member_info);
member_info.id = id2;
member_info.obj = stk_svnt2._this();
rr_og_var.add_member(member_info);
}

catch (Exception ex) {
{
System.out.println("Cannot add members
" + id1
+ " , " + id2);
System.out.println("Exception info: "
+ ex);
System.exit(1);
}

// Start accepting requests
try {
poa_manager.activate();
System.out.println ("Server
ready...");

Creating an Object Group and Adding Objects

- 405/599 -

This server executes as follows:

Instantiates two StockServantFeedServant servants that implement the StockMarketFeed interface.

Obtains a reference to the initial naming context and narrows it to IT_Naming::IT_NamingContextExt .

Obtains an object group factory by calling og_factory() on the naming context.

Calls create_round_robin() on the object group factory to create a new group with the specified
identifier. create_round_robin() returns a new object group in which objects are selected on a round-
robin basis.

Calls bind_object_group() on the naming context and binds a specified naming service name to this
group. When a client resolves this name, it receives a reference to one of the group’s member
objects, selected by the naming service in accordance with the group selection algorithm.

The enclosing try block should allow for the possibility that the group already exists, where
bind_object_group() throws an exception of CosNaming::NamingContext::AlreadyBound . In this case, the
catch clause calls find_group() in order to obtain the desired object group. find_group() is also useful
in a distributed system, where objects must be added to an existing object group.

Activates two StockMarketFeed objects in the POA and adds them as members to the object group:

The server creates an IDL struct of type IT_LoadBalancing::member , and initializes its two members: a
string that identifies the object within the group; and a StockMarketFeed object reference, created by
invoking _this() on each servant.

The server adds the new member to the object group by calling add_member() .

Prepares to receive client requests by calling run() on the ORB.

[7](#creating-an-object-group-
and-adding-objects)

global_orb.run();
}
catch (Exception ex) {
System.out.println("Unable to activate
the POAManager,
or orb.run() failed.");
System.out.println("Exception info: "
+ ex);
System.exit(1);
}
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Creating an Object Group and Adding Objects

- 406/599 -

Accessing Objects from a Client
All objects in an object group provide the same service to clients. A client that resolves a name in the
naming service does not know whether the name is bound to an object group or a single object. The
client receives a reference to one object only. A client program resolves an object group name just as it
resolves a name bound to one object, using standard CORBA-compliant interfaces.

For example, the stock market client’s main() routine might look like this:

Example21Accessing objects from an object group

org.omg.CORBA.ORB global_orb;
public static void main (String[] args) {
org.omg.CosNaming.NamingContextExt ins;

try {
global_orb = org.omg.CORBA.global_orb.init(args, null);
org.omg.CORBA.Object ins_obj =
global_orb.resolve_initial_references("NameService");
ins =
org.omg.CosNaming.NamingContextExtHelper.narrow(ins_obj);
}

catch (Exception ex) {
System.out.println(
"Cannot resolve/narrow the name service IOR);
System.out.println("Exception info: " + ex);
System.exit(1);
}

Accessing Objects from a Client

- 407/599 -

StockMarketFeed stk_ref;
try {
org.omg.CORBA.Object stk_obj =
ins.resolve_str("stock_svc");
stk_ref = StockMarketFeedHelper.narrow(stk_obj);
}
catch (Exception ex) {
System.out.println("Unable to resolve/narrow stock_svc
IOR from naming service");
System.out.println("Exception info: " + ex);
System.exit(1);
}

double curr_price;
try {
curr_price = stk_ref.read_stock(args[0]);
}

catch (Exception ex) {
System.out.println("Stock symbol not found: " + args[0]);
System.out.println("Try another stock symbol");
System.exit(1);
}
System.out.println(args[0] + " stock price is " + curr_price);
}

Accessing Objects from a Client

- 408/599 -

Event Service

The event service enables decoupled communication between client consumers and suppliers by forwarding
messages through an event channel.

An event originates at a client supplier and is forwarded through an event channel to any number of
client consumers. Suppliers and consumers are completely decoupled: a supplier has no knowledge of
the number of consumers or their identities, and consumers have no knowledge of which supplier
generated a given event.

Overview

Service capabilities
An event channel provides the following capabilities for forwarding events:

Enables consumers to subscribe to events of certain types.

Accepts incoming events from client suppliers.

Forwards supplier-generated events to all connected consumers.

Forwarding messages using well defined IDL interfaces.

Connections
Suppliers and consumers connect to an event channel and not directly to each other, as shown in
Figure 34. From a supplier’s perspective, the event channel appears as a single consumer; from a
consumer’s perspective, the event channel appears as a single supplier. In this way, the event channel
decouples suppliers and consumers.

Figure 34 Suppliers and consumers communicating through an event channel

• •

• •

• •

• •

Event Service

- 409/599 -

How many clients?
Any number of suppliers can issue events to any number of consumers using a single event channel.
There is no correlation between the number of suppliers and the number of consumers. New suppliers
and consumers can be easily added to or removed from the system. Furthermore, any supplier or
consumer can connect to more than one event channel.

For example, many documents might be linked to a spreadsheet cell, and must be notified when the cell
value changes. However, the spreadsheet software does not need to know about the documents linked
to its cell. When the cell value changes, the spreadsheet software should be able to issue an event that
is automatically forwarded to each connected document.

Event delivery
Figure 35 shows a sample implementation of event propagation in a CORBA system. In this example,
suppliers are implemented as CORBA clients; the event channel and consumers are implemented as
CORBA servers. An event occurs when a supplier invokes a clearly defined IDL operation on an object in
the event channel application. The event channel then propagates the event by invoking a similar
operation on objects in each of the consumer servers.

Figure 35 Event propagation in a CORBA system

How many clients?

- 410/599 -

Event Communication Models
CORBA specifies two approaches to initiating the transfer of events between suppliers and consumers

Push model: Suppliers initiate transfer of events by sending those events to the channel. The
channel then forwards them to any consumers connected to it.

Pull model: Consumers initiate the transfer of events by requesting them from the channel. The
channel requests events from the suppliers connected to it.

Typed push model: Suppliers initiate the transfer of events by calling operations on an interface
that is mutually agreed upon by both the consumer and the supplier. The channel forwards the
events to all connected consumers that support the interface.

Push model
In the push model, suppliers generate events and actively pass them to an event channel. In this
model, consumers wait for events to arrive from the channel.

Figure 36 illustrates a push model architecture in which push suppliers communicate with push
consumers through the event channel.

Figure 36 Push model of event transfer

In this architecture, a supplier initiates event transfer by invoking an IDL operation on an object in the
event channel. The event channel then invokes a similar operation on an object in each consumer that
is connected to the channel.

• •

• •

• •

Event Communication Models

- 411/599 -

Pull model
In the pull model, a consumer actively requests events from the channel. The supplier waits for a pull
request to arrive from the channel. When a pull request arrives, event data is generated and returned
to the channel.

Figure 37 illustrates a pull model architecture in which pull consumers communicate with pull suppliers
through the event channel.

Figure 37 Pull Model suppliers and consumers communicating through an event channel

In this architecture, the event channel invokes an IDL operation on an object in each supplier to collect
events. When a consumer invokes a similar operation on the event channel, the channel forwards the
events to the consumer that initiated the transfer.

Mixing push and pull models
Because suppliers and consumers are completely decoupled by the event channel, push and pull
models can be mixed in a single system.

For example, suppliers can connect to an event channel using the push model, while consumers
connect using the pull model, as shown in Figure 38.

Figure 38 Push suppliers and pull consumers communicating through an event channel

Pull model

- 412/599 -

In this case, both suppliers and consumers participate in initiating event transfer. A supplier invokes an
operation on an object in the event channel to transfer an event to the channel. A consumer then
invokes another operation on an event channel object to transfer the event data from the channel.

In the case where push consumers and pull suppliers are mixed, the event channel actively propagates
events by invoking IDL operations in objects in both suppliers and consumers. The pull supplier waits
for the channel to invoke an event transfer before sending events. Similarly, the push consumer waits
for the event channel to invoke event transfer before receiving events.

Typed push model
In the typed push model suppliers connect to the channel using a consumer proxy that supports a user
defined interface. The supplier then pushes strongly typed events to the channel by invoking the
operations supported by the interface.

Figure 39 shows how typed push suppliers forward events to typed push consumers through a typed
event channel. Push suppliers can only forward event messages to typed push consumers that support
the agreed upon interface.

Figure 39 Push consumers pushing typed events to typed push consumers

As shown in the diagram, the decoupled nature of the event communication is preserved. Only one
typed push consumer supports Interface I, but it receives events from two push suppliers. Also, only a
single supplier pushes events using Interface J, but several typed push consumers support the interface
and therefore receive the events.

Typed push model

- 413/599 -

Developing an Application Using Untyped Events
When using untyped events messages are packaged into Any s before they are forwarded through the
event channel.

In this section
This section discusses the following topics:

Obtaining an Event Channel
Consumers and suppliers obtain an event channel object reference either by creating a channel, or by
finding an existing one.

You obtain an event channel factory by calling resolve_initial_references("EventChannelFactory") . You
narrow this reference to a event channel factory with Orbix extensions.

Event channel factory
Orbix provides the EventChannelFactory interface, which provides the operations to create and discover
event channels:

Obtaining an Event Channel page 305

Implementing a Supplier page 307

Implementing a Consumer page 312

Developing an Application Using Untyped Events

- 414/599 -

Event channel factory operations
You can call one of several operations on an event channel factory to create or find an event channel. By
providing both create and find operations, the event service allows any client or supplier to create an
event channel, which other clients and suppliers can subsequently discover:

create_channel()
creates an event channel and returns an object reference.

find_channel()
returns an object reference to the named event channel.

module IT_EventChannelAdmin
{
typedef long ChannelID;
struct EventChannelInfo
{
string name;
ChannelID id;
CosEventChannelAdmin::EventChannel reference;
};
typedef sequence<EventChannelInfo> EventChannelInfoList;
exception ChannelAlreadyExists {string name;};
exception ChannelNotFound {string name;};
interface EventChannelFactory : IT_MessagingAdmin::Manager
{
CosEventChannelAdmin::EventChannel create_channel(
in string name,
out ChannelID id)
raises (ChannelAlreadyExists);
CosEventChannelAdmin::EventChannel find_channel(
in string name,
out ChannelID id)
raises (ChannelNotFound);
CosEventChannelAdmin::EventChannel find_channel_by_id(
in ChannelID id,
out string name)
raises (ChannelNotFound);
EventChannelInfoList list_channels();
};
};

Obtaining an Event Channel

- 415/599 -

find_channel_by_id()
returns an object reference to an event channel based on the channel’s ID.

list_channels()
returns a list of event channels, which provides their names, IDs, and object references.

Example
The following code can be used by any supplier or consumer to obtain an event channel.

Example22Obtaining an event channel

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosEventChannelAdmin.*;

//Iona specific classes
import com.iona.corba.IT_EventChannelAdmin.*;
EventChannel ec = null;
EventChannelFactory m_factory = null;
IntHolder id = new IntHolder();

[1](#example) Object obj =
orb.resolve_initial_references("EventChannelFactory");
m_factory = EventChannelFactoryHelper.narrow(obj);

[2](#example) try ec = m_factory.create_named_channel("EventChannel",
id)

[3](#example) catch (ChannelAlreadyExists cae)
//Channel already exists, so try to find it

[4](#example) try {
ec = m_factory.find_channel("EventChannel", id);
}
catch (ChannelNotFound cnf) {
System.err.println(
"Could not create or find event channel");
System.exit(1);
}

Obtaining an Event Channel

- 416/599 -

This code executes as follows:

Obtains the event channel factory.

Tries to create an event channel by calling create_named_channel() .

Catches exception IT_EventChannelAdmin::ChannelAlreadyExists if a channel of the specified name
already exists.

Tries to obtain an existing channel of the same name by calling find_channel().

Implementing a Supplier

Actions
A client supplier program performs the following actions:

Instantiates suppliers using the appropriate interface in module CosEventComm .

Connects suppliers to the event channel.

Sends event messages to the event channel.

Disconnects from the event channel.

Instantiating the Supplier
You instantiate a push supplier with the PushSupplier interface; and a pull supplier with the PullSupplier
interface. Both are defined in the IDL module CosEventComm :

catch (SystemException sys){
System.err.println("System exception occurred during
find_channel: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

4. 4.

Implementing a Supplier

- 417/599 -

Connecting to a Channel
In order to pass messages to the event channel, a supplier must connect to it through a proxy
consumer that receives events from the supplier. Each supplier must have its own proxy consumer. The
proxy consumer passes the events down the channel.

A client supplier connects to the event channel in three steps:

Obtain a SupplierAdmin object from the event channel.

Obtain a proxy consumer in the event channel, to receive the events that the supplier generates.

Connect a supplier to a proxy consumer.

Obtain a SupplierAdmin

On creation, an event channel instantiates a default SupplierAdmin object, which you obtain by calling
for_suppliers() on the event channel. For example:

Obtain a proxy consumer

Example23Supplier interfaces

module CosEventComm {
exception Disconnected {};
interface PullSupplier
{
any pull() raises (Disconnected);
any try_pull (out boolean has_event)
raises (Disconnected);
void disconnect_pull_supplier();
};
interface PushSupplier
{
void disconnect_push_supplier();
};
};

1. 1.

2. 2.

3. 3.

org.omg.CosEventChannelAdmin.SupplierAdmin sa =
channel.for_sppliers();

Implementing a Supplier

- 418/599 -

A proxy consumer is responsible for receiving event messages from its client supplier and inserting
them into the event channel, where they are forwarded to all interested consumers. You obtain one
proxy consumer for each client supplier.

The type of proxy consumer that you obtain depends on whether the client supplier uses the push or
pull model. The type of proxy consumer must match the type of its client supplier: a push supplier must
use a push proxy consumer; and a pull supplier must use a pull proxy supplier.

The CosEventChannelAdmin module supports the two proxy consumer object types with the following
interfaces:

You obtain a proxy consumer by invoking one of the following operations on a supplier admin:

obtain_push_consumer()
returns a push-model proxy consumer.

obtain_pull_consumer()
returns a pull-model proxy consumer.

Example

The following code obtains a ProxyPushConsumer for a PushSupplier by calling obtain_push_consumer() .

module CosEventChannelAdmin
{
exception AlreadyConnected {};
exception TypeError {};
interface ProxyPushConsumer : CosEventComm::PushConsumer
{
void
connect_push_supplier(
in CosEventComm::PushSupplier push_supplier
) raises (AlreadyConnected);
};
interface ProxyPullConsumer : CosEventComm::PullConsumer
{
void
connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier
) raises (AlreadyConnected, TypeError);
};
// ...
};

Implementing a Supplier

- 419/599 -

Connect a supplier to a proxy consumer

After creating a proxy consumer, you can connect it to a compatible client supplier. This establishes the
client supplier’s connection to the event channel so it can send messages.

Each proxy consumer interface supports a connect operation; the operation requires that the supplier
and its proxy support the same delivery model. For example, the ProxyPushConsumer interface defines
connect_push_supplier() , which only accepts an object reference to a PushSupplier as input.:

Example

The following code shows one way to implement a PushSupplier client that connects itself to a proxy
consumer.

Example1Obtaining a proxy consumer

import org.omg.CosEventChannelAdmin.*;
try
{
ProxyConsumer ppc =
sa.obtain_push_consumer();
}

interface ProxyPushConsumer : CosEventComm::PushConsumer
{
void
connect_push_supplier(
in CosEventComm::PushSupplier push_supplier
) raises (AlreadyConnected);
};

Example1Connecting a PushSupplier

// proxy ppc and PushSupplier supplier obtained previously
try{
ppc.connect_push_supplier(supplier);
}

Implementing a Supplier

- 420/599 -

Sending Event Messages
A client supplier sends event messages in one of two ways:

A push supplier invokes the push operation on its proxy consumer and supplies the event as an
input argument.

A pull supplier implements try_pull() . When the proxy consumer invokes a pull operation, the
supplier returns an event message if one is available.

Push supplier

A push supplier invokes the push() operation on its proxy consumer. For example:

catch (AlreadyConnected.value ac) {
// Handle the exception
}

catch (SystemException sys){
System.err.println("Encountered system exception
during connect: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

• •

• •

Example1Pushing an event message

// proxy consumer and event message already obtained
try{
proxy.push(event_msg);
}

catch (SystemException sys){
System.err.println("Unexpected system exception during push:"
+SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

Implementing a Supplier

- 421/599 -

Pull supplier

A pull supplier sends event messages only on request. Whether a client consumer invokes pull() or
try_pull() , the pull supplier’s proxy consumer always invokes try_pull() on its supplier.

Pull suppliers are responsible for implementing try_pull() , which returns a CORBA::Any . This operation
is non-blocking; it returns immediately with an output parameter of type boolean to indicate whether
the return value actually contains an event.

For example, the following code implements try_pull() by attempting to populate an event message
with the latest baseball scores.

catch (org.omg.CosEventComm.Disconnected dc){
System.err.println("Channel is disconnected.");
System.exit(1);
}

catch (Exception e){
System.err.println("Unknown exception occurred during push");
System.exit(1);
}

Example1Pulling events

class PullSupplier extends PullSupplierPOA
{
// ...
public Any try_pull(
BooleanHolder has_event)
{
has_event.value = false;

// get scores
String scores;
boolean has_scores = get_scores(scores);

Implementing a Supplier

- 422/599 -

Disconnecting From the Event Channel
A client supplier can disconnect from the event channel at any time by invoking the disconnect
operation on its proxy consumer. This operation terminates the connection between a supplier and its
target proxy consumer. The channel then releases all resources allocated to support its connection to
the supplier, including destruction of the target proxy consumer.

Each proxy consumer interface supports a disconnect operation. For example, interface
ProxyPushConsumer defines disconnect_push_consumer() .

Implementing a Consumer

Actions
A client consumer program performs the following actions:

Instantiates consumers with the appropriate CosEventComm interface.

Connects consumers to the event channel.

Obtains event messages.

Disconnects from the event channel.

Instantiating a Consumer
You instantiate a push consumer with the PushConsumer interface; and a pull consumer with the
PullConsumer interface. Both are defined in the IDL module CosEventComm:

// If there are scores, send event message
if (has_scores == true)
{
CORBA.Any event_msg = ORB.create_any();
event_msg.insert_string(scores);
has_event.value = true;
}
return event_msg;
}

1. 1.

2. 2.

3. 3.

4. 4.

Implementing a Consumer

- 423/599 -

Connecting to the Channel
Consumers receive messages from the event channel through a proxy supplier. Each consumer on the
channel has its own proxy supplier. Proxy suppliers use the same delivery method as their consumers
and send the appropriate message type.

Consumers connect to the event channel in three steps:

Obtain a ConsumerAdmin object from the event channel.

Obtain a proxy supplier in the event channel, to receive supplier-generated event messages.

Connect the consumer to a proxy supplier.

Obtain a ConsumerAdmin

On creation, an event channel instantiates a default ConsumerAdmin object, which you obtain by calling
for_consumers() on the event channel. For example:

Obtain a proxy supplier

A proxy supplier is responsible for distributing event messages that have been sent by the event
channel to its consumer. You create one proxy supplier for each client consumer.

Example2Consumer interfaces

module CosEventComm
{
exception Disconnected { };
interface PushConsumer {
void push(in any data) raises (Disconnected);
void disconnect_push_consumer ();
};
interface PullConsumer {
void disconnect_pull_consumer();
};
};

1. 1.

2. 2.

3. 3.

org.omg.CosEventChannelAdmin.ConsumerAdmin ca =
channel.for_consumers();

Implementing a Consumer

- 424/599 -

The type of proxy supplier that you obtain depends on whether the client consumer uses the push or
pull model. The type of proxy supplier must match the type of its client consumer: a push consumer
must use a push proxy supplier; and a pull consumer must use a pull proxy supplier.

The CosEventChannelAdmin module supports the two proxy supplier object types with the following
interfaces:

You obtain a proxy supplier by invoking one of the following operations on a consumer admin:

obtain_push_supplier()
returns a push-model proxy supplier.

obtain_pull_supplier()
returns a pull-model proxy supplier.

Example

The following code obtains a proxy supplier for a PushConsumer by calling obtain_push_supplier() .

Example1Proxy supplier interfaces

module CosEventChannelAdmin
{
exception AlreadyConnected {};
exception TypeError {};
interface ProxyPullSupplier : CosEventComm::PullSupplier
{
void
connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer
) raises (AlreadyConnected);
};

interface ProxyPushSupplier : CosEventComm::PushSupplier
{
void
connect_push_consumer(
in CosEventComm::PushConsumer push_consumer
) raises (AlreadyConnected, TypeError);
};
};

Implementing a Consumer

- 425/599 -

Connect the consumer to a proxy supplier

After creating a proxy supplier, you can connect it to a compatible client consumer. This establishes the
client’s connection to the event channel, so it can obtain messages from suppliers.

Each proxy supplier interface supports a connect operation; the operation requires that the client
supplier and its proxy support the same push or pull model and event-message type. For example, the
ProxyPushSupplier interface defines connect_push_consumer() , which only accepts an object reference to a
PushConsumer as input:

Example

The following example shows how you might implement a PushConsumer client that connects itself to a
proxy supplier.

Example1Obtaining a proxy supplier

import org.omg.CosEventChannelAdmin.*;
try
{
ProxySupplier pps =
ca.obtain_push_supplier();
}

interface ProxyPushSupplier :
ProxySupplier,
CosEventComm::PushSupplier
{
void connect_push_consumer
(in CosEventComm::PushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);
};

Example1Connecting to a proxy supplier

import org.omg.CosEventChannelAdmin.*;

Implementing a Consumer

- 426/599 -

Obtaining Event Messages
A client consumer obtains event messages in one of two ways:

A push consumer implements the push() operation. As events become available, the proxy
supplier pushes them to its client consumer.

A pull consumer invokes pull() or try_pull() on its proxy supplier; the proxy supplier returns
with the next available event.

Push consumer

A push consumer implements the push() operation. For example:

class PushConsumer extends PushConsumerPOA
{
// ...

public static void main (String args[])
{
// ...
//Proxy pps and PushConsumer consumer obtained previously
try{
pps.connect_push_consumer(consumer);
}

catch (AlreadyConnected.value ac){
System.err.println("Already connecting to channel.");
System.exit (1);
}

catch (SystemException sys){
System.err.println(
"Encountered system exception during connect: "
+ SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}
//...
}
}

• •

• •

Implementing a Consumer

- 427/599 -

Pull consumer

A pull client consumer invokes the pull() or try_pull() operation on its proxy supplier to solicit event
messages; the proxy supplier returns with the next available event.

The proxy supplier interface supports operations pull() and try_pull() . A pull consumer invokes one
of these operations on its ProxyPullSupplier . Both operations return a CORBA::Any argument; they differ
only in their blocking mode:

pull()
blocks until an event is available.

try_pull()
is non-blocking—it returns immediately with a boolean output parameter to indicate whether the
return value actually contains an event. The event channel continues to invoke the pull operation on
suppliers until one of them supplies an event. When an event becomes available, try_pull() sets its
boolean has_event parameter to true and returns with the event data to the pull consumer.

The following example shows how a pull consumer might invoke try_pull() to receive data from its
ProxyPullSupplier .

Example1Receiving events using push()

class PushConsumer extends PushConsumerPOA
{
// ...
public void push(Any event)
{
String scores = event.extract_string();
System.out.println("Current " + sports_type + "scores:
" + scores);
}
//...
}

Implementing a Consumer

- 428/599 -

Disconnecting From the Event Channel
A client consumer can disconnect from the event channel at any time by invoking the disconnect
operation on its proxy supplier. This operation terminates the connection between the consumer and its
target proxy supplier. The event channel then releases all resources allocated to support its connection
to the consumer, including destruction of the target proxy supplier.

Each proxy supplier interface supports a disconnect operation. For example, interface ProxyPushSupplier
defines disconnect_push_supplier() .

Example1Pulling events

Any scores = null;
BooleanHolder has_data = new BooleanHolder();
try{
event = proxy.try_pull(has_data);
}

catch (org.omg.CosEventComm.Disconnected dsc){
System.err.println("Disconnected exception occured during
pull");
System.exit (1);
}

catch (SystemException sys){
System.err.println("System exception occured during pull");
System.exit (1);
}

if (has_data.value)
{
scores = event.extract_string();
System.out.println("Received event number " + scores
+ " using try pull");
}

Implementing a Consumer

- 429/599 -

Developing an Application Using Typed Events
Typed events allow event service clients to use a strongly typed interface to pass events back and forth.
Using typed events can increase the performance of event service clients by eliminating the time used
for marshalling, encoding, unmarshalling, and decoding of events packaged into Any s. Typed event
clients can also use non-typed event communication to send and receive messages.

In this section
This section discusses the following topics:

Creating the Interface
When using typed push event communication, suppliers and consumers use a mutually agreed upon
interface to facilitate event forwarding. This interface is defined in IDL and stored in the interface
repository.

Interface restrictions
Because typed event communication is strictly from the supplier to the consumer, there are two
restrictions on the operations of an interface used for typed event communication:

They can only have in parameters.

They cannot have a return type other than void .

Messages cannot be passed through the event channel from consumer to supplier and these
restrictions help reinforce the unidirectional nature of event forwarding.

Example
The interface, ScorePusher , in Example 2 shows a simple interface to push a sports score.

Creating the Interface page 317

Obtaining a Typed Event Channel page 318

Implementing the Supplier page 320

Implementing the Consumer page 323

• •

• •

Developing an Application Using Typed Events

- 430/599 -

Once you have written the interface, you must place it into the interface repository using the following
command:

Obtaining a Typed Event Channel
A typed event channel forwards messages between typed event clients. It provides the same
operations as the untyped event channel.

Consumers and suppliers obtain a typed event channel object reference either by creating a channel, or
by finding an existing one.

You obtain a typed event channel factory by calling resolve_initial_references("EventChannelFactory") .
You narrow the returned reference to a typed event channel factory with Orbix extensions.

Event channel factory
Orbix provides the TypedEventChannelFactory interface, which define the operations to create and
discover typed event channels:

Example2Typed event interface ScorePusher

\\IDL
interface ScorePusher
{
void push_score(in string team_a, in long score_a,
in string team_b, in long score_b);
};

idl -R *filename*

Obtaining a Typed Event Channel

- 431/599 -

Typed event channel factory operations
You can call one of several operations on an event channel factory to create or find an event channel. By
providing both create and find operations, the event service allows any client or supplier to create an
event channel, which other clients and suppliers can subsequently discover:

create_typed_channel()
creates a typed event channel and returns an object reference.

find_typed_channel()
returns an object reference to the named typed event channel.

module IT_TypedEventChannelAdmin
{
struct TypedEventChannelInfo
{
string name;
IT_EventChannelAdmin::ChannelID id;
CosTypedEventChannelAdmin::TypedEventChannel reference;
};
typedef sequence<TypedEventChannelInfo> TypedEventChannelInfoList;
interface TypedEventChannelFactory :
IT_MessagingAdmin::Manager
{
CosTypedEventChannelAdmin::TypedEventChannel
create_typed_channel(in string name,
out IT_EventChannelAdmin::ChannelID id)
raises(IT_EventChannelAdmin::ChannelAlreadyExists);
CosTypedEventChannelAdmin::TypedEventChannel
find_typed_channel(in string name,
out IT_EventChannelAdmin::ChannelID id)
raises(IT_EventChannelAdmin::ChannelNotFound);
CosTypedEventChannelAdmin::TypedEventChannel
find_typed_channel_by_id(
in IT_EventChannelAdmin::ChannelID id,
out string name)
raises(IT_EventChannelAdmin::ChannelNotFound);
TypedEventChannelInfoList list_typed_channels();
};
};

Obtaining a Typed Event Channel

- 432/599 -

find_typed_channel_by_id()
returns an object reference to a typed event channel based on the channel’s ID.

list_typed_channels()
returns a list of typed event channels, which provides their names, IDs, and object references.

Example
The following code can be used by any supplier or consumer to obtain a typed event channel.

Example3Obtaining a typed event channel

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosTypedEventChannelAdmin.*;

//Iona specific classes
import org.omg.CosEventChannelAdmin.*;
import com.iona.corba.IT_EventChannelAdmin.*;
import com.iona.corba.IT_TypedEventChannel.*;
TypedEventChannel tec = null;
TypedEventChannelFactory m_factory = null;
IntHolder id = new IntHolder();

[1](#example) try
{
Object obj =
orb.resolve_initial_references("EventService");
}
catch (InvalidName)
{
// Handle the exception
}
m_factory = TypedEventChannelFactoryHelper.narrow(obj);

[2](#example) try
{
tec = m_factory.create_typed_channel("TypedChannel", id);
}

Obtaining a Typed Event Channel

- 433/599 -

This code executes as follows:

Obtains the typed event channel factory.

Tries to create a typed event channel by calling create_typed_channel() .

Catches exception IT_EventChannelAdmin::ChannelAlreadyExists if a channel of the specified name
already exists.

Tries to obtain an existing channel of the same name by calling find_typed_channel().

[3](#example) catch (ChannelAlreadyExists cae)
{
//Channel already exists, so try to find it

[4](#example) try
{
tec = m_factory.find_typed_channel("TypedChannel", id);
{
catch (ChannelNotFound cnf)
{
System.err.println("Could not create or find event
channel");
System.exit(1);
}

catch (SystemException sys)
{
System.err.println("System exception occurred during
find_channel: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}
}

1. 1.

2. 2.

3. 3.

4. 4.

Obtaining a Typed Event Channel

- 434/599 -

Implementing the Supplier

Actions
The actions performed by a push supplier for typed event communications are similar to the actions
performed by a push supplier for untyped event communication. These actions are:

Instantiate an instance of the CosEventComm::PushSupplier interface.

Connect to a typed event channel.

Push typed event messages by obtaining the appropriate interfaces and invoking its operations.

Disconnect from the typed event channel.

Instantiate the supplier
Typed push style event communication uses a generic push supplier to supply events to typed push
consumers. An application that is intended to push typed events to typed event consumers can
instantiate an instance of the CosEventComm::PushSupplier interface.

If the supplier does not need to be informed if its proxy disconnects from the channel, the supplier can
connect a null to the typed proxy consumer.

Connecting to a typed event channel
In order to pass messages to the typed event channel, a supplier must connect to it through a typed
proxy consumer that receives events from the supplier. The proxy consumer passes the events down
the channel.

A supplier connects to the typed event channel in three steps:

Obtain a TypedSupplierAdmin from the typed event channel.

Obtain a typed proxy consumer in the typed event channel, to receive the events generated by the
supplier.

Connect a supplier to a typed proxy consumer.

Obtain a TypedSupplierAdmin

On creation, a typed event channel instantiates a default TypedSupplierAdmin , which you obtain by
calling for_suppliers() on the typed event channel. For example:

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

Implementing the Supplier

- 435/599 -

Obtain a typed proxy consumer

A typed proxy consumer is responsible for receiving typed event messages from its supplier and
inserting them into the event channel, where they are forwarded to all interested typed consumers. You
obtain one typed proxy consumer for each client supplier.

The CosTypedEventChannelAdmin module supports the typed proxy push consumer object type with the
following interfaces:

You obtain a typed proxy consumer by invoking obtain_typed_push_consumer() on a typed supplier admin
and supplying the interface repository ID of the interface the supplier intends to use to push events. If
there are no consumers on the typed event channel which support the specified interface a
InterfaceNotSupported exception is raised.

Example

The following code obtains a TypedProxyPushConsumer for a PushSupplier by calling
obtain_typed_push_consumer() .

org.omg.CosTypedEventChannelAdmin.TypedSupplierAdmin tsa =
tec.for_suppliers();

module CosTypedEventChannelAdmin
{
exception InterfaceNotSupported {};
exception NoSuchImplementation {};
interface TypedProxyPushConsumer :
CosTypedEventComm::TypedPushConsumer,
CosEventChannelAdmin::ProxyPushConsumer
{
};
}

Implementing the Supplier

- 436/599 -

Connect a supplier to a typed proxy consumer

After creating a typed proxy consumer, you can connect it to a compatible supplier. This establishes the
supplier’s connection to the typed event channel so it can send messages.

Typed proxy consumers support the connect_push_supplier() operation. The operation requires that the
supplier and its proxy support the same interface.

Example 1 shows one way to implement a PushSupplier client that connects itself to a typed proxy
consumer.

Example1Obtaining a proxy consumer

import org.omg.CosTypedEventChannelAdmin.*;
try
{
TypedProxyConsumer tpc = tsa.obtain_typed_push_consumer("IDL:ScorePusher:
1.0");
}
catch (InterfaceNotSupported)
{
// handle the exception
}

Example1Connecting a PushSupplier

// proxy tpc and PushSupplier supplier obtained previously
try{
tpc.connect_push_supplier(supplier);
}

catch (AlreadyConnected ac) {
// Handle the exception
}

Implementing the Supplier

- 437/599 -

Pushing typed events
In typed push event communication the supplier pushes events to the consumers by invoking
operations on an interface that has been mutually agreed upon by both the developer responsible for
implementing the supplier and the developer responsible for implementing the consumer.

The supplier obtains a reference to the appropriate interface by invoking its associated typed proxy
consumer’s get_typed_consumer() operation. This operation returns a reference to the interface specified
when obtain_typed_push_consumer() was invoked to obtain the typed proxy consumer. The returned
reference is of type Object and must be narrowed to the appropriate interface.

If the supplier and the client do not support the identical interface the narrow() operation will fail.

Example 2 shows how a push supplier would pass typed messages to typed consumers that supported
the ScorePusher interface defined earlier.

catch (SystemException sys){
System.err.println("Encountered system exception
during connect: " +
SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}

Note

Example2Pushing typed events using the ScorePusher interface

// Java
import org.omg.CORBA.*;
import org.omg.CosTypedEventComm.*;
import org.omg.CosTypedEventChannelAdmin.*;

[1](#pushing-typed-
events)

Object obj = tpc.get_typed_consumer();

[2](#pushing-typed-
events)

ScorePusher pusher =
ScorePusherHelper.narrow(obj);

Implementing the Supplier

- 438/599 -

The above code performs the following actions:

Obtains a reference to an appropriate typed consumer interface.

Narrows the reference.

Invokes the push_score() operation to forward the event to any typed push consumers that
implement the ScorePusher interface.

Disconnecting From the Event Channel
A supplier can disconnect from a typed event channel at any time by invoking the
disconnect_push_consumer() operation. This operation terminates the connection between a supplier and
its target typed proxy consumer. The channel then releases all resources allocated to support its
connection to the supplier and destroys the target typed proxy consumer.

Implementing the Consumer
In typed push style event communication the consumer is responsible for implementing the interface
that is used to forward events. Also, the consumer is instantiated using a typed event interface,
CosTypedEventComm::TypedPushConsumer , instead of the generic push consumer interface.

Development tasks
The developer of a typed push consumer must complete the following tasks:

Implement the mutually agreed upon interface.

Instantiate the consumer using the CosTypedEventComm::TypedPushConsumer interface.

Connect the consumer to a typed event channel.

Receive event messages from the channel and process them.

Disconnect the consumer from the typed event channel.

Implement the interface
The first step in developing a typed push consumer is to implement the interface that will be used to
support the typed events. To do this complete the following steps:

[3](#pushing-typed-
events)

pusher.push_score("Hooligans", 9, "Ruffians",
12);

1. 1.

2. 2.

3. 3.

• •

• •

• •

• •

• •

Implementing the Consumer

- 439/599 -

Create a new IDL interface that inherits from the interface that will be used for event communication
and from CosEventComm::PushConsumer . For the ScorePusher interface the combined interface for the
consumer might look like:

Compile the IDL interface into the desired programming language.

Implement the operation to be used for forwarding typed events.

Implement push() . If the consumer participate exclusively in typed event communication, push() can
do nothing.

For example, the code shown in Example 3 shows one way to implement a typed push consumer that
uses the ScorePusher interface to forward events.

1. 1.

\\IDL
#include <ScorePusher.idl>
#include <omg/CosEventComm.idl>
interface ScoreConsumer : ScorePusher,
CosEventComm::PushConsumer
{
};

2. 2.

3. 3.

4. 4.

Example3Implementing a typed push consumer

// Java
import org.omg.CORBA.Orb.*;
import
org.omg.CosTypedEventChannelAdmin.*;
import
com.iona.IT_TypedEventChannelAdmin.*;

class ScoreConsumer extends
ScoreConsmuerPOA
{

// constructor and destructor
// ...

Implementing the Consumer

- 440/599 -

Instantiate the consumer
Typed push event communication uses the CosTypedEventComm::TypedPushConsumer interface to receive
events. Clients wishing to act as consumers in typed push style events must instantiate an instance of
this interface or, as above, an interface that inherits from it. Using the example above, the application
would instantiate an instance of ScoreConsumer which implements both the interface used to forward
events and CosTypedEventComm::TypedPushConsumer .

Connecting to the channel
Typed push consumers connect to a typed event channel through a proxy push supplier which receives
the events from the channel and forwards them to the consumer.

The steps to connect a typed push consumer to a typed event channel are the same as the steps to
connect a generic consumer to an event channel, They are:

Obtain a typed consumer admin object from the typed event channel.

Obtain a proxy push supplier from the consumer admin.

Connect the consumer to the proxy supplier.

[3](#implement-the-
interface)

void push_score(String team_a, int
score_a,
String team_b, int score_b)
{
System.out.println("Score:");
System.out.println(team_a + "\t" +
score_a);
System.out.println(team_b + "\t" +
score_b);
}

[4](#implement-the-
interface)

void push(org.omg.CORBA.Any a)
{
}

void disconnect_push_consumer()
{
}

// implement the main()
// ...
}

1. 1.

2. 2.

3. 3.

Implementing the Consumer

- 441/599 -

Obtain a typed consumer admin

On creation, a typed event channel instantiates a default TypedConsumerAdmin object, which you obtain by
calling for_consumers() on the event channel. For example:

Obtain a proxy supplier

A proxy push supplier is responsible for distributing event messages that have been sent by the typed
event channel to its typed consumer. You create one proxy supplier for each client consumer.

You obtain a proxy push supplier by invoking obtain_typed_push_supplier() on the typed consumer
admin and supplying the interface’s interface repository id. For example, to obtain a proxy push
supplier for use with the ScorePusher interface, you would use the following operation:

Connect the consumer to a proxy supplier

After creating a proxy push supplier, you can connect it to a client consumer. This establishes the client’s
connection to the typed event channel, so it can obtain messages from suppliers.

org.omg.CosTypedEventChannelAdmin.TypedConsumerAdmin tca =
tec.for_consumers();

try
{
CosEventChannelAdmin::ProxyPushSupplier pps = tca-
>obtain_typed_push_supplier("IDL:ScorePusher:1.0");
}
catch (CosTypedEventChannelAdmin::NoSuchImplementation)
{
// no push supplier implements the appropriate interface
// handle the exception
}
try
{
org.omg.CosEventChannelAdmin.ProxyPushSupplier pps =
tca.obtain_typed_push_supplier("IDL:ScorePusher:1.0");
}
catch (CosTypedEventChannelAdmin.NoSuchImplementation)
{
// no supplier implements the interface
// handle the exception
}

Implementing the Consumer

- 442/599 -

The proxy push supplier interface supports the connect operation connect_push_consumer() , which
accepts an object reference to a TypedPushConsumer as input.

Example 1 shows how you might implement a TypedPushConsumer client that connects itself to a proxy
supplier.

Example1Connecting to a proxy supplier

import org.omg.CosEventChannelAdmin.*;

class PushConsumer extends PushConsumerPOA
{
// ...

public static void main (String args[])
{
// ...
//Proxy pps and PushConsumer consumer obtained previously
try{
pps.connect_push_consumer(consumer);
}

catch (AlreadyConnected.value ac){
System.err.println("Already connecting to channel.");
System.exit (1);
}

Implementing the Consumer

- 443/599 -

Receiving event messages
Typed push consumers passively receive messages from the channel. As events become available the
proxy supplier forwards them to the consumer using one of the operations in the mutually agreed upon
interface. The operation, which was implemented previously, is responsible for processing the event.

Disconnecting from the event channel
A client consumer can disconnect from the event channel at any time by invoking
disconnect_push_consumer() . This operation terminates the connection between the consumer and its
target proxy supplier. The typed event channel then releases all resources allocated to support its
connection to the consumer and destroys the target proxy supplier.

catch (org.omg.CosEventChannelAdmin.TypeError)
{
System.err.println(
"Encountered system exception during connect: "
+ SystemExceptionDisplayHelper.toString(sys));
System.exit(1);
}
//...
}
}

Implementing the Consumer

- 444/599 -

Portable Interceptors

Portable interceptors provide hooks, or interception points, which define stages within the request and reply
sequence. Services can use these interception points to query request/reply data, and to transfer service
contexts between clients and servers.

Sample application
This chapter shows an application that uses interceptors to secure a server with a password
authorization service as follows:

A password policy is created and set on the server’s POA.

An IOR interceptor adds a tagged component to all object references exported from that POA. This
tagged component encodes data that indicates whether a password is required.

A client interceptor checks the profile of each object reference that the client invokes on. It
ascertains whether the object is password-protected; if so, it adds to the outgoing request a
service context that contains the password data.

A server interceptor checks the service contexts of incoming requests for password data, and
compares it with the server password. The interceptor allows requests to continue only if the
client and server passwords match.

The password authorization service that is shown here is deliberately simplistic, and intended for
illustrative purposes only.

• •

• •

• •

• •

Note

Portable Interceptors

- 445/599 -

Interceptor Components
Portable interceptors require the following components:

Interceptor implementations
that are derived from interface PortableInterceptor::Interceptor .

IOP::ServiceContext
supplies the service context data that a client or server needs to identify and access an ORB service.

PortableInterceptor::Current
(hereafter referred to as PICurrent) is a table of slots that are available to application threads and
interceptors, to store and access service context data.

IOP::TaggedComponent
contains information about optional features and ORB services that an IOR interceptor can add to an
outgoing object reference. This information is added by server-side IOR interceptors, and is accessible
to client interceptors.

IOP::Codec
can convert data into an octet sequence, so it can be encoded as a service context or tagged
component.

PortableInterceptor::PolicyFactory
enables creation of policy objects that are required by ORB services.

Interceptor Components

- 446/599 -

PortableInterceptor::ORBInitializer
is called on ORB initialization. An ORB initializer obtains the ORB’s PICurrent, and registers portable
interceptors with the ORB. It can also register policy factories.

Interceptor Types
All portable interceptors are based on the Interceptor interface:

An interceptor can be named or unnamed. Among an ORB’s interceptors of the same type, all names
must be unique. Any number of unnamed, or anonymous interceptors can be registered with an ORB.

At present, Orbix provides no mechanism for administering portable interceptors by name.

All interceptors implement one of the interceptor types that inherit from the Interceptor interface:

ClientRequestInterceptor
defines the interception points that client-side interceptors can implement.

ServerRequestInterceptor
defines the interception points that server-side interceptors can implement.

IORInterceptor
defines a single interception point, establish_components . It is called immediately after a POA is created,
and pre-assembles the list of tagged components to add to that POA’s object references.

Interception points
Each interceptor type defines a set of interception points, which represent stages in the request/reply
sequence. Interception points are specific to each interceptor type, and are discussed fully in later
sections that describe these types. Generally, in a successful request-reply sequence, the ORB calls
interception points on each interceptor.

module PortableInterceptor{
local interface Interceptor{
readonly attribute string name;
};
};

Note

PortableInterceptor::ORBInitializer

- 447/599 -

For example, Figure 40 shows client-side interceptors A and B. Each interceptor implements
interception points send_request and receive_reply . As each outgoing request passes through
interceptors A and B, their send_request implementations add service context data a and b to the
request before it is transported to the server. The same interceptors’ receive_reply implementations
evaluate the reply’s service context data before the reply returns to the client.

Figure 40 Client interceptors allow services to access outgoing requests and incoming replies.

Interception point data
For each interception point, the ORB supplies an object that enables the interceptor to evaluate the
request or reply data at its current stage of flow:

A PortableInterceptor::IORInfo object is supplied to an IOR interceptor’s single interception point
establish_components (see page 336).

A PortableInterceptor::ClientRequestInfo object is supplied to all ClientRequestInterceptor
interception points (see page 344).

A PortableInterceptor::ServerRequestInfo object is supplied to all ServerRequestInterceptor
interception points (see page 350).

Much of the information that client and server interceptors require is similar; so ClientRequestInfo
and ServerRequestInfo both inherit from interface PortableInterceptor::RequestInfo . For more
information on RequestInfo , see page 338.

Service Contexts
Service contexts supply the information a client or server needs to identify and access an ORB service.
The IOP module defines the ServiceContext structure as follows:

• •

• •

• •

Service Contexts

- 448/599 -

A service context has two member components:

Service-context IDs are user-defined unsigned long types. The high-order 20 bits of a service-
context ID contain a 20-bit vendor service context codeset ID, or VSCID; the low-order 12 bits
contain the rest of the service context ID. To define a set of service context IDs:

i. Obtain a unique VSCID from the OMG

ii. Define the service context IDs, using the VSCID for the high-order bits.

Service context data is encoded and decoded by an IOP::Codec (see Codec).

PICurrent
PICurrent is a table of slots that different services can use to transfer their data to request or reply
service contexts. For example, in order to send a request to a password-protected server, a client
application can set the required password in PICurrent. On each client invocation, a client interceptor’s
send_request interception point obtains the password from PICurrent and attaches it as service context
data to the request.

Figure 41 PICurrent facilitates transfer of thread context data to a request or reply.

Example2ServiceContext structure

module IOP
{
// ...
typedef unsigned long ServiceId;
struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;
};
};

• •

• •

PICurrent

- 449/599 -

Interface definition
The PortableInterceptor module defines the interface for PICurrent as follows:

Example3PortableInterceptor:Current (PICurrent) interface

module PortableInterceptor
{
// ...
typedef unsigned long SlotId;
exception InvalidSlot {};

PICurrent

- 450/599 -

Tagged Components
Object references that support an interoperability protocol such as IIOP or SIOP can include one or
more tagged components, which supply information about optional IIOP features and ORB services. A
tagged component contains an identifier, or tag, and component data, defined as follows:

An IOR interceptor can define tagged components and add these to an object reference’s profile by
calling add_ior_component() (see Writing IOR Interceptors). A client interceptor can evaluate tagged
components in a request’s object reference by calling get_effective_component() or
get_effective_components() (see Evaluating tagged components).

The OMG is responsible for allocating and registering the tag IDs of tagged components. Requests
to allocate tag IDs can be sent to tag_request@omg.org.

local interface Current : CORBA::Current {
any
get_slot(in SlotId id
) raises (InvalidSlot);
void
set_slot(in SlotId id, in any data
) raises (InvalidSlot);
};
};

Example4TaggedComponent structure

typedef unsigned long ComponentId;
struct TaggedComponent{
ComponentID tag;
sequence<octet> component_data;
};

Note

Tagged Components

- 451/599 -

Codec

Interface definition
The data of service contexts and tagged components must be encoded as a CDR encapsulation.
Therefore, the IOP module defines the Codec interface, so interceptors can encode and decode octet
sequences:

Codec operations
The Codec interface defines the following operations:

encode
converts the supplied any into an octet sequence, based on the encoding format effective for this
Codec . The returned octet sequence contains both the TypeCode and the data of the type.

Example5Codec interface

local interface Codec {
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::OctetSeq
encode(in any data
) raises (InvalidTypeForEncoding);

any
decode(in CORBA::OctetSeq data
) raises (FormatMismatch);

CORBA::OctetSeq
encode_value(in any data
) raises (InvalidTypeForEncoding);

any
decode_value(
in CORBA::OctetSeq data,
in CORBA::TypeCode tc
) raises (FormatMismatch, TypeMismatch);
};

Codec

- 452/599 -

decode
decodes the given octet sequence into an any , based on the encoding format effective for this Codec .

encode_value
converts the given any into an octet sequence, based on the encoding format effective for this Codec .
Only the data from the any is encoded.

decode_value
decodes the given octet sequence into an any based on the given TypeCode and the encoding format
effective for this Codec .

Creating a codec
The ORBInitInfo::codec_factory attribute returns a Codec factory, so you can provide Codec objects to
interceptors. This operation must be called during ORB initialization, through the ORB initializer.

Policy Factory
An ORB service can be associated with a user-defined policy. The PortableInterceptor module provides
the PolicyFactory interface, which applications can use to implement their own policy factories:

Policy factories are created during ORB initialization, and registered through the ORB initializer (see
Create and register policy factories).

local interface PolicyFactory {
CORBA::Policy
create_policy(
in CORBA::PolicyType type,
in any value
) raises (CORBA::PolicyError);
};

Policy Factory

- 453/599 -

ORB Initializer
ORB initializers implement interface PortableInterceptor::OrbInitializer :

As it initializes, the ORB calls the ORB initializer’s pre_init() and post_init() operations. pre_init() and
post_init() both receive an ORBInitInfo argument, which enables implementations to perform these
tasks:

Instantiate a PICurrent and allocates its slots for service data.

Register policy factories for specified policy types.

Create Codec objects, which enable interceptors to encode service context data as octet
sequences, and vice versa.

Register interceptors with the ORB.

Writing IOR Interceptors
IOR interceptors give an application the opportunity to evaluate a server’s effective policies, and modify
an object reference’s profiles before the server exports it. For example, if a server is secured by a
password policy, the object references that it exports should contain information that signals to
potential clients that they must supply a password along with requests on those objects.

The IDL interface for IOR interceptors is defined as follows:

Example6ORBInitializer interface

local interface ORBInitializer {
void
pre_init(in ORBInitInfo info);
void
post_init(in ORBInitInfo info);
};

• •

• •

• •

• •

ORB Initializer

- 454/599 -

Interception point
An IOR interceptor has a single interception point, establish_components() . The server-side ORB calls
establish_components() once for each POA on all registered IOR interceptors. A typical implementation
of establish_components() assembles the list of components to include in the profile of all object
references that a POA exports.

An implementation of establish_components() must not throw exceptions. If it does, the ORB ignores the
exception.

IORInfo
establish_components() gets an IORInfo object, which has the following interface:

add_ior_component_to_profile() is currently unimplemented.

local interface IORInterceptor : Interceptor {
void
establish_components(in IORInfo info);
};

Example7IORInfo interface

local interface IORInfo {
CORBA::Policy
get_effective_policy(in CORBA::PolicyType type);

void
add_ior_component(in IOP::TaggedComponent component);

add_ior_component_to_profile (
in IOP::TaggedComponent component,
in IOP::ProfileId profile_id
);
};

Note

Interception point

- 455/599 -

The sample application’s IOR interceptor implements establish_components() to perform the following
tasks on an object reference’s profile:

Get its password policy.

Set a TAG_REQUIRES_PASSWORD component accordingly.

• •

• •

Example8Implementing establish_components()

package
demos.portable_interceptor.access_control.acl_service;
import org.omg.CORBA.*;
import org.omg.PortableInterceptor.*;
import org.omg.IOP.*;
import
org.omg.IOP.CodecPackage.InvalidTypeForEncoding;
import
demos.portable_interceptor.access_control.acl_service.*

[1]
(#iorinfo)

class ACLIORInterceptorImpl
extends LocalObject
implements IORInterceptor
{
ACLIORInterceptorImpl(Codec codec)
{
m_codec = codec;
}
public String name()
{
return NAME;
}

public void establish_components(IORInfo ior_info)
{
AccessControl.PasswordPolicy pwd_policy = null;
try {

IORInfo

- 456/599 -

The sample application’s implementation of establish_components() executes as follows:

Extends org.omg.CORBA.LocalObject because the IOR interceptor is a local object.

Gets the effective password policy object for the POA by calling get_effective_policy() on the
IORInfo .

[2]
(#iorinfo)

Policy policy =
ior_info.get_effective_policy(
AccessControl.PASSWORD_POLICY_ID.value);
pwd_policy =
AccessControl.PasswordPolicyHelper.narrow(policy);
}

catch (INV_POLICY iv) {
// PasswordPolicy wasn't set - return immediately
return;
}
catch (BAD_PARAM ex) {
ex.printStackTrace();
System.exit(1);
}
Any cmpnt_data_any = ORB.init().create_any();

[3]
(#iorinfo)

cmpnt_data_any.insert_boolean(pwd_policy.requires_pass
word());
byte[] cmpnt_data = null;
try {

[4]
(#iorinfo)

cmpnt_data = m_codec.encode_value(cmpnt_data_any);
}
catch (InvalidTypeForEncoding ex) {
ex.printStackTrace();
System.exit(1);
}
// add TAG_REQUIRES_PASSWORD component to all profiles

[5]
(#iorinfo)

TaggedComponent component = new TaggedComponent(
AccessControlService.TAG_REQUIRES_PASSWORD.value,
cmpnt_data);

[6]
(#iorinfo)

ior_info.add_ior_component(component);
}

a. 1.

b. 2.

IORInfo

- 457/599 -

Gets the password policy value by calling requires_password() on the policy object.

Encodes the password policy value as an octet.

Instantiates a tagged component (IOP::TaggedComponent) and initializes it with the
TAG_REQUIRES_PASSWORD tag and encoded password policy value.

Adds the tagged component to the object reference’s profile by calling add_ior_component() .

Using RequestInfo Objects
Interception points for client and server interceptors receive ClientRequestInfo and ServerRequestInfo
objects, respectively. These derive from PortableInterceptor::RequestInfo , which defines operations and
attributes common to both.

Interface definition
The RequestInfo interface is defined as follows:

c. 3.

d. 4.

e. 5.

f. 6.

Example9RequestInfo interface

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;

readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;

Using RequestInfo Objects

- 458/599 -

A RequestInfo object provides access to much of the information that an interceptor requires to evaluate
a request and its service context data. For a full description of all attributes and operations, see the
CORBA Programmer’s Reference.

The validity of any given RequestInfo operation and attribute varies among client and server
interception points. For example, the result attribute is valid only for interception points receive_reply
on a client interceptor; and send_reply on a server interceptor. It is invalid for all other interception
points. Table 19 on page 345 and Table 20 on page 354 show which RequestInfo operations and
attributes are valid for a given interception point.

The Java implementation throws a NO_RESOURCES exception for the following attributes: arguments ,
exceptions , contexts , operation_context , and result .

Timeout attributes
A client might specify one or more timout policies on request or reply delivery. If portable interceptors
are present in the bindings, these interceptors must be aware of the relevant timeouts so that they can
bound any potentially blocking activities that they undertake.

The current OMG specification for portable interceptors does not account for timeout policy constraints;
consequently, Orbix provides its own derivation of the RequestInfo interface,
IT_PortableInterceptor::RequestInfo , which adds two attributes:

any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (
in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (
in IOP::ServiceId id);
};

Note

Timeout attributes

- 459/599 -

To access timeout constraints, interception point implementations can narrow their ClientRequestInfo or
ServerRequestInfo objects to this interface. The two attributes apply to different interception points, as
follows:

Table 18: Portable Interceptor Timeout Attributes

Writing Client Interceptors

Interception point definitions
Client interceptors implement the ClientRequestInterceptor interface, which defines five interception
points:

Example10IT_PortableInterceptor::RequestInfo interface attributes

module IT_PortableInterceptor
{
local interface RequestInfo : PortableInterceptor::RequestInfo
{
readonly attribute TimeBase::UtcT request_end_time;
readonly attribute TimeBase::UtcT reply_end_time;
};
};

Timeout
attribute

Relevant interception points

request_end_t
ime

send_request send_poll receive_request_service_contexts
receive_request

reply_end_ti
me

send_reply send_exception send_other receive_reply rece
ive_exception receive_other

Writing Client Interceptors

- 460/599 -

A client interceptor implements one or more of these operations.

In the password service example, the client interceptor provides an implementation for send_request ,
which encodes the required password in a service context and adds the service context to the object
reference. For implementation details, see Client Interceptor Tasks.

Client interceptor constructor
As noted earlier, the ORB initializer instantiates and registers the client interceptor. This interceptor’s
constructor is implemented as follows:

Example11ClientRequestInterceptor interface

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)
raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)
raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)
raises (ForwardRequest);
};

Client interceptor constructor

- 461/599 -

Client interceptor arguments
The client interceptor takes two arguments:

The PICurrent slot allocated by the ORB initializer to store password data.

An IOP::Codec , which is used to encode password data for service context data.

Interception Points
A client interceptor implements one or more interception points. During a successful request-reply
sequence, each client-side interceptor executes one starting interception point and one ending
interception point.

Starting interception points
Depending on the nature of the request, the ORB calls one of the following starting interception points:

send_request
lets an interceptor query a synchronously invoked request, and modify its service context data before
the request is sent to the server.

send_poll
lets an interceptor query an asynchronously invoked request, where the client polls for a reply. This
interception point currently applies only to deferred synchronous operation calls (see Invoking Deferred
Synchronous Requests)

Example12Client interceptor constructor

class ACLClientRequestInterceptorImpl
extends LocalObject
implements ClientRequestInterceptor
{
ACLClientRequestInterceptorImpl(int password_slot, Codec codec)
{
m_password_slot = password_slot;
m_codec = codec;
}
// ...

• •

• •

Client interceptor arguments

- 462/599 -

Ending interception points
Before the client receives a reply to a given request, the ORB executes one of the following ending
interception points on that reply:

receive_reply
lets an interceptor query information on a reply after it is returned from the server and before control
returns to the client.

receive_exception
is called when an exception occurs. It lets an interceptor query exception data before it is thrown to the
client.

receive_other
lets an interceptor query information that is available when a request results in something other than a
normal reply or an exception. For example: a request can result in a retry, as when a GIOP reply with a
LOCATION_FORWARD status is received; receive_other is also called on asynchronous calls, where the client
resumes control before it receives a reply on a given request and an ending interception point is called.

Interception Point Flow
For each request-reply sequence, only one starting interception point and one ending point is called on
a client interceptor. Each completed starting point is paired to an ending point. For example, if
send_request executes to completion without throwing an exception, the ORB calls one of its ending
interception points— receive_reply , receive_exception , or receive_other .

If multiple interceptors are registered on a client, the interceptors are traversed in order for outgoing
requests, and in reverse order for incoming replies.

Scenario 1: Request-reply sequence is successful
Interception points A and B are registered with the server ORB. The interception point flow shown in
Figure 42 depicts a successful reply-request sequence, where the server returns a normal reply:

Figure 42 Client interceptors process a normal reply.

Interception Point Flow

- 463/599 -

Scenario 2: Client receives LOCATION_FORWARD
If the server throws an exception or returns some other reply, such as LOCATION_FORWARD , the ORB directs
the reply flow to the appropriate interception points, as shown in Figure 43:

Figure 43 Client interceptors process a LOCATION_FORWARD reply.

Scenario 3: Exception aborts interception flow
Any number of events can abort or shorten the interception flow. Figure 44 shows the following
interception flow:

Interceptor B’s send_request throws an exception.

Because interceptor B’s start point does not complete, no end point is called on it, and interceptor C is
never called. Instead, the request flow returns to interceptor A’s receive_exception end point.

Figure 44 send_request throws an exception in a client-side interceptor

1. 1.

2. 2.

Interception Point Flow

- 464/599 -

Scenario 4: Interceptor changes reply
An interceptor can change a normal reply to a system exception; it can also change the exception it
receives, whether user or system exception to a different system exception. Figure 45 shows the
following interception flow:

The server returns a normal reply.

The ORB calls receive_reply on interceptor C.

Interceptor C’s receive_reply raises exception foo_x , which the ORB delivers to interceptor B’s
receive_exception .

Interceptor B’s receive_exception changes exception foo_x to exception foo_y .

Interceptor A’s receive_exception receives exception foo_y and returns it to the client.

Figure 45 Client interceptors can change the nature of the reply.

Interceptors must never change the CompletionStatus of the received exception.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Note

Interception Point Flow

- 465/599 -

ClientRequestInfo
Each client interception point gets a single ClientRequestInfo argument, which provides the necessary
hooks to access and modify client request data:

Table 19 shows which ClientRequestInfo operations and attributes are accessible to each client
interception point. In general, attempts to access an attribute or operation that is invalid for a given
interception point throw an exception of BAD_INV_ORDER with a standard minor code of 10.

Table 19: Client Interception Point Access to ClientRequestInfo

Example13ClientRequestInfo interface

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;

IOP::TaggedComponent
get_effective_component(in IOP::ComponentId id);
IOP::TaggedComponentSeq
get_effective_components(in IOP::ComponentId id);

CORBA::Policy
get_request_policy(in CORBA::PolicyType type);

void
add_request_service_context(
in IOP::ServiceContext service_context,
in boolean replace
);
};

ClientRequestInfo: s_req s_poll r_reply r_exep r_other

request_id y y y y y

operation y y y y y

arguments y1 y

ClientRequestInfo

- 466/599 -

1 a.When ClientRequestInfo is passed to send_request , the arguments list contains an entry for all
arguments, but only in and inout arguments are available.2 b.Access to forward_reference is valid only if
reply_status is set to LOCATION_FORWARD or LOCATION_FORWARD_PERMANENT .

ClientRequestInfo: s_req s_poll r_reply r_exep r_other

exceptions y y y y

contexts y y y y

operation_context y y y y

result y

response_expected y y y y y

sync_scope y y y y

reply_status y y y

forward_reference y2

get_slot y y y y y

get_request_service_context y y y y

get_reply_service_context y y y

target y y y y y

effective_target y y y y y

effective_profile y y y y y

received_exception y

received_exception_id y

get_effective_component y y y y

get_effective_components y y y y

get_request_policy y y y y

add_request_service_context y

ClientRequestInfo

- 467/599 -

Client Interceptor Tasks
A client interceptor typically uses a ClientRequestInfo to perform the following tasks:

Evaluate an object reference’s tagged components to determine an outgoing request’s service
requirements.

Obtain service data from PICurrent.

Encode service data as a service context.

Add service contexts to a request.

These tasks are usually implemented in send_request . Interceptors have a much wider range of
potential actions available to them—for example, client interceptors can call
get_request_service_context() , to evaluate the service contexts that preceding interceptors added to a
request. Other operations are specific to reply data or exceptions, and therefore can be invoked only by
the appropriate receive_ interception points.

This discussion confines itself to send_request and the tasks that it typically performs. For a full
description of other ClientRequestInfo operations and attributes, see the CORBA Programmer’s Reference.

In the sample application, the client interceptor provides an implementation for send_request , which
performs these tasks:

Evaluates each outgoing request for this tagged component to determine whether the request
requires a password.

Obtains service data from PICurrent

Encodes the required password in a service context

Adds the service context to the object reference:

Evaluating tagged components
The sample application’s implementation of send_request checks each outgoing request for tagged
component TAG_REQUIRES_PASSWORD by calling get_effective_component() on the interceptor’s
ClientRequestInfo :

• •

• •

• •

• •

• •

• •

• •

• •

Example14Using get_effective_component()

public void send_request(ClientRequestInfo
request_info)
{

Client Interceptor Tasks

- 468/599 -

[1](#evaluating-tagged-
components)

if (requires_password(request_info))
{ // ...
}
// ...

private boolean
requires_password(ClientRequestInfo
request_info)
{
// check if a TAG_REQUIRES_PASSWORD component
is present in the
// effective profile
//
TaggedComponent password_component = null;
try {

[2](#evaluating-tagged-
components)

password_component =
request_info.get_effective_component(
TAG_REQUIRES_PASSWORD.value);
}
catch (BAD_PARAM bp) {
// TAG_REQUIRES_PASSWORD component not
present; treat as not
// requiring a password
return false;
}

// decode component data
Any password_required_any = null;
try {

[3](#evaluating-tagged-
components)

password_required_any = m_codec.decode_value(
password_component.component_data,
ORB.init().get_primitive_tc(TCKind.tk_boolean)
);
}

catch (FormatMismatch ex) {
ex.printStackTrace();
System.exit(1);
}

Client Interceptor Tasks

- 469/599 -

The interception point executes as follows:

Calls the private method require_password() to determine whether a password is required.

get_effective_component() returns tagged component TAG_REQUIRES_PASSWORD from the request’s object
reference.

decode_value() is called on the interceptor’s Codec to decode the octet sequence into a CORBA::Any .
The call extracts the Boolean data that is embedded in the octet sequence.

The Any ’s Boolean value is extracted and returned to send_request() .

Obtaining service data
After the client interceptor verifies that the request requires a password, it calls RequestInfo::get_slot()
to obtain the client password from the appropriate slot:

catch (TypeMismatch ex) {
ex.printStackTrace();
System.exit(1);
}

[4](#evaluating-tagged-
components)

return
password_required_any.extract_boolean();
}

1. 1.

2. 2.

3. 3.

4. 4.

Client Interceptor Tasks

- 470/599 -

Encoding service context data
After the client interceptor gets the password string, it must convert the string and related data into a
CDR encapsulation, so it can be embedded in a service context that is added to the request. To perform
the data conversion, it calls encode_value on an IOP::Codec :

Adding service contexts to a request
After initializing the service context, the client interceptor adds it to the outgoing request by calling
add_request_service_context() :

Example15Calling RequestInfo::get_slot()

org.omg.CORBA.Any password_any = null;
try {
password_any = request_info.get_slot(m_password_slot);
}
catch (InvalidSlot ex) {
ex.printStackTrace();
System.exit(1);
}

Example16Calling IOP::Codec::encode_value()

byte[] password_context_data = null;
try {
password_context_data = m_codec.encode_value(password_any);
}
catch (InvalidTypeForEncoding ex) {
ex.printStackTrace();
System.exit(1);
}

Client Interceptor Tasks

- 471/599 -

Writing Server Interceptors
Server interceptors implement the ServerRequestInterceptor interface:

Example17Calling add_request_service_context()

ServiceContext password_service_context = new ServiceContext(
PASSWORD_SERVICE_ID.value, password_context_data);
// add service context to the request
request_info.add_request_service_context(
password_service_context, true);

Writing Server Interceptors

- 472/599 -

Interception Points
During a successful request-reply sequence, each server interceptor executes one starting interception
point and one intermediate interception point for incoming requests. For outgoing replies, a server
interceptor executes an ending interception point.

Starting interception point
A server interceptor has a single starting interception point:

receive_request_service_contexts
lets interceptors get service context information from an incoming request and transfer it to PICurrent
slots. This interception point is called before the servant manager is called. Operation parameters are
not yet available at this point.

Intermediate interception point
A server interceptor has a single intermediate interception point:

Example18ServerRequestInterceptor interface

local interface ServerRequestInterceptor : Interceptor {
void
receive_request_service_contexts(in ServerRequestInfo ri
) raises (ForwardRequest);
void
receive_request(in ServerRequestInfo ri
) raises (ForwardRequest);
void
send_reply(in ServerRequestInfo ri);
void
send_exception(in ServerRequestInfo ri
) raises (ForwardRequest);
void
send_other(in ServerRequestInfo ri
) raises (ForwardRequest);
};

Interception Points

- 473/599 -

receive_request
lets an interceptor query request information after all information, including operation parameters, is
available.

Ending interception points
An ending interception point is called after the target operation is invoked, and before the reply returns
to the client. The ORB executes one of the following ending interception points, depending on the
nature of the reply:

send_reply
lets an interceptor query reply information and modify the reply service context after the target
operation is invoked and before the reply returns to the client.

send_exception
is called when an exception occurs. An interceptor can query exception information and modify the
reply service context before the exception is thrown to the client.

send_other
lets an interceptor query the information available when a request results in something other than a
normal reply or an exception. For example, a request can result in a retry, as when a GIOP reply with a
LOCATION_FORWARD status is received.

Interception Point Flow
For a given server interceptor, the flow of execution follows one of these paths:

receive_request_service_contexts completes execution without throwing an exception. The ORB
calls that interceptor’s intermediate and ending interception points. If the intermediate point
throws an exception, the ending point for that interceptor is called with the exception.

receive_request_service_contexts throws an exception. The interceptor’s intermediate and ending
points are not called.

If multiple interceptors are registered on a server, the interceptors are traversed in order for incoming
requests, and in reverse order for outgoing replies. If one interceptor in the chain throws an exception
in either its starting or intermediate points, no other interceptors in the chain are called; and the
appropriate ending points for that interceptor and all preceding interceptors are called.

• •

• •

Interception Point Flow

- 474/599 -

Scenario 1: Target object throws exception
Interceptors A and B are registered with the server ORB. Figure 46 shows the following interception
flow:

The interception point receive_request_server_contexts processes an incoming request on interceptor
A, then B. Neither interception point throws an exception.

Intermediate interception point receive_request processes the request first on interceptor A, then B.
Neither interception point throws an exception.

The ORB delivers the request to the target object. The object throws an exception.

The ORB calls interception point send_exception , first on interceptor B., then A, to handle the
exception.

The ORB returns the exception to the client.

Figure 46 Server interceptors receive request and send exception thrown by target object.

Scenario 2: Exception aborts interception flow
Any number of events can abort interception flow. Figure 47 shows the following interception flow.

A request starts server-side interceptor processing, starting with interceptor A’s
receive_request_service_contexts . The request is passed on to interceptor B.

Interceptor B’s receive_request_service_contexts throws an exception. The ORB aborts interceptor flow
and returns the exception to interceptor A’s end interception point send_exception .

The exception is returned to the client.

Because interceptor B’s start point does not complete execution, its intermediate and end points are
not called. Interceptor A’s intermediate point receive_request also is not called.

Figure 47 receive_request_service_contexts throws an exception and interception flow is aborted.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

1. 1.

2. 2.

3. 3.

Interception Point Flow

- 475/599 -

Scenario 3: Interceptors change reply type
An interceptor can change a normal reply to a system exception; it can also change the exception it
receives, whether user or system exception to a different system exception. Figure 48 shows the
following interception flow:

The target object returns a normal reply.

The ORB calls send_reply on server interceptor C.

Interceptor C’s send_reply interception point throws exception foo_x , which the ORB delivers to
interceptor B’s send_exception .

Interceptor B’s send_exception changes exception foo_x to exception foo_y , which the ORB delivers to
interceptor A’s send_exception .

Interceptor A’s send_exception returns exception foo_y to the client.

Figure 48 Server interceptors can change the reply type.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Interception Point Flow

- 476/599 -

Interceptors must never change the CompletionStatus of the received exception.

ServerRequestInfo
Each server interception point gets a single ServerRequestInfo argument, which provides the necessary
hooks to access and modify server request data:

Note

Example19ServerRequestInfo interface

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;
readonly attribute CORBA::OctetSeq object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute CORBA::RepositoryId
target_most_derived_interface;

CORBA::Policy
get_server_policy(in CORBA::PolicyType type);

void
set_slot(
in SlotId id,
in any data
) raises (InvalidSlot);

boolean
target_is_a(in CORBA::RepositoryId id);

ServerRequestInfo

- 477/599 -

Table 20 shows which ServerRequestInfo operations and attributes are accessible to server interception
points. In general, attempts to access an attribute or operation that is invalid for a given interception
point raise an exception of BAD_INV_ORDER with a standard minor code of 10.

Table 20: Server Interception Point Access to ServerRequestInfo

void
add_reply_service_context(
in IOP::ServiceContext service_context,
in boolean replease
);
};

ServerRequestInfo: r_req_

serv_cxts

r_req s_reply s_excep s_other

request_id y y y y y

operation y y y y y

arguments1 y y y

exceptions y y y y

contexts y y y y

operation_context y y

result y

response_expected y y y y y

sync_scope y y y y y

reply_status y y y

forward_reference y

get_slot y y y y y

get_request_service_context y y y y y

get_reply_service_context y y y

ServerRequestInfo

- 478/599 -

1 a.When ClientRequestInfo is passed to send_request , the arguments list contains an entry for all
arguments, but only in and inout arguments are available.

Server Interceptor Tasks
A server interceptor typically uses a ServerRequestInfo to perform the following tasks:

Get server policies.

Get service contexts from an incoming request and extract their data.

The sample application implements receive_request_server_contexts only. The requisite service context
data is available at this interception point, so it is capable of executing authorizing or disqualifying
incoming requests. Also, unnecessary overhead is avoided for unauthorized requests: by throwing an
exception in receive_request_server_contexts , the starting interception point fails to complete and all
other server interception points are bypassed.

This discussion confines itself to receive_request_server_contexts and the tasks that it typically performs.
For a description of other ServerRequestInfo operations and attributes, see the CORBA Programmer’s
Reference.

ServerRequestInfo: r_req_

serv_cxts

r_req s_reply s_excep s_other

sending_exception y

object_id y

adapter_id y

target_most_derived_interface y

get_server_policy y y y y y

set_slot y y y y y

target_is_a y

add_reply_service_context y y y y y

• •

• •

Server Interceptor Tasks

- 479/599 -

Get server policies
The sample application’s receive_request_server_contexts implementation obtains the server’s password
policy in order to compare it to the password that accompanies each request. In order to do so, it calls
get_server_policy() on the interception point’s ServerRequestInfo :

Get service contexts
After receive_request_server_contexts gets the server’s password policy, it needs to compare it to the
client password that accompanies the request. The password is encoded as a service context, which is
accessed through its identifier PASSWORD_SERVICE_ID :

Example20Calling get_server_policy()

// ...
import demos.portable_interceptor.access_control.acl_service.*;
public void receive_request_service_contexts(
ServerRequestInfo request_info)

{
// determine whether password protection is required by
// the effective policies
AccessControl.PasswordPolicy password_policy = null;
try {
password_policy = PasswordPolicyHelper.narrow(
request_info.get_server_policy(
AccessControl.PASSWORD_POLICY_ID.value));
}

catch (INV_POLICY ex) {
// password policy not set
return;
}

catch (BAD_PARAM ex) {
ex.printStackTrace();
System.exit(1);
}
// ...

Server Interceptor Tasks

- 480/599 -

Example21

// ...
if (password_policy != null
&& password_policy.requires_password())
{
// check that the correct password was sent with
request
if (!check_password(
request_info, password_policy.password()))
{
throw new NO_PERMISSION(
0xDEADBEEF, CompletionStatus.COMPLETED_NO);
}
}
// ...

private boolean check_password(ServerRequestInfo
request_info,
String expected_password)
{
org.omg.IOP.ServiceContext
password_service_context = null;
try {
// get the password service context ...

[1](#get-service-
contexts)

password_service_context =
request_info.get_request_service_context(
AccessControlService.PASSWORD_SERVICE_ID.value);
}
catch (BAD_PARAM bp) {
// PASSWORD_SERVICE_ID service context not
present in request
return false;
}
// decode context data
Any password_any = null;
try {

Server Interceptor Tasks

- 481/599 -

The interception point executes as follows:

Calls get_request_service_context() with an argument of AccessControlService::PASSWORD_SERVICE_ID . If
successful, the call returns with a service context that contains the client password.

Calls decode_value() on the interceptor’s Codec to decode the service context data into a CORBA::Any .
The call specifies to extract the string data that is embedded in the octet sequence.

Extracts the Any’s string value and compares it to the server password. If the two strings match, the
request passes authorization and is allowed to proceed; otherwise, an exception is thrown back to the
client.

[2](#get-service-
contexts)

password_any = m_codec.decode_value(
password_service_context.context_data,
ORB.init().get_primitive_tc(TCKind.tk_string));
}
catch (FormatMismatch ex) {
ex.printStackTrace();
System.exit(1);
}

catch (TypeMismatch ex) {
ex.printStackTrace();
System.exit(1);
}
// compare the passwords

[3](#get-service-
contexts)

String received_password =
password_any.extract_string();
return
expected_password.equals(received_password);
}

1. 1.

2. 2.

3. 3.

Server Interceptor Tasks

- 482/599 -

Registering Portable Interceptors
Portable interceptors and their components are instantiated and registered during ORB initialization,
through an ORB initializer. An ORB initializer implements its pre_init() or post_init() operation, or
both. The client and server applications must register the ORB initializer before calling ORB_init() .

Implementing an ORB Initializer
The sample application’s ORB initializer implements pre_init() to perform these tasks:

Obtain PICurrent and allocate a slot for password data.

Encapsulate PICurrent and the password slot identifier in an AccessControl::Current object, and
register this object with the ORB as an initial reference.

Register a password policy factory.

Create Codec objects for the application’s interceptors, so they can encode and decode service
context data and tagged components.

Register interceptors with the ORB.

Obtain PICurrent
In the sample application, the client application and client interceptor use PICurrent to exchange
password data:

The client thread places the password in the specified PICurrent slot.

The client interceptor accesses the slot to obtain the client password and add it to outgoing
requests.

In the sample application, pre_init() calls the following operations on ORBInitInfo :

allocate_slot_id() allocates a slot and returns the slot’s identifer.

resolve_initial_references("PICurrent") returns PICurrent.

• •

• •

• •

• •

• •

• •

• •

1. 1.

2. 2.

Example22Obtaining PICurrent

public void pre_init(ORBInitInfo init_info)
{
// reserve a slot for AccessControl::Current

Registering Portable Interceptors

- 483/599 -

Register an initial reference
After the ORB initializer obtains PICurrent and a password slot, it must make this information available
to the client thread. To do so, it instantiates an AccessControl::Current object. This object encapsulates:

PICurrent and its password slot

Operations that access slot data

The AccessControl::Current object has the following IDL definition:

[1](#obtain-
picurrent)

int password_slot = init_info.allocate_slot_id();
// get a reference to PICurrent
org.omg.PortableInterceptor.Current pi_current =
null;
try {

[2](#obtain-
picurrent)

org.omg.CORBA.Object obj
init_info.resolve_initial_references("PICurrent")
;
pi_current =
org.omg.PortableInterceptor.CurrentHelper.narrow(
obj);
}

catch (InvalidName ex) {
ex.printStackTrace();
System.exit(1);
}

catch (BAD_PARAM ex) {
ex.printStackTrace();
System.exit(1);
}
// ...

• •

• •

Implementing an ORB Initializer

- 484/599 -

The application implements AccessControl::Current as follows:

Example23AccessControl::Current interface

module AccessControl {
// ...
local interface Current : CORBA::Current {
attribute string password;
};
};

Example24Implementing an AccessControl::Current object

class ACLCurrentImpl
extends LocalObject
implements demos.portable_interceptor.access_control.acl_service.
AccessControl.Current

{
ACLCurrentImpl(org.omg.PortableInterceptor.Current pi_current,
int password_slot)
{
m_pi_current = pi_current;
m_password_slot = password_slot;
}

public String password()
{
// get password from PICurrent slot
Any password_any = null;
try {
password_any = m_pi_current.get_slot(m_password_slot);
}

catch (InvalidSlot ex) {
ex.printStackTrace();
System.exit(1);
}

Implementing an ORB Initializer

- 485/599 -

With AccessControl::Current thus defined, the ORB initializer performs these tasks:

Instantiates the AccessControl::Current object.

Registers it as an initial reference.

return password_any.extract_string();
}

public void password(String password)
{
// set password in PICurrent slot
try {
System.out.println("setting password from PICurrrent slot");
Any password_any = ORB.init().create_any();
password_any.insert_string(password);
m_pi_current.set_slot(m_password_slot, password_any);
}

catch (InvalidSlot ex) {
ex.printStackTrace();
System.exit(1);
}
}
// ...
}

1. 1.

2. 2.

Example25Registering AccessControl::Current as an initial reference

try {

[1](#register-an-initial-
reference)

demos.portable_interceptor.access_control.
acl_service.
AccessControl.Current acl_current =
new ACLCurrentImpl(pi_current,
password_slot);

Implementing an ORB Initializer

- 486/599 -

Create and register policy factories
The sample application’s IDL defines the following password policy to provide password protection for
the server’s POAs.

During ORB initialization, the ORB initializer instantiates and registers a factory for password policy
creation:

[2](#register-an-initial-
reference)

init_info.register_initial_reference(
"AccessControlCurrent", acl_current);
}
catch (InvalidName ex) {
ex.printStackTrace();
System.exit(1);
}

Example26Defining a password policy

module AccessControl {
const CORBA::PolicyType PASSWORD_POLICY_ID = 0xBEEF;
struct PasswordPolicyValue {
boolean requires_password;
string password;
};

local interface PasswordPolicy : CORBA::Policy {
readonly attribute boolean requires_password;
readonly attribute string password;
};

local interface Current : CORBA::Current {
attribute string password;
};
};

Implementing an ORB Initializer

- 487/599 -

For example, a server-side ORB initializer can register a factory to create a password policy, to provide
password protection for the server’s POAs.

Create Codec objects
Each portable interceptor in the sample application requires a PortableInterceptor::Codec in order to
encode and decode octet data for service contexts or tagged components. The ORB initializer obtains a
Codec factory by calling ORBInitInfo::codec_factory , then creates a Codec :

When the ORB initializer instantiates portable interceptors, it supplies this Codec to the interceptor
constructors.

Register interceptors
The sample application relies on three interceptors:

An IOR interceptor that adds a TAG_PASSWORD_REQUIRED component to IOR’s that are generated by
the server application.

A client interceptor that attaches a password as a service context to outgoing requests.

PolicyFactory password_policy_factory =
new PasswordPolicyFactoryImpl();
init_info.register_policy_factory(
AccessControl.PASSWORD_POLICY_ID.value,
password_policy_factory);

Example27Creating a Codec object

org.omg.IOP.Codec cdr_codec = null;
try {
Encoding cdr_encoding = new Encoding(
org.omg.IOP.ENCODING_CDR_ENCAPS.value, (byte)1, (byte)2);
cdr_codec =
init_info.codec_factory().create_codec(cdr_encoding);
}

catch (UnknownEncoding ex) {
ex.printStackTrace();
System.exit(1);
}

• •

• •

Implementing an ORB Initializer

- 488/599 -

A server interceptor that checks a request’s password before allowing it to continue.

The order in which the ORB initializer registers interceptors has no effect on their runtime
ordering. The order in which portable initializers are called is determined by their order in the
client and server binding lists (see Setting Up Orbix to Use Portable Interceptors)

The ORB initializer instantiates and registers these interceptors as follows:

• •

Note

Example28Registering interceptors

// Register IOR interceptor
try {
IORInterceptor ior_interceptor =
new ACLIORInterceptorImpl(cdr_codec);
init_info.add_ior_interceptor(ior_interceptor);
}

catch (DuplicateName ex) {
ex.printStackTrace();
System.exit(1);
}

// Register client interceptor
try {
ClientRequestInterceptor client_interceptor =
new ACLClientRequestInterceptorImpl(password_slot, cdr_codec);
init_info.add_client_request_interceptor(client_interceptor);
}

catch (DuplicateName ex) {
ex.printStackTrace();
System.exit(1);
}

Implementing an ORB Initializer

- 489/599 -

Registering an ORBInitializer
An application registers an ORB initializer via JAVA ORB properties as follows:

Service is the string name of a class that implements org.omg.PortableInterceptor.ORBInitializer . During
initialization of a new ORB (an ORB with a unique identifier), ORB initializers are registered in the
following steps:

All org.omg.PortableInterceptor.ORBInitializerClass ORB properties are collected and the Service
string is extracted.

An object is instantiated with Service as its class name.

The ORB initializer’s pre_init and post_init methods are called.

Setting Up Orbix to Use Portable Interceptors
The following setup requirements apply to registering portable interceptors with the Orbix
configuration. At the appropriate scope, add:

portable_interceptor plugin to orb_plugins .

Client interceptor names to client_binding_list .

Server interceptor names to server_binding_list .

// Register server interceptor
try {
ServerRequestInterceptor server_interceptor =
new ACLServerRequestInterceptorImpl(cdr_codec);
init_info.add_server_request_interceptor(server_interceptor);
}

catch (DuplicateName ex) {
ex.printStackTrace();
System.exit(1);
}

org.omg.PortableInterceptor.ORBInitializerClass.Service

1. 1.

2. 2.

3. 3.

• •

• •

• •

Registering an ORBInitializer

- 490/599 -

You can only register portable interceptors for ORBs created in programs that are linked with the
shared library it_portable_interceptor . If an application has unnamed (anonymous) portable
interceptors, add AnonymousPortableInterceptor to the client and server binding lists. All unnamed
portable interceptors insert themselves at that location in the list.

The binding lists determine the order in which interceptors are called during request processing.

For more information about Orbix configuration, see the Application Server Platform Administrator’s
Guide.

Note

Setting Up Orbix to Use Portable Interceptors

- 491/599 -

Bidirectional GIOP

The usual GIOP connection semantics allow request messages to be sent in only one direction over a
connection-oriented transport protocol. Recent changes to the GIOP standard allow this restriction to be
relaxed in certain circumstances, making it possible to use connections in a bidirectional mode.

Introduction to Bidirectional GIOP
The original OMG General Inter-ORB Protocol (GIOP) standard specified that client/server connections
are unidirectional, in the sense that GIOP request messages can be sent in one direction only (from
client to server).

There are certain scenarios, however, where it is important to lift the unidirectional constraint on
connections. For example, when a client connects to a server through a firewall, it is usually impossible
for the server to open a new TCP/IP connection back to the client. In this scenario, the only feasible
option is to re-use the existing incoming connection by making it bidirectional.

Bidirectional GIOP draft specification
At the time of writing, a draft specification for bidirectional GIOP is described in the OMG firewall
submission:

Features
Orbix’s implementation of bidirectional GIOP has the following features:

http://www.omg.org/docs/orbos/01-08-03.pdf

Bidirectional GIOP

- 492/599 -

Compliant with the modified bidirectional GIOP approach described in the firewall submission.

Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4 NegotiateSession messages).

Decoupled from IIOP, so that it can be used over arbitrary connection-oriented transports (for
example, SHMIOP).

Supports weak BiDirId s initially.

Supports bidirectional invocations on legacy Orbixx callback object references in order to facilitate
phased migration to Orbix1.

Configuration versus programming approach
There are essentially two alternative approaches you can take to enabling bidirectional GIOP in your
Orbix applications, as follows:

Configuration approach.

Programming approach.

Configuration approach
The configuration approach to enabling bidirectional GIOP has the advantage of being relatively easy
to do, because it does not require an application re-build.

On the other hand, this approach has the disadvantage that it is coarse grained: that is, the relevant
bidirectional policies are applied to all of the CORBA objects, object references and POA instances.

For details of this approach, see the Orbix Administrator’s Guide.

Programming approach
The programming approach to enabling bidirectional GIOP has the advantage that you can apply it at
any level of granularity: ORB, POA, thread or object. In general, it is better to apply a fine-grained
approach—that is, enabling bidirectional GIOP only for those objects that really need it.

Bidirectional GIOP incurs a small performance penalty, due to the following overheads: extra
component added to IORs, extra service context added to request messages, checking for bidirectional
policy compatibility. By enabling bidirectional GIOP only where it is needed, you can minimize this
performance penalty.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

• •

• •

Configuration versus programming approach

- 493/599 -

Bidirectional GIOP Policies

Overview
Bidirectional GIOP is enabled and controlled by setting a variety of CORBA policies. The bidirectional
policies are defined by two different IDL modules, as follows:

IDL for standard policies—defined by the OMG.

IDL for proprietary policies—defined by Rocket Software.

IDL for standard policies
The OMG draft specification for bidirectional GIOP defines three bidirectional policies. These policies
are defined in the BiDirPolicy IDL module as shown in Example 29.

• •

• •

Example29The BiDirPolicy Module

// IDL

module BiDirPolicy

{

typedef unsigned short BidirectionalPolicyValue;

const BidirectionalPolicyValue ALLOW = 0;

const BidirectionalPolicyValue DENY = 1;

// to be assigned by OMG (using temporary IDs

// allocated from IONA namespace)

//

const CORBA::PolicyType BI_DIR_EXPORT_POLICY_TYPE = 0x49545F7C;

const CORBA::PolicyType BI_DIR_OFFER_POLICY_TYPE = 0x49545F7D;

Bidirectional GIOP Policies

- 494/599 -

BidirectionalExportPolicy
The BiDirPolicy::BidirectionalExportPolicy is a policy that is applied to POA instances on the client side
(in this context, the term client here designates the process that opens the bidirectional connection).
There are two alternative values for this policy:

BiDirPolicy::ALLOW —indicates that the CORBA objects activated by this POA are able to receive
callbacks through a bidirectional GIOP connection.

BiDirPolicy::DENY (the default)—the bidirectional export policy is disabled.

const CORBA::PolicyType BI_DIR_ACCEPT_POLICY_TYPE = 0x49545F7E;

local interface BidirectionalExportPolicy : CORBA::Policy

{

readonly attribute BidirectionalPolicyValue value;

};

local interface BidirectionalOfferPolicy : CORBA::Policy

{

readonly attribute BidirectionalPolicyValue value;

};

local interface BidirectionalAcceptPolicy : CORBA::Policy

{

readonly attribute BidirectionalPolicyValue value;

};

};

• •

• •

BidirectionalExportPolicy

- 495/599 -

In practice, when the BidirectionalExportPolicy is enabled on a POA instance, an ID, GIOP::BiDirId , is
generated for the POA. The BiDirId is used to identify the POA in the context of managing bidirectional
connections. In particular, the BiDirId is embedded in IORs generated by this POA (encoded in a
TAG_BI_DIR_GIOP IOR component).

BidirectionalOfferPolicy
The BiDirPolicy::BidirectionalOfferPolicy is a policy that can be applied to object references on the
client side (that is, object references whose operations are invoked by the client, not callback object
references created by the client). There are two alternative values for this policy:

BiDirPolicy::ALLOW —indicates that the outgoing connection used by this object reference will be
offered as a bidirectional GIOP connection.

BiDirPolicy::DENY (the default)—the bidirectional offer policy is disabled.

The mechanism for making a bidirectional offer is based on sending a list of BiDirId ’s in a
GIOP::BI_DIR_GIOP_OFFER service context. Hence, the bidirectional offer is not made until you invoke an
operation on the offer-enabled object reference.

BidirectionalAcceptPolicy
The BiDirPolicy::BidirectionalAcceptPolicy is a policy that can be applied to callback object references on
the server side. Normally, the bidirectional accept policy should be overridden only on callback object
references whose IOR could reasonably be expected to contain a BiDirId component—otherwise the
bidirectional accept policy has no effect. There are two alternative values for this policy:

BiDirPolicy::ALLOW —indicates that the callback object reference should attempt to re-use one of
the incoming connections to send invocation requests back to the client.

BiDirPolicy::DENY (the default)—the bidirectional accept policy is disabled.

When the server first invokes an operation on the callback object reference, Orbix extracts the BiDirId
from the associated IOR and attempts to match this BiDirId with one of the offered incoming
connections. Successful re-use of an incoming connection requires a BiDirId match and compatible
policies.

• •

• •

• •

• •

BidirectionalOfferPolicy

- 496/599 -

IDL for proprietary policies
Orbix defines some proprietary bidirectional GIOP policies, in addition to the policies defined by the
OMG draft specification. These policies are defined in the IT_BiDirPolicy IDL module as shown in
Example 30.

Example30The IT_BiDirPolicy Module

// IDL

...

module IT_BiDirPolicy

{

const CORBA::PolicyType BI_DIR_ID_GENERATION_POLICY_ID =

IT_PolicyBase::IONA_POLICY_ID + 62;

const CORBA::PolicyType BI_DIR_GEN3_ACCEPT_POLICY_ID =

IT_PolicyBase::IONA_POLICY_ID + 65;

typedef unsigned short BiDirIdGenerationPolicyValue;

const BiDirIdGenerationPolicyValue RANDOM = 0;

const BiDirIdGenerationPolicyValue REPEATABLE = 1;

local interface BiDirIdGenerationPolicy : CORBA::Policy

{

readonly attribute BiDirIdGenerationPolicyValue value;

};

local interface BidirectionalGen3AcceptPolicy : CORBA::Policy

IDL for proprietary policies

- 497/599 -

BiDirIdGenerationPolicy
The IT_BiDirPolicy::BiDirIdGenerationPolicy is a proprietary policy that affects the way GIOP::BiDirId ’s
are generated. It is applied to POA instances on the client side and must be used in combination with
the BiDirPolicy::BidirectionalExportPolicy . There are two alternative values for this policy:

IT_BiDirPolicy::RANDOM (the default)—the BidDirId combines a 32-bit endpoint creation timestamp
and 128 bit hash/digest of the endpoint ID. The use of the timestamp makes accidental clashes
extremely unlikely.

IT_BiDirPolicy::REPEATABLE —the BiDirId is composed entirely of a 160 bit hash/digest of the
endpoint ID. Accidental clashes are possible if similar lengthy fully qualified POA names are
extensively used in the same location domain, but the probability of a clash is still very low.

If callback object references are intended to be persistent, the REPEATABLE policy value must be
chosen to ensure that the same BiDirId is generated over subsequent re-activations of the client
process. In the usual callback scenario, however, the callback object references are transient and
the RANDOM policy value is applicable.

BidirectionalGen3AcceptPolicy
The IT_BiDirPolicy::BidirectionalGen3AcceptPolicy is a policy that can be applied to Orbix 3 callback
object references on the server side. This policy is provided to facilitate interoperability between Orbix
6.x servers and Orbix 3 legacy clients. The effect of this policy is analogous to the
BidirectionalAcceptPolicy , except that it applies to Orbix 3 callbacks.

There are two alternative values for this policy:

BiDirPolicy::ALLOW —indicates that the Orbix 3 callback object reference should attempt to re-use
one of the incoming connections to send invocation requests back to the Orbix 3 client.

{

readonly attribute BiDirPolicy::BidirectionalPolicyValue value;

};

};

• •

• •

Note

• •

BiDirIdGenerationPolicy

- 498/599 -

BiDirPolicy::DENY (the default)—the bidirectional Orbix 3 accept policy is disabled.

For more details on interoperability with Orbix 3, see Interoperability with Orbix Generation 3.

Policy granularity
As usual for CORBA policies, these bidirectional policies can be defined at different levels of granularity.
The different levels of granularity for which you can define each policy are summarized in Table 21.

Table 21: Levels of Granularity for Bidirectional Policies

• •

Bidirectional GIOP Policy Levels of Granularity

BiDirPolicy::BidirectionalExportPolicy ORB

POA

BiDirPolicy::BidirectionalOfferPolicy ORB

Thread

Object reference

BiDirPolicy::BidirectionalAcceptPolicy ORB

Thread

Object reference

IT_BiDirPolicy::BiDirIdGenerationPolicy ORB

POA

Policy granularity

- 499/599 -

Configuration Prerequisites
This subsection describes the basic configuration prerequisites for using bidirectional GIOP in an Orbix
6.x domain.

You would normally not have to configure these configuration settings manually. In a generated
configuration domain, by default, your client and server binding lists are set to include BiDir_GIOP .

Client configuration
On the client-side, the plugins:giop:message_server_binding_list should include an entry for BiDir_GIOP ,
for example:

This enables the existing outgoing message interceptor chain to be re-used for an incoming server
binding.

Bidirectional GIOP Policy Levels of Granularity

IT_BiDirPolicy::BidirectionalGen3AcceptPolicy ORB

Thread

Object reference

Note

plugins:giop:message_server_binding_list=
["BiDir_GIOP","GIOP"];

Configuration Prerequisites

- 500/599 -

Server configuration
On the server-side, the binding:client_binding_list should include an entry for BiDir_GIOP , for example:

This enables the existing incoming message interceptor chain to be re-used, so that the outgoing client
binding dispatches the callback invocation.

If your server needs to interoperate with Orbix 3 legacy clients, the binding:client_binding_list
should also include a "BiDir_Gen3" entry. See Interoperability with Orbix Generation 3.

Basic BiDir Scenario
This section describes the stock feed demonstration, which is a sample bidirectional GIOP scenario.
Some code examples extracted from the stock feed demonstration show you how to set the
bidirectional GIOP policies on the client side and on the server side.

In this section
This section contains the following subsections:

 binding:client_binding_list = ["OTS+BiDir_GIOP", "BiDir_GIOP",
"OTS+GIOP+IIOP", "GIOP+IIOP", ...];

Note

The Stock Feed Demonstration page 371

Setting the Export Policy page 373

Setting the Offer Policy page 374

Server configuration

- 501/599 -

The Stock Feed Demonstration
This section describes the stock feed demonstration, a basic bidirectional GIOP scenario. The stock feed
system consists of one central server, which gathers information about stock price changes, and many
clients, which can register an interest in receiving stock data.

The central server stores a list of callback object references for all the clients that are registered with it.
As soon as a stock price changes occurs, the server iterates over the list of callback object references,
calling NotifyPriceChange() on each one. It is these callback invocations which can potentially be
configured to use bidirectional GIOP.

Demonstration code
The stock feed demonstration code is located in the following directory:

IDL for stock feed scenario
Example 31 shows the IDL for the stock feed demonstration, which consists of two IDL interfaces:
StockInfoCB and RegStockInfo . These IDL interfaces are identical to the ones used by the corresponding
demonstration in the Orbix Generation 3 product.

Setting the Accept Policy page 376

OrbixInstallDir/asp/*Version*/demos/corba/orb/bidir_giop

Example31IDL for the Stock Feed Demonstration

// IDL

interface StockInfoCB

{

oneway void NotifyPriceChange(

in string stock_name,

in float new_price

);

The Stock Feed Demonstration

- 502/599 -

Stock feed scenario
Figure 49 gives you an overview of the stock feed demonstration, where a number of clients register
their interest in receiving callbacks from the stock feed server.

Figure 49 Basic Bidirectional GIOP Scenario—Stock Feed

};

interface RegStockInfo

{

void Register(in StockInfoCB callback);

void Deregister(in StockInfoCB callback);

void Notify(in float new_price);

};

The Stock Feed Demonstration

- 503/599 -

Steps to establish a callback
Figure 49 shows the steps that occur to establish a stock feed callback, as follows:

Stage Description

1 The client creates a POA instance, which has the BidirectionalExportPoli
cy enabled, and activates a StockInfoCB CORBA object, which is responsible

for receiving callbacks.

For the purposes of bidirectional GIOP, the POA is identified by the ID,
BiDirId_X .

2 The client instantiates a RegStockInfo object reference, with the Bidirecti
onalOfferPolicy enabled (the RegStockInfo object reference might have

been retrieved from the naming service or from a stringified IOR).

3 The client invokes the Register() operation on the RegStockInfo object. A
couple of things happen at this point:

- The request message for the Register operation includes the BiDirId_X
ID in a service context. This signals that the connection is offering to receive
callbacks to the POA identified by BiDirId_X .

- The Register() operation’s argument is a reference to the StockInfoCB
object, which will be used to accept callbacks from the server. The
StockInfoCB object reference also has the BiDirId_X ID embedded in it.

4 If the BidirectionalAcceptPolicy policy is not already enabled at the level
of the current ORB or the current thread, the server can enable this policy at the
object level after receiving the StockInfoCB object reference (creating a new
accept-enabled copy of the object reference).

The Stock Feed Demonstration

- 504/599 -

Setting the Export Policy
This subsection shows you how to set the BiDirPolicy::BidirectionalExportPolicy policy on a POA
instance. This POA instance can then be used to activate CORBA objects that are intended to receive
callbacks through a bidirectional GIOP connection.

Policy granularity
In this example, the BiDirPolicy::BidirectionalExportPolicy policy is set at POA granularity, which is the
finest level of granularity for this policy.

Java example
Example 1 is a Java example that shows how to create a POA instance with the BidirectionalExportPolicy
policy enabled. This POA instance is used on the client side to activate client callback objects.

Call the org.omg.CORBA.ORB.create_policy() method to create a BidirectionalExportPolicy object and then
include this policy in the list of policies passed to the org.omg.PortableServer.POA.create_POA() method.

Stage Description

5 Some time later, the server makes a callback on the client, calling the NotifyP
riceChange() operation on the StockInfoCB object reference. Because the

bidirectional accept policy is enabled on the object reference, Orbix checks to
see whether it can re-use an existing incoming connection for the callback. By
matching the GIOP BiDirId in the object reference to the GIOP BiDirId
offered by a connection, Orbix finds a connection that it can re-use in
bidirectional mode.

Example1Java Setting the BidirectionalExportPolicy Policy

// Java

// create callback POA with the effective

// BidirectionalExportPolicy set to ALLOW in order to allow an

// appropriate BiDirId be published in the callback reference

//

POA callback_poa = null;

Setting the Export Policy

- 505/599 -

try {
...

System.out.println("creating the callback POA");

Any export_value = orb.create_any();

BidirectionalPolicyValueHelper.insert(

export_value,

ALLOW.value

);

Policy [] poa_policies = {

orb.create_policy(BI_DIR_EXPORT_POLICY_TYPE.value,

export_value)

};

callback_poa = root_poa.create_POA("callback",

root_poa.the_POAManager(),

poa_policies);

}

catch (/* ... */)

{

// Error handling ...

// (Not shown)

Setting the Export Policy

- 506/599 -

Setting the Offer Policy
This subsection shows you how to set the BiDirPolicy::BidirectionalOfferPolicy policy on an object
reference. After invoking an operation for the first time, the connection used by the object reference
becomes available for bidirectional GIOP use. It does not matter whether the object reference opens a
new connection or re-uses an existing connection.

For example, if an offer-enabled object reference re-uses an existing outgoing uni-directional
connection, that connection becomes available for bidirectional use after the first invocation on the
offer-enabled object reference.

It might not be necessary to invoke an operation explicitly to make a connection available for
bidirectional use. Sometimes operations are invoked implicitly—as, for example, when the narrow()
function implicitly forces a remote _is_a() invocation.

Policy granularity
In this example, the BiDirPolicy::BidirectionalOfferPolicy policy is set at object granularity, which is the
finest level of granularity for this policy.

Java example
Example 2 is a Java example that shows how to create a RegStockInfo object reference with the
BidirectionalOfferPolicy policy enabled. This RegStockInfo object reference is used on the client side to
connect to a RegStockInfo CORBA object on the server side.

Call the org.omg.CORBA.ORB.create_policy() method to create a BidirectionalOfferPolicy object and then
include this policy in the list of policies passed to the
com.iona.corba.util.ObjectHelper.set_policy_overrides() method.

}

Note

Example2Java Setting the BidirectionalOfferPolicy Policy

// Java

// destringify RegStockInfo IOR and override the effective

Setting the Offer Policy

- 507/599 -

// policies with the BidirectionalOfferPolicy set to ALLOW in

// order to allow a birectional offer be made with invocations on

// this reference - note the policy is overridden on the reference

// to be invoked by the client, not on the callback reference

//

RegStockInfo stock_registry = null;

try

{

RandomAccessFile FileStream = new RandomAccessFile(Server.IOR_FILE, "r");

String ior = FileStream.readLine();

FileStream.close();

org.omg.CORBA.Object obj = orb.string_to_object(ior);

Any allow_value = orb.create_any();

BidirectionalPolicyValueHelper.insert(allow_value, ALLOW.value);

Policy [] policies = {

orb.create_policy(BI_DIR_OFFER_POLICY_TYPE.value, allow_value)

};

stock_registry =

RegStockInfoHelper.narrow(

com.iona.corba.util.ObjectHelper.set_policy_overrides(

obj,

policies,

SetOverrideType.ADD_OVERRIDE

)

Setting the Offer Policy

- 508/599 -

Setting the Accept Policy
This subsection shows you how to set the BiDirPolicy::BidirectionalAcceptPolicy policy on an object
reference. In order to use an object reference on the server side as a bidirectional callback, the
following prerequisites must be satisfied:

The object reference is a proper callback object reference. For example, in Orbix 6.x a callback
object reference has a BiDirId embedded in its IOR.

The BiDirPolicy::BidirectionalAcceptPolicy policy must be enabled for the object reference.

When both of these prerequisites are satisfied, an operation invocation made on the callback object
reference causes Orbix to attempt re-use an incoming connection in a bidirectional mode. An incoming
connection is only considered for bidirectional use, if it offers the same BiDirId that appears in the
callback object reference’s IOR and the connection is compatible with the policies effective for the
callback invocation.

Policy granularity
In this example, the BiDirPolicy::BidirectionalAcceptPolicy policy is set at object granularity, which is the
finest level of granularity for this policy.

Java example
Example 3 is a Java example that shows how to create a StockInfoCB callback object reference with the
BidirectionalAcceptPolicy policy enabled. This StockInfoCB callback object reference is used on the server
side to connect to a StockInfoCB callback object on the client side.

);

}

catch(/* ... */)

{

// Error handling ...

// (Not shown)

}

• •

• •

Setting the Accept Policy

- 509/599 -

Example3Java Setting the BidirectionalAcceptPolicy Policy

// Java

public void Register(StockInfoCB callback)

{

System.out.println(

"registration of interest in stock price changes"

);

// To accept the client's bidirectional offer,
override

// the effective policies on the callback reference
with the

// BidirectionalAcceptPolicy set to ALLOW - similarly
the

// BidirectionalGen3AcceptPolicy is overridden to
allow

// bidirectional invocations on callback references
registered

// by gen3 clients

//

StockInfoCB accept_callback = null;

try

{

Any allow_value = m_orb.create_any();

BidirectionalPolicyValueHelper.insert(

allow_value,

Setting the Accept Policy

- 510/599 -

ALLOW.value

);

Policy [] policies = {

[1](#java-
example)

m_orb.create_policy(

BI_DIR_ACCEPT_POLICY_TYPE.value, allow_value

),

[2](#java-
example)

m_orb.create_policy(

BI_DIR_GEN3_ACCEPT_POLICY_ID.value, allow_value

)

};

org.omg.CORBA.Object o =

[3](#java-
example)

com.iona.corba.util.ObjectHelper.set_policy_overrides(

callback,

policies,

SetOverrideType.ADD_OVERRIDE

);

accept_callback = StockInfoCBHelper.narrow(o);

// add callback to list

//

[4](#java-
example)

m_callbacks.add(accept_callback);

}

Setting the Accept Policy

- 511/599 -

The preceding Java code extract can be explained as follows:

This line calls the org.omg.CORBA.ORB.create_policy() method to create a
com.iona.BiDirPolicy.BidirectionalAcceptPolicy object.

This line calls the org.omg.CORBA.ORB.create_policy() method to create a
com.iona.IT_BiDirPolicy.BidirectionalGen3AcceptPolicy object. This proprietary policy allows you to
accept bidirectional connections from Orbix 3 legacy clients. See Interoperability with Orbix
Generation 3.

This line calls the com.iona.corba.util.ObjectHelper.set_policy_overrides() method to create a new
object reference with the BidirectionalAcceptPolicy and BidirectionalGen3AcceptPolicy policies
enabled.

The stock feed demonstration adds the callback object reference (with accept policies enabled) to its
list of StockInfoCB object references.

Advanced BiDir Scenario
Figure 50 gives an overview of an advanced bidirectional scenario, where a client application establishes
two separate connections to a server application. In this scenario, the server has to figure out which
connection to use for the callback.

Figure 50 Advanced Bidirectional GIOP Scenario

catch(/* ... */)

{

// Error handling ...

// (Not shown)

}

...

}

1. 1.

2. 2.

3. 3.

4. 4.

Advanced BiDir Scenario

- 512/599 -

Multiple endpoints
The main difference between this advanced bidirectional scenario, Figure 50, and the basic
bidirectional scenario, Figure 49 on page 372, is that the advanced scenario features multiple
endpoints, as follows:

Server-side endpoints— POA_J and POA_K . The POA_J endpoint has its policies set so that it accepts
insecure connections from clients. The POA_K endpoint has its policies set so that it requires
secure connections from clients.

Client-side endpoints— POA_A , POA_B and POA_C , of which only POA_B and POA_C can accept callbacks
(their BidirectionalExportPolicy is set to ALLOW). POA_B is configured to accept only insecure
callbacks. POA_C is configured to accept only secure callbacks.

• •

• •

Multiple endpoints

- 513/599 -

Multiple connections
Because of the different security policies required by POA_J and POA_K in Figure 50, it is possible for one
client application to establish multiple connections to the same server. For example, the client might
establish an insecure connection to object J1 in POA_J , and a secure connection to object K1 in POA_K .

Bidirectional offer phase
The offer phase occurs whenever the client opens a connection to the server. In Figure 50, two offers
are made:

Connection to the object, J1 —an insecure connection is made to the POA_J endpoint, which
activates object J1 . In the first request message over this connection, the client includes a
GIOP::BI_DIR_GIOP_OFFER service context containing a list of the client endpoints that support
insecure callbacks: that is, BiDirId_B .

Connection to the object, K1 —a secure connection is made to the POA_K endpoint, which activates
object K1 . Similarly to the first connection, the client includes a GIOP::BI_DIR_GIOP_OFFER service
context containing a list of the client endpoints that support secure callbacks: that is, BiDirId_C .

Exporting a callback object
In Example 50 on page 378, the client exports a callback reference, B1 , to the server. Because POA_B has
its BiDirExportPolicy set to ALLOW , the IOR for B1 includes a GIOP::TAG_BI_DIR_GIOP IOR component,
which embeds the BiDirId_B bidirectional ID.

The presence of the TAG_BI_DIR_GIOP IOR component indicates to the server that the object, B1 ,
supports bidirectional GIOP and the ID, BiDirId_B , identifies the associated endpoint on the client side.

Bidirectional accept phase
The accept phase occurs when the first operation invocation is made on the object reference, B1 , on
the server side. When the first operation is invoked on B1 , the ORB recognizes that B1 can use
bidirectional GIOP, because the following conditions hold:

The BiDirAcceptPolicy is set to ALLOW on the B1 object reference, and

The IOR for B1 includes a TAG_BI_DIR_GIOP IOR component.

• •

• •

• •

• •

Multiple connections

- 514/599 -

The ORB then extracts the BiDirId_B ID from B1 ’s IOR and compares this bidirectional ID with the offers
from existing client connections. Because the insecure connection offers bidirectional GIOP for the
BiDirId_B endpoint, the B1 object reference attempts to re-use this connection for the callback. At this
point, Orbix automatically compares the callback invocation policies with the attributes of the offered
connection. Only if the policies are compatible will Orbix re-use the existing insecure connection for
bidirectional GIOP.

Interoperability with Orbix Generation 3
Orbix 6.1 is designed to interoperate with Orbix 3 (Generation 3) clients. Figure 51 shows an example of
the stock feed demonstration where one of the clients receiving callbacks is an Orbix 3 client.

Figure 51 Orbix 3 Client Receiving a Callback from an Orbix 6.1 Server

Configuring an Orbix 6.1 server for Gen 3 interoperability
To configure an Orbix 6.1 server to interoperate bidirectionally with Orbix Generation 3 clients, you
must include the appropriate BiDir_Gen3 entry in the server's configured binding:client_binding_list .
For example,

Interoperability with Orbix Generation 3

- 515/599 -

Setting the BiDir Gen 3 accept policy
To enable an Orbix 3 callback object reference to re-use an existing incoming connection on the server
side, you must set the IT_BiDirPolicy::BidirectionalGen3AcceptPolicy on the callback object reference.

For Java example code, see Example 3 on page 377.

Asymmetry of Gen 3 bidirectional support
Orbix 6.1 support for Orbix 3 bidirectional GIOP is asymmetric. An Orbix 6.1 server can invoke on a
Orbix 3 callback reference using bidirectional GIOP. However, an Orbix 6.1 client can not produce a
callback reference that an Orbix 3 server could invoke on using bidirectional GIOP.

Limitations of Gen 3 bidirectional GIOP
Orbix 3 bidirectional GIOP is also subject to the following limitations:

An Orbix 3 callback reference must be passed as a request parameter over the actual connection
to be used for bidirectional invocations; whereas an Orbix 6.x bidirectional-enabled callback
reference can be passed in any way to the server (for example, through the naming service or by
stringifying to a shared file).

The bidirectional offer implicit in an Orbix 3 callback reference is limited to the lifetime of the
connection over which the callback reference is received by the server. Hence, further bidirectional
invocations could not be made if, for example, the connection is reaped by the Orbix automatic
connection management (ACM) and then re-established.

binding:client_binding_list = ["OTS+BiDir_GIOP", "BiDir_GIOP", "BiDir_Gen3",
"OTS+GIOP+IIOP", "GIOP+IIOP", ...];

• •

• •

Setting the BiDir Gen 3 accept policy

- 516/599 -

Locating Objects with corbaloc

Corbaloc URLs enable you to specify the location of a CORBA service in a relatively simple format. Before using
a corbaloc URL on the client side, you would normally register a simplified key for the CORBA object. Key
registration can be done either using the itadmin named_key command or by programming.

corbaloc URL Format
The purpose of a corbaloc URL is to specify the location of a CORBA object in a human-readable format
with the minimum amount of information necessary. For example, here is a typical example of a
corbaloc URL:

Contrast this with a typical example of a stringified IOR:

There is an important difference between these two representations of an object reference: whereas
the stringified IOR contains essentially the complete state of an object reference (including IOR
components), the corbaloc URL contains only the object’s address. Hence, object references constructed
with a corbaloc URL are initialized in a provisional state. When an operation is first invoked on the object
reference, Orbix exploits the GIOP location forward mechanism to retrieve the missing object reference
details.

Converting a corbaloc URL to an object reference
In Java, you can convert a corbaloc URL into an object reference using the
org.omg.CORBA.ORB.string_to_object() method, which has the following signature:

For code examples, see Using the corbaloc URL in a Client.

corbaloc:iiop:1.2@LocatorHost:3075/NameService

IOR:
010000003200000049444c3a696f6e612e636f6d2f49545f4f54535f5365727669636541646d696e2f5365727669636541646d696e3a312e3000000001000000000000008a000000010102000800000066626f6c74616e00030c00003f0000003a3e0232310f73696d706c652e6c6f636174696f6e11694f5453006f7473746d0061646d696e00175472616e73616374696f6e5365727669636541646d696e000200000001000000180000000100000001000100000000000001010001000000090101000600000006000000010000002600

// Java
org.omg.CORBA.Object string_to_object(java.lang.String str);

Locating Objects with corbaloc

- 517/599 -

corbaloc URL formats
The following corbaloc URL formats are described here:

Basic corbaloc URL.

Multiple-address corbaloc URL.

Secure corbaloc URL.

Basic corbaloc URL
A basic corbaloc URL has the following format:

The components of the basic corbaloc URL can be described as follows:

• •

• •

• •

corbaloc:*[*iiop*]*:*[Version*@*]Host[*:*Port][*/*ObjectKey]*

iiop (Optional) Specifies the transport protocol to be IIOP. If omitted, the protocol
defaults to IIOP. Hence, corbaloc:iiop: and corbaloc:: are equivalent.

Version (Optional) Specifies the GIOP version supported by the server. The allowed values
are 1.0 , 1.1 and 1.2 ; if omitted, the default is 1.0 .

Orbix supports GIOP 1.2.

Host Specifies the server’s hostname or IP address in dotted decimal format.

Port (Optional) Specifies the IP port used to connect to the server. If omitted, the
default is 2809 .

corbaloc URL formats

- 518/599 -

Multiple-address corbaloc URL
The multiple-address corbaloc URL has the following format:

With this form of corbaloc URL, you can locate a service that runs on more than one host and port (or is
available through multiple protocols).

Each address in the list has the same format as the middle part of the basic corbaloc URL. For example,
given that the FooService object is available both on HostX and HostY , you could specify a multiple-
address corbaloc URL for the service as follows:

This form of URL is useful for specifying backup services; Orbix tries each of the addresses in the order
in which they appear until it makes a successful connection.

Secure corbaloc URL
A secure corbaloc URL has the following format:

This differs from the basic corbaloc URL only in that the transport protocol is it_iiops , which selects the
IIOP/TLS protocol instead of IIOP. The it_iiops protocol specifier is Orbix-specific.

ObjectKey (Optional) A key that identifies the CORBA object on the remote server.

According to the OMG specification, this key is the same as the object key that
would be embedded in an equivalent IOR. To facilitate ease-of-use, however,
Orbix provides mechanisms to substitute a human-readable key for the original
object key.

corbaloc:*[CommaSeparatedAddressList][*/*ObjectKey]*

corbaloc:iiop:1.2@HostX:3075,iiop:1.2@HostY:3075/FooService

corbaloc:it_iiops:*[Version*@*]Host[*:*Port][*/*ObjectKey]*

Multiple-address corbaloc URL

- 519/599 -

Some earlier versions of Orbix (C++ only) used iiops to specify the IIOP/TLS protocol. If you need to
support interoperability with older versions of Orbix, you could use a multiple-address corbaloc URL
to support both types of protocol specifier, it_iiops and iiops .

For example, to connect securely to the FooService object:

corbaloc:it_iiops:1.2@FooHost:3075,iiops:1.2@FooHost:3075/FooService

Object keys
The object key appearing in a corbaloc URL can have one of the following values:

Object key from an IOR—the CORBA specification defines a corbaloc object key to be the same as
the object key embedded in an IOR, except that non-printable characters are substituted by URL
escape sequences. Unfortunately, this form of object key is unwieldy, because object keys from
IORs are usually defined in a binary format.

Named key—a named key is a human-readable key that is registered with the locator service. The
named key enables you to construct a human-readable corbaloc URL for indirect persistent servers.

Plain text key—a plain text key is a human-readable key that is registered with the plain_text_key
plug-in. The plain text key enables you to construct a human-readable corbaloc URL for direct
persistent servers.

The named key and the plain text key are conceptually similar; they are both mechanisms for
substituting a human-readable key in a corbaloc URL.

URL escape mechanism
Object keys appearing in a corbaloc URL can use the escape mechanism defined in the Internet
Engineering Task Force (IETF) RFC 2396 to represent non-printable characters. Under this convention,
non-printable characters are encoded as the % character followed by two hexadecimal characters.
Printable characters are the following: ASCII-encoded alphanumerics, ; , : , / , ? , @ , & , = , + , $, , , . ,
- , _ , ! , ~ , * , ’ , (,) . All other characters are considered non-printable (including whitespace).

The URL escape mechanism is supported only by the CORBA::ORB::string_to_object() function.
Operations belonging to other interfaces, such as IT_NamedKey::NamedKeyRegistry and
IT_PlainTextKey::Forwarder , do not support the escape mechanism.

Note

• •

• •

• •

Note

Object keys

- 520/599 -

Indirect Persistence Case
The mechanism used to substitute human-readable keys in a corbaloc URL must be tailored to the
characteristics of the server, which could be either indirect persistent or direct persistent.

In the case of an indirect persistent server, the task of substituting human-readable keys is performed
by the locator service, which maintains a named key registry in the IMR for this purpose.

This section contains the following subsections:

Overview of the Indirect Persistence Case
An indirect persistent server is a server that has a POA initialized with the following POA policy values:

PortableServer::LifespanPolicy value is PERSISTENT , and

IT_PortableServer::PersistenceModePolicy value is INDIRECT_PERSISTENCE (the default).

The CORBA objects activated by this POA have the following qualities:

Persistence—implies that the object reference for this object remains valid even after the server is
stopped and restarted.

Indirect persistence—implies that clients establish contact with the server through the locator. In
practice, the POA embeds the locator’s address in the object references it generates. This forces
clients to contact the locator before connecting to the server.

Figure 52 shows an overview of how Orbix resolves a corbaloc URL with the help of the locator
service in the indirect persistent case.

Figure 52 Using corbaloc with the Locator-Based Named Key Registry

Overview of the Indirect Persistence Case page 386

Registering a Named Key at the Command Line page 388page 388

Registering a Named Key by Programming page 389

Using the corbaloc URL in a Client page 391

• •

• •

• •

• •

Indirect Persistence Case

- 521/599 -

Stages in registering and finding a named key
The stages involved in registering a named key and resolving a corbaloc URL constructed with that
named key, as shown in Figure 52 on page 387, can be described as follows:

Stage Description

1 There are two alternative ways to register a named key:

- At the command line—use the itadmin named_key create command to
associate a named key (for example, FooService) with a stringified IOR.

- By programming—as the Foo service starts up, it contacts the locator to
register the FooService named key against the Foo object reference.

2 The locator stores the FooService named key and object reference data in the
named key registry, which is part of the implementation repository (IMR).

3 A client attempts to contact the server using the following URL:

corbaloc:iiop:1.2@LocatorHost:3075/FooService Because the corba
loc URL contains the address of the locator, LocatorHost:3075 , the client

initially opens a connection to the locator service, sending either a GIOP
LocateRequest message or a GIOP Request message.

Overview of the Indirect Persistence Case

- 522/599 -

Registering a Named Key at the Command Line
To make a named key available for use in corbaloc URLs, the server must register the named key and
its corresponding object reference in the named key registry. This subsection describes how to register
a named key at the command line.

The itadmin named_key command
The itadmin named_key command supports a variety of subcommands for managing named keys in the
implementation repository, as follows:

For full details of these commands, see the Orbix Administrator’s Guide.

Creating a named key using itadmin named_key create
To create a named key using the itadmin named_key create command, perform the following steps:

Stage Description

4 The locator looks up the named key registry to find the object reference
corresponding to the FooService key. The Foo object reference is then sent
back to the client in a reply message (either a GIOP LocateReply message or a
GIOP Reply message with LOCATION_FORWARD reply type).

5 Using the object reference data received from the locator, the client can now
open a connection directly to the Foo server.

named_key
create

Creates an association between a specified well-known object key and a
specified object reference.

named_key list Lists all well known object keys that are registered with the locator
daemon.

named_key
remove

Removes the specified object key from the location domain.

named_key show Displays the object reference associated with the given key.

Registering a Named Key at the Command Line

- 523/599 -

Registering a Named Key by Programming
This subsection describes the alternative approach to registering corbaloc URLs in the named key
registry, which is by programming. A code example shows how a server contacts the locator service to
register a named key.

Server example in Java
Example 1 shows how a server can register a named key, FooService , that identifies a given object
reference, FooObjectRef (the object reference must have been generated from a CORBA object
belonging to an indirect persistent POA).

Step Action

1 Obtain a stringified IOR for the CORBA object that you want to register. You
could obtain the IOR in one of the following ways:

- If the server dumps the stringified IOR to a file or to the console window, you
can copy it from there (the

- If the object is already registered in the CORBA naming service, you can obtain
the stringified IOR using the itadmin ns resolve Name command.

2 Register the stringified IOR from the preceding step, String-IOR, associating it
with a named key, NamedKey, by entering the following command:

itadmin named_key create -key NamedKeyString-IOR

Example1Registering a Named Key with the Locator

// Java

...

// Get the Locator

org.omg.CORBA.Object objref =

Registering a Named Key by Programming

- 524/599 -

[1](#server-
example-in-java)

orb.resolve_initial_references("IT_Locator");

com.iona.corba.IT_Location.Locator locator =

com.iona.corba.IT_Location.LocatorHelper.narrow(objref
);

// Get the Named Key registry

objref = locator.resolve_service(

[2](#server-
example-in-java)

com.iona.corba.IT_NamedKey.NAMED_KEY_REGISTRY

);

[3](#server-
example-in-java)

com.iona.corba.IT_NamedKey.NamedKeyRegistry registry =
com.iona.corba.IT_NamedKey.NamedKeyRegistryHelper.nar
row(

objref

);

// Add a key to the registry

try

{

[4](#server-
example-in-java)

registry.add_text_key("FooService", FooObjectRef);

}

catch
(com.iona.corba.IT_NamedKey.NamedKeyRegistryPackage.E
ntryAlreadyExists ex)

{

// Error: ...

Registering a Named Key by Programming

- 525/599 -

The preceding Java code example can be explained as follows:

The IT_Locator initial reference ID is used to obtain a reference to the IT_Location::Locator IDL
interface. The Locator interface enables a server to communicate directly with the Orbix locator
service (the IT_Location IDL module is defined in the OrbixInstallDir /asp/ Version /idl/orbix/

location.idl file).

The resolve_service() operation is called to return a reference to the named key registry. The
com.iona.corba.IT_NamedKey.NAMED_KEY_REGISTRY is a string constant, which has the value
IT_NamedKey::NamedKeyRegistry .

The IT_NamedKey::NamedKeyRegistry IDL interface defines operations to register named keys and
manage the named key registry. See the Java Programmer’s Reference for more details.

The com.iona.corba.IT_NamedKey.NamedKeyRegistry.add_text_key() method registers a new named key
with the locator.

Using the corbaloc URL in a Client
The usual format for a corbaloc URL that references an indirect persistent server is as follows:

Because the server is indirect persistent, the URL embeds the locator’s address,
LocatorHost : LocatorPort, not the server’s own address.

For example, given that the Orbix locator is running on host, LocatorHost , and port, 3075 , and the server
registers a Foo object under the named key, FooService , you could access the Foo object with the
following URL:

Client example in Java
Example 2 shows how to resolve a corbaloc URL for an object of Foo type, using the
org.omg.CORBA.ORB.string_to_object() method.

}

1. 1.

2. 2.

3. 3.

4. 4.

corbaloc:iiop:1.2@*LocatorHost*:*LocatorPort*/*NamedKey*

corbaloc:iiop:1.2@LocatorHost:3075/FooService

Using the corbaloc URL in a Client

- 526/599 -

Direct Persistence Case
The mechanism used to substitute human-readable keys in a corbaloc URL must be tailored to the
characteristics of the server, which could be either indirect persistent or direct persistent.

In the case of a direct persistent server, the task of substituting human-readable keys is performed by
the plain_text_key plug-in, which holds a transient list of plain text keys for this purpose.

This section contains the following subsections:

Example2Resolving a corbaloc URL

// Java
try {
java.lang.String corbalocURL = "corbaloc:iiop:1.2@LocatorHost:3075/
FooService";
org.omg.CORBA.Object objref = orb.string_to_object(corbalocURL);
Foo fooObj= FooHelper.narrow(objref);
if (CORBA::is_nil(fooObj)) {
// Error: _narrow failed!
}
}
catch (org.omg.CORBA.BAD_PARAM ex) {
// Error: narrow failed!
}
catch (org.omg.CORBA.SystemException sysex) {
// Error: general error
}

Overview of the Direct Persistence Case page 392

Registering a Plain Text Key page 393

Direct Persistence Case

- 527/599 -

Overview of the Direct Persistence Case
A direct persistent server is a server that has a POA initialized with the following POA policy values:

PortableServer::LifespanPolicy value is PERSISTENT , and

IT_PortableServer::PersistenceModePolicy value is DIRECT_PERSISTENCE .

The CORBA objects activated by this POA have the following qualities:

Persistence—implies that the object reference for this object remains valid even after the server is
stopped and restarted.

Direct persistence—implies that clients establish contact with the server directly, bypassing the
locator. Hence, the POA embeds the server’s own address in the object references it generates.

Figure 53 shows an overview of how Orbix resolves a corbaloc URL using the plain_text_key plug-in in
the direct persistent case.

Figure 53 Using corbaloc with the plain_text_key Plug-In

Stages in registering and finding a plain text key
The stages involved in registering a plain text key and resolving a corbaloc URL constructed with that
plain text key, as shown in Figure 53 on page 392, can be described as follows:

Using the corbaloc URL in a Client page 394

• •

• •

• •

• •

Stage Description

1 As the Foo service starts up, it registers the FooService plain text key with
the plain_text_key plug-in.

Overview of the Direct Persistence Case

- 528/599 -

Registering a Plain Text Key
To make a plain text key available for use in corbaloc URLs, the server must register the plain text key
and its corresponding object reference with the plain_text_key plug-in.

Server example in Java
Example 1 shows how a server registers a plain text key, FooService , that identifies a given object
reference, FooObjectRef (the object reference must have been generated from a CORBA object
belonging to a direct persistent POA).

Stage Description

2 A client attempts to contact the server using the following URL:

corbaloc:iiop:1.2@FooHost:4321/FooService Because the corbaloc
URL contains the address of the Foo server, FooHost:4321 , the client opens a
connection directly to the server (sending either a GIOP LocateRequest message
or a GIOP Request message).

3 The plain_text_key plug-in finds the object reference corresponding to the
FooService key. The Foo object reference is then sent back to the client in a

reply message (either a GIOP LocateReply message or a GIOP Reply message
with LOCATION_FORWARD reply type).

4 Using the object reference data received in the previous step, the client now
resends the GIOP Request message to the server.

Example1Registering a Plain Text Key

// Java

// Try/Catch block not shown ...

org.omg.CORBA.Object objref =
the_orb.resolve_initial_references(

[1](#server-example-in-
java)

"IT_PlainTextKeyForwarder"

);

Registering a Plain Text Key

- 529/599 -

The preceding Java code can be explained as follows:

The IT_PlainTextKeyForwarder initial reference ID is used to obtain a reference to a
com.iona.corba.IT_PlainTextKey.Forwarder object (the IT_PlainTextKey IDL module is defined in the
OrbixInstallDir /asp/ Version /idl/orbix_pdk/plain_text_key.idl file).

The add_plain_text_key() method adds a new plain text key to the list held by the plain_text_key plug-
in.

Using the corbaloc URL in a Client
The usual format for a corbaloc URL that references a direct persistent server is as follows:

Because the server is direct persistent, the URL embeds the server’s own address,
ServerHost : ServerPort.

For example, given that the server is running on host, FooHost , and port, 4321 , and the server registers
a Foo object under the plain text key, FooService , you could access the Foo object with the following
URL:

com.iona.corba.IT_PlainTextKey.Forwarder
forwarder =

com.iona.corba.IT_PlainTextKey.ForwarderHelper.n
arrow(objref);

[2](#server-example-in-
java)

forwarder.add_plain_text_key(

"FooService",

FooObjectRef

);

1. 1.

2. 2.

corbaloc:iiop:1.2@*ServerHost*:*ServerPort*/*PlainTextKey*

Using the corbaloc URL in a Client

- 530/599 -

Client example in Java
Example 2 shows how to resolve a corbaloc URL for an object of Foo type, using the
org.omg.CORBA.ORB.string_to_object() method.

Named Keys and Plain Text Keys Used by Orbix Services
Most of the standard Orbix services register a named key and a plain text key by default. Table 22 lists
all of the named keys and plain text keys currently supported by the Orbix services. Using the
information from Table 22, you can easily construct a corbaloc URL to contact one of these services.

Table 22: Named Keys and Plain Text Keys for Orbix Services

corbaloc:iiop:1.2@FooHost:4321/FooService

Example2Resolving a corbaloc URL

// Java
try {
java.lang.String corbalocURL = "corbaloc:iiop:1.2@FooHost:4321/FooService";
org.omg.CORBA.Object objref = orb.string_to_object(corbalocURL);
Foo fooObj= FooHelper.narrow(objref);
if (CORBA::is_nil(fooObj)) {
// Error: _narrow failed!
}
}
catch (org.omg.CORBA.BAD_PARAM ex) {
// Error: narrow failed!
}
catch (org.omg.CORBA.SystemException sysex) {
// Error: general error
}

Named Keys and Plain Text Keys Used by Orbix Services

- 531/599 -

Service Plain Text Key Named Key

Security IT_SecurityService

IT_Login

N/A

N/A

CFR ConfigRepository

IT_ConfigRepositoryReplica

N/A

N/A

FPS IT_FPS_Registry

IT_FPS_Manager

N/A

N/A

Management IT_ManagementService.User

IT_ManagementService.Registrati
on

IT_ManagementService.Security

N/A

N/A

N/A

locator IT_Locator

IT_LocatorReplica

N/A

N/A

node_daemon IT_NodeDaemon N/A

otstm TransactionServiceAdmin

TransactionFactory

TransactionServiceAdm
in

TransactionFactory

ifr InterfaceRepository InterfaceRepository

naming NameService

IT_NameServiceReplica

NameService

N/A

Named Keys and Plain Text Keys Used by Orbix Services

- 532/599 -

Service Plain Text Key Named Key

trader TradingService

TradingServiceNR

Replicator

TradingService

N/A

N/A

basic_log DefaultBasicLogFactory BasicLoggingService

event_log DefaultEventLogFactory EventLoggingService

notify_log DefaultNotifyLogFactory NotifyLoggingService

notify DefaultEventChannelFactory

DefaultEndpointAdmin

NotificationService

N/A

event DefaultEventChannelFactory

DefaultTypesEventChannelFactory

EventService

N/A

jms MessageBroker

ServerContext

MessagingBridge

EndpointAdmin

IT_JMSMessageBroker

N/A

N/A

N/A

Named Keys and Plain Text Keys Used by Orbix Services

- 533/599 -

Configuring and Logging

Orbix has built-in configuration and logging mechanisms, which are used internally by the Orbix product. You
have the option of using these configuration and logging mechanisms in your own applications.

The Configuration Interface

The IT_Config::Configuration interface
The Configuration interface is defined as a local interface within the IT_Config module, as follows:

Example3Definition of the IT_Config::Configuration IDL Interface

Orbix Configuration File

...

#pragma prefix "iona.com"

module IT_Config

{

typedef sequence<string> ConfigList;

...

exception TargetNotFound {};

local interface Configuration

{

exception TypeMismatch {};

Configuring and Logging

- 534/599 -

boolean get_string(in string name, out string value)

raises (TypeMismatch);

boolean get_list(in string name, out ConfigList value)

raises (TypeMismatch);

boolean get_boolean(in string name, out boolean value)

raises (TypeMismatch);

boolean get_long(in string name, out long value)

raises (TypeMismatch);

boolean get_double(in string name, out double value)

raises (TypeMismatch);

...

};

...

};

The IT_Config::Configuration interface

- 535/599 -

The ConfigList type
The IT_Config::ConfigList type, which is defined as a sequence of strings, is used to hold the data
returned from the Configuration::get_list() operation. The following configuration variable,
my_list_item , is an example of a configuration entry that needs to be retrieved as a list, using
get_list() .

Operations
The following operations of the Configuration interface are listed in Example 3 on page 397:

get_string() —get the value of the name variable as a string type.

get_list() —get the value of the name list variable as a list of strings, IT_Config::ConfigList .

get_boolean() —get the value of the name variable as a CORBA boolean type.

get_long() —get the value of the name variable as a CORBA long type.

get_double() —get the value of the name variable as a CORBA double type.

Reference
For more details of the Configuration interface and the IT_Config module, see the IT_Config sections of
the CORBA Programmer’s Reference.

...

Orbix Configuration
my_list_item = ["first", "second", "third"];

• •

• •

• •

• •

• •

The ConfigList type

- 536/599 -

Configuring
Orbix has a flexible configuration system which enables an application to retrieve configuration data
without needing to know anything about the actual source of the data. This section briefly describes
Orbix configuration, covering the following topics:

Generating configuration domains.

Configuration sources.

Sample configuration.

Java accessing configuration settings.

References.

Generating configuration domains
Configuration domains are generated by running the itconfigure tool.

Configuration sources
Orbix configuration data can come from one of the following sources:

Configuration file—this is a file, DomainName .cfg , that stores configuration settings in a format
that is easily readable and editable.

Configuration repository (CFR) service—this is a service that stores configuration settings in a central
database and is remotely accessible to CORBA applications. Note, that a minimal configuration
handler file, DomainName .cfg , is also needed on hosts that use the CFR service in order to
contact the CFR initially.

Sample configuration
Example 4 shows some sample configuration settings, of various types, that might be used to
configure a hello_world plug-in.

• •

• •

• •

• •

• •

• •

• •

Example4Sample Configuration Settings

Orbix configuration file

Configuring

- 537/599 -

Java accessing configuration settings
Example 5 shows how to access configuration settings in Java. There are two main steps in this code
extract:

The application obtains an initial reference to an com.iona.corba.IT_Config.Configuration object

The application reads configuration data using the methods defined on the IT_Config.Configuration
interface.

plugin_example {

plugin:hello_world:boolean_item = "true";

plugin:hello_world:string_item = "Hello World!";

plugin:hello_world:long_item = "4096";

plugin:hello_world:double_item = "3.14";

plugin:hello_world:list_item = ["first", "second", "third"];

};

1. 1.

2. 2.

Example5Java Accessing Configuration Settings

// Java

...

import com.iona.corba.IT_Config.*;

import com.iona.corba.IT_Config.ConfigurationPackage.*;

...

private void load_config()

{

org.omg.CORBA.Object initial_reference = null;

Java accessing configuration settings

- 538/599 -

Configuration config = null;

// 1. Obtain an initial reference to the configuration.

//

try {

initial_reference = m_orb.resolve_initial_references(

"IT_Configuration"

);

config = ConfigurationHelper.narrow(initial_reference);

}

catch(org.omg.CORBA.ORBPackage.InvalidName in) {

// Handle InvalidName error...

}

catch(java.lang.Exception e) {

// Handle generic error...

}

// 2. Read some configuration variables.

//

try {

org.omg.CORBA.BooleanHolder tmp_bool =

new org.omg.CORBA.BooleanHolder();

config.get_boolean(

"plugin:hello_world:boolean_item", tmp_bool

);

m_boolean_item = tmp_bool.value;

Java accessing configuration settings

- 539/599 -

org.omg.CORBA.StringHolder tmp_string =

new org.omg.CORBA.StringHolder();

config.get_string(

"plugin:hello_world:string_item", tmp_string

);

m_string_item = tmp_string.value;

org.omg.CORBA.IntHolder tmp_long =

new org.omg.CORBA.IntHolder();

config.get_long("plugin:hello_world:long_item", tmp_long);

m_long_item = tmp_long.value;

org.omg.CORBA.DoubleHolder tmp_double =

new org.omg.CORBA.DoubleHolder();

config.get_double(

"plugin:hello_world:double_item", tmp_double

);

m_double_item = tmp_double.value;

com.iona.corba.IT_Config.ConfigListHolder tmp_list =

new com.iona.corba.IT_Config.ConfigListHolder();

config.get_list(

"plugin:hello_world:list_item", tmp_list

);

Java accessing configuration settings

- 540/599 -

The last item read is a configuration list. The m_list_item variable is an array of strings, which is of
java.lang.String[] type.

References
The following references can provide you with more information about Orbix configuration:

The documentation of the IT_Config::Configuration interface in the CORBA Programmer’s
Reference.

Logging
Logging provides administrators and system operators with information about a production system,
reporting information such as significant system events, warnings of anomalous conditions, and
detailed information about error conditions. Its primary goal is to provide administrators with the
information needed to detect diagnose and resolve problems in a production system.

Logging event
An Orbix logging event has the following structure:

Logging subsystem.

Event ID.

Event priority.

Message.

m_list_item = tmp_list.value;

}

•

• •

• •

• •

• •

References

- 541/599 -

Logging subsystem
A logging subsystem, identified by a subsystem ID, provides a convenient way of grouping together
related logging events and messages. The subsystem ID is useful when it comes to filtering log events,
because you can use it to specify logging options on a per-subsystem basis.

Typically, a unique logging subsystem is defined for each plug-in. For example, the lease plug-in defines
its own logging subsystem, IT_LEASE , as shown in Example 6 on page 402.

See Table 12 on page 196 for a complete list of built-in logging subsystems.

Event ID
An event ID is a constant, of IT_Logging::EventId type, that identifies a particular type of event.

Before you can use logging in your own plug-in code, you must define a collection of custom event IDs
in IDL. See Example 6 on page 402 for an example of how this is done for the leasing plug-in.

Event priority
Every event that is generated must have a priority assigned to it.

In Java, you can use one of the following constants (of short Java type) to assign priority to an event:

Message
A log message is a string, which might include some embedded parameters.

com.iona.corba.IT_Logging.LOG_INFO.value
com.iona.corba.IT_Logging.LOG_WARNING.value
com.iona.corba.IT_Logging.LOG_ERROR.value
com.iona.corba.IT_Logging.LOG_FATAL_ERROR.value

Logging subsystem

- 542/599 -

Local log stream
The local log stream reports events either to a local file or to standard error. You can enable the local log
stream by including local_log_stream in your list of orb_plugins , as follows:

For more details about how to configure a local log stream, see the CORBA Administrator’s Guide.

System log stream
The system log stream reports events to the host’s system log. You can enable the system log stream by
including system_log_stream in your list of orb_plugins , as follows:

For more details about how to configure a system log stream, see the CORBA Administrator’s Guide.

Defining a subsystem ID and event IDs
Before you can use logging with your plug-in, you must define a logging subsystem ID and a set of
event IDs in IDL.

For example, the IDL in Example 6 shows the subsystem ID and event IDs defined for the lease plug-in.

Orbix configuration file
plugin_example {
orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop",
"hello_world"];
...
};

Orbix configuration file
plugin_example {
orb_plugins = ["system_log_stream", "iiop_profile", "giop", "iiop",
"hello_world"];
...
};

Example6Example Subsystem ID and Event ID Definitions

#include <orbix/logging.idl>

Local log stream

- 543/599 -

module IT_Lease_Logging

{

const IT_Logging::SubsystemId SUBSYSTEM = "IT_LEASE";

// Errors (1+)

//

const IT_Logging::EventId NAMING_SERVICE_UNREACHABLE = 1;

const IT_Logging::EventId REAPER_THREAD_FAILURE = 2;

const IT_Logging::EventId RENEWAL_THREAD_FAILURE = 3;

const IT_Logging::EventId CALLBACK_FAILURE = 4;

const IT_Logging::EventId INVALID_LEASE_AGENT_REFERENCE = 5;

const IT_Logging::EventId LEASE_AGENT_NOT_FOUND = 6;

const IT_Logging::EventId LEASE_ACQUISITION_FAILURE = 7;

// Warnings (100+)

//

const IT_Logging::EventId CLIENT_LEASE_RELEASE_FAILURE = 100;

const IT_Logging::EventId SERVER_LEASE_WITHDRAW_FAILURE= 101;

const IT_Logging::EventId DEFAULT_REAP_TIME_USED = 102;

const IT_Logging::EventId DEFAULT_PING_TIME_USED = 103;

const IT_Logging::EventId PING_TIME_ALTERED = 104;

const IT_Logging::EventId LEASE_EXPIRED_PREMATURELY = 105;

// Informational messages (200+)

//

Defining a subsystem ID and event IDs

- 544/599 -

Java logging messages
Example 7 shows an extract from the lease plug-in code, which shows how to obtain a reference to an
event log and send messages to the event log.

const IT_Logging::EventId CLIENT_LEASES_UPDATED = 200;

const IT_Logging::EventId SERVER_LEASES_UPDATED = 201;

const IT_Logging::EventId CONFIGURATION_DUMP = 202;

const IT_Logging::EventId SERVER_LEASE_REAPER_CHECK = 203;

const IT_Logging::EventId LEASE_EXPIRATION = 204;

const IT_Logging::EventId LEASE_ADVERTISED_OK = 205;

const IT_Logging::EventId RENEWAL_NOT_NEEDED_YET = 206;

const IT_Logging::EventId RENEWING_LEASE = 207;

};

Example7Java Example of Logging Messages

// Java

...

import com.iona.corba.IT_Logging.*;

import com.iona.corba.IT_Lease_Logging.*;

LeasePerORBState(ORB orb)

throws INTERNAL

{

org.omg.CORBA.Object initial_reference = null;

m_orb = orb;

Java logging messages

- 545/599 -

// Get the Event Log

try {

[1](#java-logging-
messages)

initial_reference =
m_orb.resolve_initial_references(

"IT_EventLog"

);

}

catch(org.omg.CORBA.ORBPackage.InvalidName in)
{

throw new INTERNAL();

}

[2](#java-logging-
messages)

m_event_log =
EventLogHelper.narrow(initial_reference);

...

// Example log message:

// The leasing plug-in logs this message if it
fails to

// connect to the CORBA Naming Service.

//

[3](#java-logging-
messages)

m_event_log.report_message(

SUBSYSTEM.value,

NAMING_SERVICE_UNREACHABLE.value,

LOG_ERROR.value,

Java logging messages

- 546/599 -

The preceding Java logging example can be explained as follows:

This line obtains an initial reference to the com.iona.corba.IT_Logging.EventLog object, by calling
resolve_initial_references() with the IT_EventLog initial object ID string.

Narrow the initial reference to m_event_log , which has been declared elsewhere to be of
com.iona.corba.IT_Logging.EventLog type.

The report_message() method sends events/messages to the event log. The method takes the
following parameters:

A subsystem ID, of java.lang.String type.

An event ID, of int Java type.

An event priority, of short Java type.

A message string, of java.lang.String type.

An array of message parameters, of org.omg.CORBA.Any[] type. These are parameters that can
optionally be embedded in the message string. The message string references the parameters
using the symbols %0 , %1 , %2 , and so on.

References
The following resources are available on the subject of Orbix logging:

The documentation of the IT_Logging module in the CORBA Programmer’s Reference.

LeaseEventMessages.IT_LEASE_NAMING_SERVICE_UNRE
ACHABLE_MSG,

new org.omg.CORBA.Any[0]

);

...

}

1. 1.

2. 2.

3. 3.

• •

• •

• •

• •

• •

•

References

- 547/599 -

Orbix Compression Plug-in

This chapter explains how to program the Orbix ZIOP compression plug-in. This can enable significant
performance improvements on low bandwidth networks.

Introduction to the ZIOP Plug-In
The Orbix ZIOP compression plug-in provides optional compression/decompression of GIOP messages
on the wire. Compressed and uncompressed transports can be mixed together. This can enable
significant performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message data. For example, if the
requests contain .jpeg images, there is virtually no compression, however, with repetitive string data,
there is good compression.

Figure 54 shows a high-level overview of ZIOP compression in a client-server environment.

Figure 54 Overview of ZIOP Compression

Orbix Compression Plug-in

- 548/599 -

Implementation
Compression can be configured per-ORB and also per-binding (using Orbix ORB policies). The
compression is performed using a configurable compression library. The compression plug-in (ziop)
supports the following compression algorithms:

gzip

pkzip

bzip2

Orbix ZIOP compression has been implemented in both C++ and Java and is available on all
platforms.

Additional components
The following Orbix components have also been updated for ZIOP compression:

The giop_snoop plug-in has been updated to detect ZIOP compressed messages.

The iordump tool has been updated to parse the new IOR profiles for ZIOP compression.

Configuration Prerequisites
Before you can program compression policies, the Orbix configuration must satisfy prerequisites to
ensure that the ZIOP plug-in is loaded and enabled.

Orbix uses symbolic names to configure plug-ins and then associates them with a Java or a C++
implementation. The compression/decompression plug-in is named ziop. This is implemented in Java
by the com.iona.corba.ziop.ZIOPPlugIn class, and in C++ by the it_ziop shared library.

The ziop plug-in requires the following basic configuration settings:

Configuring the ziop plug-in.

Configuring the binding lists.

Both the client and the server must be configured appropriately to enable compression.

• •

• •

• •

• •

• •

• •

• •

Note

Implementation

- 549/599 -

Configuring the ziop plug-in
To configure the ziop plug-in, perform the following steps:

Ensure that the following entries are present in your Orbix configuration file:

Include the ziop plug-in the ORB plug-ins list:

For example:

Configuring the binding lists
To enable compression/decompression for CORBA IIOP communication, ensure that your binding lists
contain the following entries.

For clients:

For servers:

The client or server binding lists can be much more complicated than these simple examples, although
these are adequate for compressed GIOP/IIOP communication. Here is an example of more complex
binding lists:

1. 1.

plugins:ziop:shlib_name = "it_ziop";
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";

2. 2.

orb_plugins = [.... "ziop" ...];

orb_plugins = ["local_log_stream", "iiop_profile", "giop", "ziop", "iiop"];

binding:client_binding_list = ["GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

Configuring the ziop plug-in

- 550/599 -

Compression Policies
This section describes those compression policies that are defined in IDL and can be set
programmatically. Not all compression policies can be set programmatically—see the Administrator’s
Guide for details of all the policies that can be set by configuration.

CompressionEnablingPolicy.

CompressorIdPolicy.

IDL for the compression policies
Example 8 shows the part of the IT_ZIOP module that defines two compression policies,
CompressionEnablingPolicy and CompressorIdPolicy . This IDL is extracted from the orbix_pdk/ziop.idl file.

binding:client_binding_list = ["OTS+GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+IIOP_TLS", "GIOP+ZIOP+IIOP_TLS", "CSI+GIOP+ZIOP+ZIOP+IIOP",
"GIOP+ZIOP+IIOP"];
plugins:giop:message_server_binding_list = ["BiDir_GIOP", "ZIOP+GIOP",
"GIOP"];

• •

• •

Example8Compression Policies in the IT_ZIOP Module

// IDL
// File: <OrbixInstallDir>/asp/<Version>/idl/orbix_pdk/ziop.idl

...

module IT_ZIOP {

...
typedef unsigned long CompressorId;

const CORBA::PolicyType COMPRESSION_ENABLING_POLICY_ID =

IT_PolicyBase::IONA_POLICY_ID + 0x46;

const CORBA::PolicyType COMPRESSOR_ID_POLICY_ID =

Compression Policies

- 551/599 -

CompressionEnablingPolicy
The CompressionEnablingPolicy policy type has one boolean attribute, compression_enabled , which
indicates whether compression is enabled (true) or disabled (false). Default is true (but the policy has
no effect if the ziop plug-in is not loaded and configured).

When the compression enabling policy is set on the server side, the server embeds a ZIOP component in
the IORs it generates. The presence of a ZIOP component in the IOR indicates to clients that the server
is capable of receiving compressed messages. You can set server-side policies at any of the following
levels:

ORB.

POA.

When the compression enabling policy is set on the client side, the client checks IORs for the presence of
a ZIOP component. If a ZIOP component is present, the client will attempt to send compressed
messages to the server. You can set client-side policies at any of the following levels:

ORB.

IT_PolicyBase::IONA_POLICY_ID + 0x47;

local interface CompressionEnablingPolicy : CORBA::Policy

{

readonly attribute boolean compression_enabled;

};

local interface CompressorIdPolicy : CORBA::Policy

{

readonly attribute CompressorId compressor_id;

};

};

• •

• •

• •

CompressionEnablingPolicy

- 552/599 -

Thread.

Object (client proxy).

CompressorIdPolicy
The CompressorIdPolicy policy type has one integer attribute, compressor_id , which identifies the type of
compression algorithm to use (internally, a compressor ID refers to a specific implementation of the
IT_ZIOP::Compressor interface—see Implementing Custom Compression for more details).

The compressor ID policy can only be set on the server side. The server embeds the compressor ID in a
ZIOP component in the IORs that it generates. You can set server-side policies at any of the following
levels:

ORB.

POA.

Programming Compression Policies
This section describes how to set compression policies by programming on the client side and on the
server side. The following cases are considered:

Java enable/disable compression on the server side

Java enable/disable compression on the client side

Java select compression algorithm on the server side

Java enable/disable compression on the server side
Example 9 shows how to enable compression at the POA level in a Java server. This example creates a
compression enabling policy with the value true and uses this policy to initialize a POA object,
child_poa . The programmed policy value overrides the policies:ziop:compession_enabled setting from
the Orbix configuration.

Because this example does not program a value for the compressor ID policy, the choice of
compression algorithm is implicitly determined by the policies:ziop:compressor_id setting in the Orbix
configuration.

• •

• •

• •

• •

• •

• •

• •

CompressorIdPolicy

- 553/599 -

Java enable/disable compression on the client side
Example 10 shows how to disable compression at the proxy object level in a Java client. This example
creates a compression enabling policy with the value false and uses this policy to create a copy of a
proxy object, objref2 . The programmed policy value overrides the policies:ziop:compession_enabled
setting from the Orbix configuration.

Example9Java Enabling Compression at the POA Level

// Java

import org.omg.CORBA.*;

import com.iona.corba.IT_ZIOP.*;

// ...

boolean enable_compression = true; // or false

Policy[] policies = new Policy[1];

Any any = orb.create_any();

any.insert_boolean(enable_compression);

policies[0] = orb.create_policy(COMPRESSION_ENABLING_POLICY_ID.value, any);

POA child_poa = root_poa.create_POA("child_poa",

root_poa.the_POAManager(),

policies);

Example10Java Disabling Compression at the Proxy Object Level

// Java

import org.omg.CORBA.*;

Java enable/disable compression on the client side

- 554/599 -

Java select compression algorithm on the server side
Example 11 shows how to select the example creates a compressor ID policy with the value 3 (for
bzip2) and uses this policy to initialize a POA object, child_poa . The programmed policy value overrides
the policies:ziop:compressor_id setting from the Orbix configuration.

import com.iona.corba.IT_ZIOP.*;

// ...

org.omg.CORBA.Object objref, objref2;

boolean enable_compression = false; // or true

Policy[] policies = new Policy[1];

Any any = orb.create_any();

any.insert_boolean(enable_compression);

policies[0] = orb.create_policy(COMPRESSION_ENABLING_POLICY_ID.value, any);

objref2 = objref._set_policy_override(policies,

SetOverrideType.ADD_OVERRIDE);

Example11Java Setting the Compression Algorithm at the POA Level

// Java

import org.omg.CORBA.*;

import com.iona.corba.IT_ZIOP.*;

// ...

Java select compression algorithm on the server side

- 555/599 -

Implementing Custom Compression
The ZIOP plug-in is extensible, enabling you to implement your own compression algorithm for GIOP
messages.

Choose a unique compressor ID to identify the new compression algorithm (this ID should not clash
with the existing compressor IDs).

Implement an IT_ZIOP::Compressor class, providing the logic to compress/decompress messages.

Implement an IT_ZIOP::CompressorFactory class that creates Compressor instances that perform the
custom compression at a specific compression level.

Register an IT_ZIOP::CompressorFactory instance with the IT_ZIOP::CompressionManager object.

This section contains the following subsections:

int compressor_id = 3; // for bzip2 compression

Policy[] policies = new Policy[1];

Any any = orb.create_any();

any.insert_long(compressor_id);

policies[0] = orb.create_policy(COMPRESSOR_ID_POLICY_ID.value, any);

POA child_poa = root_poa.create_POA("child_poa",

root_poa.the_POAManager(),

policies);

1. 1.

2. 2.

3. 3.

4. 4.

The IT_Buffer Module page 411

Implementing a Compressor page 414

Implementing a Compressor Factory page 417

Implementing Custom Compression

- 556/599 -

The IT_Buffer Module
The IT_Buffer module provides a proprietary implementation of a segmented buffer, which the
compression API uses to represent incoming and outgoing messages.

Each IT_Buffer::Buffer object implicitly consists of a number of segments, of IT_Buffer::Segment type.
Given a buffer instance, buff , you can iterate over all of the bytes in the buffer as follows:

Call IT_Buffer::Buffer::rewind() to reset the buffer to the first segment.

Call IT_Buffer::Buffer::next_segment() to get a reference to the first segment in the buffer (of
IT_Buffer::Segment type).

Iterate over each byte in the segment (bytes within a segment are contiguous). The first byte of the
segment is given by Segment::data + Segment::offset . The last byte of the segment is given by
Segment::data + Segment::offset + Segment::length - 1 .

Move on to the next segment by calling IT_Buffer::Buffer::next_segment() .

When the last segment is reached, next_segment() returns a null pointer.

Example
For a detailed example of how to use the IT_Buffer programming interface, see the ZIOP compression
demonstration in the following directory:

Buffer IDL interface
Example 12 shows the Buffer IDL interface, which is defined in the IT_Buffer module.

Registering a Compressor Factory page 420

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

OrbixInstallDir/asp/*Version*/demos/corba/orb/ziop_compression

Example12The Buffer IDL Interface

// IDL

...

module IT_Buffer {

The IT_Buffer Module

- 557/599 -

...

local interface Buffer

{

readonly attribute unsigned long length;

readonly attribute unsigned long original_length;

readonly attribute unsigned long storage_size;

readonly attribute unsigned long segment_count;

void rewind();

Segment next_segment();

void grow(

in unsigned long increment,

in TimeBase::UtcT expiry

);

void trim(

in unsigned long from,

in unsigned long to

);

void eclipse(in long delta);

void recycle();

void prepend(in Buffer head);

void append(in Buffer tail);

Buffer extract(

in unsigned long from,

in unsigned long to

The IT_Buffer Module

- 558/599 -

Buffer attributes
The following attributes are defined in the IT_Buffer::Buffer interface:

length —the number of bytes within the buffer currently available for use.

original_length —the number of bytes originally allocated to the buffer.

storage_size —the allocation unit size of the buffer’s underlying storage implementation.

segment_count —the number of segments currently available for use.

Buffer operations
The following operations are defined in the IT_Buffer::Buffer interface:

rewind() —ensures that a subsequent call to next_segment() returns the first segment of the buffer
or NULL, if the length is zero.

next_segment() —returns a reference to the next segment in the buffer or NULL, if the buffer
contains no additional segments.

grow() —attempt to grow the length of the buffer by at least increment bytes. The expiry
parameter specifies the maximum amount of time to wait for this operation to complete.

trim() —reduce the length of the buffer and rewind. The reduced buffer is defined by the
subrange [from, to) . That is, the parameters are interpreted as follows:

from —the index of the first byte to be included in the trimmed buffer.

);

void copy_octets(

in unsigned long buffer_offset,

inout CORBA::OctetSeq dest,

in unsigned long dest_offset,

in unsigned long length

);

};

...

};

• •

• •

• •

• •

• •

• •

• •

• •

• •

The IT_Buffer Module

- 559/599 -

to —the index after the last byte to be included in the trimmed buffer.

extract() —extract the specified range of bytes from this buffer, returning the result as a new
Buffer . The reduced buffer is defined by the subrange [from, to) . That is, the parameters are
interpreted as follows:

from —the index of the first byte to be included in the trimmed buffer.

to —the index after the last byte to be included in the trimmed buffer.

recycle() —release the buffer’s memory, unreferencing any Storage instances it contains.

prepend() —add another buffer, head , to the front of this buffer.

append() —add another buffer, tail , to the end of this buffer.

Segment IDL interface
Example 13 shows the Segment IDL interface, which is defined in the IT_Buffer module.

• •

• •

• •

• •

• •

• •

• •

Example13The Segment IDL Interface

// IDL

...

module IT_Buffer {

native RawData;

local interface Storage;

...

local interface Segment

{

readonly attribute RawData data;

readonly attribute unsigned long offset;

readonly attribute unsigned long length;

readonly attribute Storage underlying_storage;

};

The IT_Buffer Module

- 560/599 -

Segment attributes
The following attributes are defined in the IT_Buffer::Segment interface:

data —a reference to the block of raw memory where this segment is stored. In Java, the native
RawData type maps to byte[] by default. If you have enabled Orbix to use Java’s new I/O (NIO), the
RawData type maps to java.nio.ByteBuffer instead.

offset —an offset into the data block that marks the start of the bytes belonging to this segment.
In other words, the first byte belonging to the segment is given by Segment::data +
Segment::offset .

length —the number of bytes in data that belong to this segment. The value of length is always
greater than zero.

For example, the index after the last byte in the segment is given by Segment::data +
Segment::offset + Segment::length .

underlying_storage —returns the underlying storage as an IT_Buffer::Storage object.

Implementing a Compressor
This section describes how to implement an IT_ZIOP::Compressor object, which is responsible for
performing compression and decompression of GIOP messages. By implementing this IDL interface,
you can define new compression algorithms for the ZIOP plug-in.

Two operations are defined in the Compressor interface: compress() and decompress() . Each of these
operations takes a source buffer as input and returns a transformed target buffer as output. The
buffers are passed in the form of IT_Buffer::Buffer objects.

Compressor IDL interface
Example 14 shows the Compressor IDL interface, which is defined in the IT_ZIOP module.

...

};

• •

• •

• •

• •

Example14The Compressor IDL Interface

// IDL

Implementing a Compressor

- 561/599 -

#include <omg/orb.idl>

#include <orbix_pdk/buffer.idl>

...

module IT_ZIOP {

...

exception CompressionException { string reason; };

typedef unsigned long CompressorId;

local interface CompressorFactory;

...

local interface Compressor

{

readonly attribute CompressorFactory compressor_factory;

readonly attribute long compression_level;

void compress(

in IT_Buffer::Buffer source,

in IT_Buffer::Buffer target

) raises (CompressionException);

void decompress(

in IT_Buffer::Buffer source,

in IT_Buffer::Buffer target

) raises (CompressionException);

};

Implementing a Compressor

- 562/599 -

The Compressor interface defines two operation, as follows:

compress() —take the input buffer, source , compress it, and insert it into the output buffer, target .

decompress() —take the input buffer, source , decompress it, and insert it into the output buffer,
target .

The Compressor object simply performs compression/decompression unconditionally. The logic
that determines whether or not it is appropriate to compress/decompress a particular message
(based on the effective compression policies) is already built-in to the ZIOP plug-in.

Java implementation of Compressor
Example 15 shows a sample implementation of the Compressor class.

...

};

• •

• •

Note

Example15Java Implementation of the Compressor Class

// Java

package ziop_compression;

import org.omg.CORBA.LocalObject;

import com.iona.corba.IT_Buffer.Buffer;

import com.iona.corba.IT_Buffer.Segment;

import com.iona.corba.IT_ZIOP.Compressor;

import
com.iona.corba.IT_ZIOP.CompressorFactory;

import
com.iona.corba.IT_ZIOP.CompressionException;

Implementing a Compressor

- 563/599 -

import com.iona.corba.ziop.NullCompressor;

import com.iona.common.time.UTCUtility;

import java.io.*;

public class DemoCompressor

[1](#java-implementation-
of-compressor)

extends LocalObject

implements Compressor

{

private CompressorFactory m_factory;

private int m_level;

[2](#java-implementation-
of-compressor)

public DemoCompressor(CompressorFactory
factory, int level)

{

m_factory = factory;

m_level = level;

}

public String toString()

{

return "DemoCompressor[level =" + m_level +
"]";

}

Implementing a Compressor

- 564/599 -

[3](#java-implementation-
of-compressor)

public void compress(Buffer source, Buffer
target) throws CompressionException

{

[4](#java-implementation-
of-compressor)

source.rewind();

target.rewind();

...

}

[5](#java-implementation-
of-compressor)

public void decompress(Buffer source, Buffer
target) throws CompressionException

{

[6](#java-implementation-
of-compressor)

source.rewind();

target.rewind();

...

}

[7](#java-implementation-
of-compressor)

public CompressorFactory compressor_factory()

{

return m_factory;

}

[8](#java-implementation-
of-compressor)

public int compression_level()

{

Implementing a Compressor

- 565/599 -

The preceding implementation class can be explained as follows:

Because Compressor is a local IDL interface, the DemoCompressor class does not inherit from a POA
implementation class. It inherits from the following base classes:

com.iona.corba.IT_ZIOP.Compressor —this interface is used as a base, instead of the CompressorPOA
interface.

org.omg.CORBA.LocalObject —this class marks the DemoCompressor class as a local object.

The compressor factory reference, factory , and the compression level, level , are passed into the
constructor by the compressor factory.

When the compress() method is called, the source buffer is initialized with the data to compress. The
compress() method performs compression on the contents of the source buffer and writes the result
into the initially empty target buffer object.

The com.iona.corba.IT_Buffer.Buffer.rewind() method resets the current position of the buffer back to
the first byte. After rewinding, you can proceed to compress the source buffer.

The details of implementing a compression algorithm are not shown here. In principle, it involves
iterating over the bytes in the segmented buffers.

For a detailed example, see the demonstration at:

OrbixInstallDir /asp/ Version /demos/corba/orb/ziop_compression

In the ziop_compression demonstration, the compress() method writes the compression level to the
front of the target buffer. With most real-life compression algorithms, however, this is unnecessary.

When the decompress() method is called, the source buffer is initialized with the data to decompress.
The decompress() method performs decompression on the contents of the source buffer and writes
the result into the initially empty target buffer object.

The com.iona.corba.IT_Buffer.Buffer.rewind() method resets the current position of the buffer back to
the first byte. After rewinding, you can proceed to decompress the source buffer.

return m_level;

}

}

1. 1.

2. 2.

3. 3.

4. 4.

Note

5. 5.

6. 6.

Implementing a Compressor

- 566/599 -

The details of implementing a decompression algorithm are not shown here. In principle, it involves
iterating over the bytes in the segmented buffers.

For a detailed example, see the demonstration at:

OrbixInstallDir /asp/ Version /demos/corba/orb/ziop_compression

In the ziop_compression demonstration, the decompress() method reads the compression level from the
front of the target buffer. With most real-life compression algorithms, however, this is unnecessary.

Return the cached reference to the compressor factory, m_factory .

Return the cached compression level, m_level .

Implementing a Compressor Factory
This section describes how to implement an IT_ZIOP::CompressorFactory object, which is responsible for
creating new Compressor instances (or returning existing instances).

The most important operation defined by CompressorFactory is get_compressor() , which is responsible for
obtaining new (or pre-existing) Compressor instances.

CompressorFactory IDL interface
Example 16 shows the CompressorFactory IDL interface, which is defined in the IT_ZIOP module.

Note

7. 7.

8. 8.

Example16The CompressorFactory IDL Interface

// IDL

...

module IT_ZIOP {

...

typedef unsigned long CompressorId;

...

local interface CompressorFactory

{

Implementing a Compressor Factory

- 567/599 -

The CompressorFactory interface defines two operation, as follows:

get_compressor() —create a new IT_ZIOP::Compressor object (or get a reference to an existing
IT_ZIOP::Compressor object).

add_sample() —this is used for statistical analysis. The operation is called internally by Orbix
interceptors after each call to compress() or decompress() . The arguments to add_sample() are
calculated from the lengths of the source and target buffers. By calling average_compression() , you
can determine the average compression ratio for a particular compression algorithm.

Java implementation of CompressorFactory
Example 17 shows a sample implementation of the CompressorFactory interface.

readonly attribute CompressorId compressor_id;

readonly attribute unsigned long long compressed_bytes;

readonly attribute unsigned long long uncompressed_bytes;

readonly attribute double average_compression;

Compressor get_compressor(in long compression_level);

void add_sample(

in unsigned long long compressed_bytes,

in unsigned long long uncompressed_bytes

);

};

...

};

• •

• •

Example17Java Implementation of the CompressorFactory Class

// Java

Implementing a Compressor Factory

- 568/599 -

package ziop_compression;

import java.util.Iterator;

import java.util.List;

import java.util.LinkedList;

import org.omg.CORBA.LocalObject;

import com.iona.corba.IT_ZIOP.Compressor;

import
com.iona.corba.IT_ZIOP.CompressorFactory;

import
com.iona.corba.ziop.NullCompressorFactory;

public class DemoCompressorFactory

extends LocalObject

implements CompressorFactory

{

private DemoCompressor m_compressor;

private int m_compressor_id;

private long m_compressed_bytes;

private long m_uncompressed_bytes;

[1](#java-implementation-of-
compressorfactory)

public DemoCompressorFactory(int
compressor_id)

{

m_compressor_id = compressor_id;

m_compressed_bytes = 0;

Implementing a Compressor Factory

- 569/599 -

m_uncompressed_bytes = 0;

}

public String toString()

{

return "DemoCompressorFactory[compressor_id
=" + m_compressor_id + "]";

}

public final int compressor_id()

{

return m_compressor_id;

}

public final long compressed_bytes()

{

return m_compressed_bytes;

}

public final long uncompressed_bytes()

{

return m_uncompressed_bytes;

}

Implementing a Compressor Factory

- 570/599 -

[2](#java-implementation-of-
compressorfactory)

public final double average_compression()

{

if(m_uncompressed_bytes == 0)

{

return 1.0;

}

return (double)m_compressed_bytes /
(double)m_uncompressed_bytes;

}

[3](#java-implementation-of-
compressorfactory)

public final Compressor get_compressor(int
compression_level)

{

if (m_compressor == null)

{

m_compressor = new DemoCompressor(this,
compression_level);

}

return m_compressor;

}

[4](#java-implementation-of-
compressorfactory)

public final void add_sample(long
compressed_bytes, long uncompressed_bytes)

{

m_compressed_bytes += compressed_bytes;

Implementing a Compressor Factory

- 571/599 -

The preceding implementation class can be explained as follows:

The compressor ID, compressor_id , is passed into the constructor when the user code creates and
installs the factory.

The average_compression() method calculates the average compression ratio for all of the data that
has passed through the compressor (or compressors) associated with this factory.

The get_compressor() method either creates a new compressor instance, if this is the first time the
function is called, or else returns a reference to a pre-existing compressor instance.

The add_sample() method is called internally to record the volumes of compressed data and
uncompressed data passing through the Compressor . Normally, you should implement it exactly as
shown here.

Registering a Compressor Factory
To make a new compression algorithm available to the ZIOP plug-in, you must register it with the
IT_ZIOP::CompressionManager object.

The new compression algorithm must be identified by a unique compressor ID. Once it is registered, the
compression algorithm can be configured using the standard ZIOP configuration variables and policies.

The CompressionManager interface
Example 18 shows the CompressionManager IDL interface, which is defined in the IT_ZIOP module.

m_uncompressed_bytes += uncompressed_bytes;

}

}

1. 1.

2. 2.

3. 3.

4. 4.

Example18The CompressionManager Interface

// IDL

...

module IT_ZIOP {

...

Registering a Compressor Factory

- 572/599 -

exception FactoryAlreadyRegistered { };

exception UnknownCompressorId { };

...

typedef sequence<CompressorFactory> CompressorFactorySeq;

local interface CompressionManager

{

void register_factory(

in CompressorFactory compressor_factory

) raises (FactoryAlreadyRegistered);

void unregister_factory(

in CompressorId compressor_id

) raises (UnknownCompressorId);

CompressorFactory get_factory(

in CompressorId compressor_id

) raises (UnknownCompressorId);

Compressor get_compressor(

in CompressorId compressor_id,

in long compression_level

) raises (UnknownCompressorId);

CompressorFactorySeq get_factories();

};

...

Registering a Compressor Factory

- 573/599 -

The CompressionManager interface defines the following operations:

register_factory() —register the compressor factory, compressor_factory , with the compressor
manager in order to make a new compression algorithm available.

unregister_factory() —unregister the compressor factory which has the specified compressor ID,
compressor_id .

get_factory() —get a reference to the factory with the specified compressor ID.

get_factories() —get a list of reference to all of the registered factories.

get_compressor() —get a reference to a Compressor object with the specified ID and compression
level (implicitly calls the relevant compressor factory).

Java registering a CompressorFactory
Example 19 shows how to register a custom CompressorFactory , which makes a custom compression
algorithm available to the application. This segment of code should be called when the application
starts up.

};

• •

• •

• •

• •

• •

Example19Java Registering a CompressorFactory

// Java

package ziop_compression;
import org.omg.CORBA.Any;
import org.omg.CORBA.ORB;
...
import
com.iona.corba.IT_ZIOP.CompressionManager;
import
com.iona.corba.IT_ZIOP.CompressionManagerHelp
er;
...
import java.io.*;

// Setup and Configure the CompressionManager

CompressionManager compression_manager;

Registering a Compressor Factory

- 574/599 -

The preceding registration code can be described as follows:

To access the compression manager object, resolve an initial reference, passing the
IT_CompressionManager string to resolve_initial_references() .

The returned initial reference must be cast to the correct type,
com.iona.corba.IT_ZIOP.CompressionManager , using the CompressionManagerHelper.narrow() method.

Call register_factory() to register a new factory instance, of DemoCompressorFactory type. The
argument passed to the DemoCompressorFactory constructor is the compression level.

[1](#java-registering-a-
compressorfactory)

org.omg.CORBA.Object ref =
orb.resolve_initial_references("IT_Compressio
nManager");

[2](#java-registering-a-
compressorfactory)

compression_manager =
CompressionManagerHelper.narrow(ref);

if(compression_manager == null)

{

Exception ex = new Exception("Unable to
retrieve IT_CompressionManager reference");

ex.printStackTrace();

throw ex;

}

System.out.println("Registering
DemoCompressorFactory with Compression
Manager");

[3](#java-registering-a-
compressorfactory)

compression_manager.register_factory(new
DemoCompressorFactory(100));

1. 1.

2. 2.

3. 3.

Registering a Compressor Factory

- 575/599 -

Orbix IDL Compiler Options

This appendix describes the syntax of the IDL compiler command, along with the relevant options and
switches.

Command Line Switches

Syntax
The IDL compiler compiles the contents of an IDL module into header and source files for client and
server processes, in the specified implementation language. You invoke the idl compiler with the
following command syntax:

You must specify at least one plug-in switch, such as -poa or -base , unless you modify the IDL
configuration file to set IsDefault for one or more plug-ins to Yes. (see page 428). As distributed, the
configuration file sets IsDefault for all plug-ins to No.

General switches
You can qualify the idl command with one or more of the following switches. Multiple switches are
colon-delimited.

idl -plugin[...] [-switch]... idlModule

Note

Switch Description

-Dname[:value] Defines the preprocessor’s name.

-E Runs preprocessor only, prints on stdout .

-Idir Includes dir in search path for preprocessor.

-R[-v] Populates the interface repository (IFR). The -v modifier specifies verbose
mode.

Orbix IDL Compiler Options

- 576/599 -

Switch Description

-Uname Undefines name for preprocessor.

-V Prints version information and exits.

-u Prints usage message and exits.

-w Suppresses warning messages.

General switches

- 577/599 -

Plug-in Switch Modifiers
The following tables describe the modifiers that you can supply to plug-in switches such as -base or -
poa .

Modifiers for all C++ plug-in switches.

Modifiers for -base, -psdl, and -pss_r switches.

Modifiers for -jbase and -jpoa switches.

Modifiers for -poa switch.

Switch Description

-plugin [:-
modifier]...

Specifies to load the IDL plug-in specified by plug-in to generate code
that is specific to a language or ART plug-in. You must specify at least
one plug-in to the idl compiler

Use one of these values for plug-in :

- base : Generate C++ header and stub code.

- jbase : Generate Java stub code

- poa : Generate POA code for C++ servers.

- poa : Generate POA code for Java servers.

- psdl : Generate C++ code that maps to abstract PSDL constructs.

- pss_r : Generate C++ code that maps concrete PSDL constructs to
relational and relational-like database back-end drivers.

Each plug-in switch can be qualified with one or more colon-delimited
modifiers.

• •

• •

• •

• •

Plug-in Switch Modifiers

- 578/599 -

Modifiers for all C++ plug-in switches
Table 23 describes modifiers that can be used with all C++ plug-in switches.

Table 23: Modifiers for all C++ plug-in switches

Modifier Description

-d[decl-
spec]

Creates NT declspecs for dllexport and dllimport . If you omit decl-
spec , idl uses the stripped IDL module’s name.

For example, the following command:

idl -dIT_ART_API foo.idl yields this code:

#if !defined(IT_ART_API) #if defined(IT_ART_API_EXPORT) #def
ine IT_ART_API IT_DECLSPEC_EXPORT #else #define IT_ART_API
IT_DECLSPEC_IMPORT #endif #endif If you compile and link a DLL with

the idl -generated code within it, IT_ART_API_EXPORT must be a defined
preprocessor symbol so that IT_ART_API is set to dllexport . All methods
and variables in the generated code can be exported from the DLL and used by
other applications. If IT_ART_API_EXPORT is not defined as a preprocessor
symbol, IT_ART_API is set to dllimport ; methods and variables that are
defined in the generated code are imported from a DLL.

-ipath-
prefix

Prepends path-prefix to generated include statements. For example, if
the IDL file contains the following statement:

#include "foo.idl" idl generates this statement in the header file:

#include path-prefix/foo.hh

Modifiers for all C++ plug-in switches

- 579/599 -

Modifiers for -base, -psdl, and -pss_r switches
Table 24 describes the modifiers for -base , -psdl , and -pss_r .

Table 24: Modifier for -base, -psdl, and -pss_r plug-in switches

Modifier Description

-
h[suffix.
]ext

Sets header file extensions. The default setting is .hh .

For example, the following command:

idl -base:-hh foo.idl yields a header file with this name:

foo.h If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period specifies
the file extension. For example, the following command:

idl -base:-h_client.h foo.idl yields the following header file name:

foo_client.h If you use the -h to modify the -base switch, also use -b
to modify the -poa switch (see Table 26).

-Ohpath Sets the output directory for header files.

-Ocpath Sets the output directory for client stub (.cxx) files.

-
xAMICall
backs

Generates stub code that enables asynchronous method invocations (AMI).

Modifiers for -base, -psdl, and -pss_r switches

- 580/599 -

Modifiers for -jbase and -jpoa switches
Table 25 describes the modifiers for -jbase and -jpoa .

Table 25: Modifiers for -jbase and -jpoa switches

Modifier Description

-
c[suffix.]
ext

Specifies the format for stub file names. The default name is idl-name.cxx .

For example, the following command:

idl -base:-cc foo.idl yields a server skeleton file with this name:

foo.c If the argument embeds a period (.), the string to the left of the
period is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -base:-c_client.c foo.idl yields the following stub file name:

foo_client.c

-xOBV Generates object-by-value default valuetype implementations in files.

Modifier Description

-Ppackage Uses package as the root scope to package all unspecified modules. By
default, all Java output is packaged in the IDL module names.

-
Pmodule=packa
ge

Uses package as the root scope for the specified module.

-Odir Outputs all java code to dir . The default is the current directory.

-Gdsi -
Gstream

Outputs DSI or stream-based code. The default is stream .

-Mreflect -
Mcascade

Specifies the POA dispatch model to use either reflection or cascading
if-then-else statements. The default is reflect .

-J1.1 -J1.2 Specifies the JDK version. The default is 1.2.

Modifiers for -jbase and -jpoa switches

- 581/599 -

Modifiers for -poa switch
Table 26 describes the modifiers for -poa .

Table 26: Modifiers for -poa switch

Modifier Description

-VTRUE -
VFALSE

Generates native implementation for valuetypes. The default is FALSE .

-FTRUE -
FFALSE

Generates factory implementation for valuetypes. The default is FALSE .

-ETRUE -
EFALSE

Initializes the string fields of structures and exceptions to the empty
string. The default is FALSE , meaning that string fields are initialized to
null .

-TTRUE -
TFALSE

Generates toString() overrides for the type stubs. Default is FALSE .

-CTRUE -
CFALSE

Closes the stream before the IDL compiler throws an exception for
bounded strings and sequences. The default value is FALSE .

!!! note
This is a -jbase modifier.

Modifiers for -poa switch

- 582/599 -

Modifier Description

-
s[suffix.]
ext

Specifies the skeleton file name. The default name is idl-nameS.cxx for
skeleton files.

For example, the following command:

idl -poa:-sc foo.idl yields a server skeleton file with this name:

fooS.c If the argument embeds a period (.), the string to the left of the
period is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -poa:-s_server.h foo.idl yields the following skeleton file name:

foo_server.c

-
b[suffix.]
ext

Specifies the format of the header file names in generated #include
statements. Use this modifier if you also use the -h modifier with the -base
plug-in switch.

For example, if you specify a .h extension for -base -generated header
files, specify the same extension in -poa -generated #include statements,
as in the following commands:

idl -base:-hh foo.idl idl -poa:-bh foo.idl These commands
generate header file foo.h , and include in skeleton file fooS.cxx a header
file of the same name:

#include "foo.h" If the argument embeds a period (.), the string to the
left of the period is appended to the IDL file name; the string to the right of
the period specifies the file extension. For example, the following command:

idl -poa:-b_client.h foo.idl yields in the generated skeleton file the
following #include statement:

#include "foo_client.h"

Modifiers for -poa switch

- 583/599 -

IDL Configuration File
The IDL configuration file defines valid idl plug-in switches such as -base and -poa and specifies how
to execute them. For example, the default IDL configuration file defines the base and poa switches, the
path to their respective libraries, and command line options to use for compiling C++ header and client
stub code and POA code.

IDL configuration files have the following format:

Figure 55 Configuration file format

Modifier Description

-mincl-
mask

#include statements with file names that match mask are ignored in the
generated skeleton header file. This lets the code generator ignore files that it
does not need. For example, the following switch:

-momg/orb directs the idl compiler to ignore this #include statement in
the IDL/PSDL:

#include <omg/orb.idl>

-pmultiple Sets the dispatch table to be 2 to the power of multiple . The default value
of multiple is 1. Larger dispatch tables can facilitate operation dispatching,
but also increase code size and memory usage.

-xTIE Generates POA TIE classes.

IDL Configuration File

- 584/599 -

plugin-type can be one of the following literals:

The idl command can supply additional switch modifiers; these are appended to the switch modifiers
that are defined in the configuration file. You can comment out any line by beginning it with the #
character.

The distributed IDL configuration file looks like this:

Figure 56 Distributed IDL configuration file

IDLPlugins = "plugin-type[, plugin-type].."
plugin-type
{
Switch = switch-name;
ShlibName = path;
ShlibMajorVersion = version
ISDefault = "{ YES | NO }";
PresetOptions = "-plugin-modifier[, -plugin-modifier]..."
plugin-specific settings...
...
}

Java
POAJava
Cplusplus
POACxx
IFR
PSSDLCxx
PSSRCxx

IDL Configuration File
IDL_CPP_LOCATION configures the C-Preprocessor for the IDL
Compiler
It can be the fully qualified path with the executable name or
just the executable name
#IDL_CPP_LOCATION = "%PRODUCT_BIN_DIR_PATH%/idl_cpp";
#IDL_CPP_ARGUMENTS = "";
#tmp_dir = "c:\temp";

IDL Configuration File

- 585/599 -

IDLPlugins = "Java, POAJava, Cplusplus, POACxx, IFR, PSSDLCxx,
PSSRCxx";

Cplusplus
{
Switch = "base";
ShlibName = "it_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

POACxx
{
Switch = "poa";
ShlibName = "it_poa_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

IFR
{
Switch = "R";
ShlibName = "it_ifr_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "";
};

IDL Configuration File

- 586/599 -

PSSDLCxx
{
Switch = "psdl";
ShlibName = "it_pss_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
UsePSSDLGrammar = "YES";
Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

PSSRCxx
{
Switch = "pss_r";
ShlibName = "it_pss_r_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
UsePSSDLGrammar = "YES";
Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

Java Config Information
Java
{
Switch = "jbase";
ShlibName = "idl_java";
ShlibMajorVersion = "1";
IsDefault = "NO";
};

IDL Configuration File

- 587/599 -

Given this configuration, you can issue the following idl commands on the IDL file foo.idl :

POAJava
{
Switch = "jpoa";
ShlibName = "jpoa";
ShlibMajorVersion = "1";
IsDefault = "NO";
};

idl -base foo.idl Generates client stub and header code.

idl -poa foo.idl Generates POA code.

idl -base -poa
foo.idl

Generates code for both client stub and header code and POA
code.

IDL Configuration File

- 588/599 -

Rocket Software Orbix Policies

Orbix supports a number of proprietary policies in addition to the OMG policies. To create a policy of the
proper type you must know the policy’s tag.

Client Side Policies
BindingEstablishmentPolicy

Policy Tag

Data Values

A client’s BindingEstablishmentPolicy is determined by the members of its
BindingEstablishmentPolicyValue , which is defined as follows:

See Also

BindingEstablishmentPolicy

RelativeBindingExclusiveRoundtripTimeoutPolicy

Policy Tag

Data Values

IT_CORBA::BINDING_ESTABLISHMENT_POLICY_ID

struct BindingEstablishmentPolicyValue
{
TimeBase::TimeT relative_expiry;
unsigned short max_binding_iterations;
unsigned short max_forwards;
TimeBase::TimeT initial_iteration_delay;
float backoff_ratio;
};

IT_CORBA::RELATIVE_BINDING_EXCLUSIVE_ROUNDTRIP_TIMEOUT_POLICY_ID

Rocket Software Orbix Policies

- 589/599 -

This policy’s value is set in 100-nanosecond units.

See Also

RelativeBindingExclusiveRoundtripTimeoutPolicy

RelativeBindingExclusiveRequestTimeoutPolicy

Policy Tag

Data Values

This policy’s value is set in 100-nanosecond units.

See Also

RelativeBindingExclusiveRequestTimeoutPolicy

RelativeConnectionCreationTimeoutPolicy

Policy Tag

Data Values

The policy’s value is set in 100-nanosecond units.

See Also

RelativeConnectionCreationTimeoutPolicy

InvocationRetryPolicy

Policy Tag

Data Values

A client’s InvocationRetryPolicy is determined by the members of its InvocationRetryPolicyValue , which is
defined as follows:

IT_CORBA::RELATIVE_BINDING_EXCLUSIVE_REQUEST_TIMEOUT_POLICY_ID

IT_CORBA::RELATIVE_CONNECTION_CREATION_TIMEOUT_POLICY_ID

IT_CORBA::INVOCATION_RETRY_POLICY_ID

Client Side Policies

- 590/599 -

See Also

InvocationRetryPolicy

ClientLoadBalancingPolicy

Policy Tag

Data Values

readonly attribute string key;

Effect of the Policy

You can use ClientLoadBalancingPolicy to control shareability of client-side bindings; this affects load
balancing on a per-client-proxy basis.

When a client invokes an operation on a CORBA object implemented by an Orbix server, Orbix takes the
following details into account to determine whether it can reuse an existing binding:

Associated ORB instance—the identity of the ORB instance on the client side with which the object
reference is associated.

Endpoint ID—obtained from the IOR profile currently used by the object.

IOR Components—obtained from the IOR profile currently used by the object.

Effective policy set—the client policies that are effective for this object reference. It is possible to
set policies on the client side at several granularity levels, down to the level of a single object
reference. An effective policy set is obtained by merging client-level, ORB-level, and object-level
CORBA policies.When two object references have all these details in common, they can share a
binding.

struct InvocationRetryPolicyValue
{
unsigned short max_retries;
unsigned short max_rebinds;
unsigned short max_forwards;
TimeBase::TimeT initial_retry_delay;
float backoff_ratio;
};

IT_CORBA::CLIENT_LOAD_BALANCING_POLICY_ID

• •

• •

• •

Client Side Policies

- 591/599 -

If an instance of ClientLoadBalancingPolicy is introduced into the effective policy set of a proxy
(which can potentially share its client-side binding with another proxy and its
ClientLoadBalancingPolicy compares "not equal" with another instance of itself with a different key,
then Orbix does not reuse an existing client-side binding.

In such cases, Orbix creates a new client-side binding. If the target CORBA object is indirect-
persistent, the client ORB contacts the Locator as part of creating the binding.

If the target indirect-persistent CORBA object is replicated, the Locator triggers its load balancing
logic and binds the proxy to the endpoint selected by the Locator’s load balancer.

Where multi-threaded clients connect to replicated, load-balanced servers the client connections
are taken from the client's binding pool. When a server replica goes down, the relevant binding in
the pool is updated to point to the next available server replica. Refreshing the list of available
bindings, at the interval defined by the policies:proxy_lb:timeout configuration variable, ensures
that when a server replica is restarted it is listed as available in the client's binding pool. This helps
ensure that the load is balanced across all the available server replicas.

See the "Policies" chapter of the Orbix Configuration Reference for details of this variable.

POA Policies
ObjectDeactivationPolicy

Policy Tag

Data Values

Three settings are valid for this policy:

IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID

DELIVER(de
fault)

The object deactivates only after processing all pending requests, including
any requests that arrive while the object is deactivating.

DISCARD The POA rejects incoming requests with an exception of TRANSIENT . Clients
should be able to reissue discarded requests.

POA Policies

- 592/599 -

See Also

Setting deactivation policies

PersistentModePolicy

Policy Tag

Data Values

The only valid value for this policy is IT_PortableServer::DIRECT_PERSISTENCE .

See Also

Direct persistence

WellKnownAddressingPolicy

Policy Tag

Data Values

This policy takes a string that maps to the prefix of the configuration variable listing the well known
address.

See Also

Direct persistence

WorkQueuePolicy

Policy Tag

HOLD Requests block until the object deactivates. A POA with a HOLD policy
maintains all requests until the object reactivates. However, this policy can
cause deadlock if the object calls back into itself.

IT_PortableServer::PERSISTENCE_MODE_POLICY_ID

IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID

POA Policies

- 593/599 -

Data Values

This policy takes a WorkQueue object.

See Also

Creating the WorkQueue

Security Policies
For more detailed information on the following policies see the CORBA SSL/TLS Guide.

SessionCachingPolicy

Policy Tag

Data Values

The following settings are valid for this policy:

MaxChainLengthPolicy

Policy Tag

Data Values

IT_WorkQueue::WORK_QUEUE_POLICY_ID

IT_TLS_API::TLS_SESSION_CACHING_POLICY

CACHE_NONE(default) The ORB does not cache session data.

CACHE_CLIENT The ORB will cache session data for client side of a connection.

CACHE_SERVER The ORB will cache session data for server side of a connection.

CACHE_SERVER_AND_C
LIENT

The ORB stores session information for both the client and server
side of a connection.

IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY

Security Policies

- 594/599 -

This policy takes an integer.

CertContraintsPolicy

Policy Tag

Data Values

This policy takes an IT_TLS_API::CertConstraints object.

CertValidatorPolicy

Policy Tag

Data Values

This policy takes a IT_TLS::CertValidator object.

Firewall Proxy Policies
For more information on the firewall proxy service see the Application Server Platform Administrator’s
Guide.

InterdictionPolicy

Policy Tag

Data Values

IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY

IT_TLS_API::TLS_CERT_VALIDATOR_POLICY

IT_FPS::INTERDICTION_POLICY_ID

PROCEED(de
fault)

This is the default behavior of the firewall proxy service plug-in. A POA with its
INTERDICTION policy set to PROCEED will be proxified.

Firewall Proxy Policies

- 595/599 -

Java only?

PREVENT This setting tells the firewall proxy service plug-in to not proxify the POA.
POAs with their INTERDICTION policy set to PREVENT will not use the
firewall proxy service and requests made on objects under its control will
come directly from the requesting clients.

Firewall Proxy Policies

- 596/599 -

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 597/599 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 598/599 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 599/599 -

	Orbix Programming Guide Java
	Preface
	Audience
	Organization of this guide
	Typographical conventions
	Keying conventions

	Introduction to Orbix
	Why CORBA?
	What is CORBA?
	Orbix
	CORBA Objects
	Object Request Broker

	Servers and the Portable Object Adapter
	Orbix Plug-In Design
	Plug-ins
	ORB core

	Development Tools
	Code generation toolkit
	Multi-threading support
	Configuration and logging interfaces
	Portable interceptors

	Orbix Application Deployment
	Location domains
	Configuration domains

	CORBA Features and Services
	Full CORBA 2.3 support and interoperability
	Interoperable naming service and load balancing extensions
	Object transaction service
	Event service
	SSL/TLS
	Dynamic type support: interface repository and dynany

	Getting Started with Orbix
	Creating a Configuration Domain
	Prerequisites
	Licensing
	Steps
	Run itconfigure
	Choose the domain type
	Specify service startup options
	Specify security settings
	Specify fault tolerance settings
	Select services
	Confirm choices
	Finish configuration

	Setting the Orbix Environment
	Prerequisites
	Setting the domain

	Setting ORB Properties for the Orbix ORB
	Using the iona.properties file
	Using Java interpreter arguments

	Setting Your Classpath
	Basic Orbix classpath settings
	Classpath settings for Orbix features

	Hello World Example
	Development from the Command Line
	Define the IDL interface
	Generate starting point code
	Complete the server program
	Complete the client program
	Build the demonstration
	Run the demonstration

	First Application
	Development Using Code Generation
	Client development
	Server development

	Development Without Using Code Generation
	Client development
	Server development

	Locating CORBA Objects
	Development Steps
	Define IDL interfaces
	Generate starting point code
	The idlgen interpreter
	A set of genies
	Dummy implementation of client and server programs
	Modifying dummy client and server programs

	Compile the IDL definitions
	Output from IDL compilation
	IDL to Java mapping

	Develop the server program
	Define the servant class

	Develop the client program
	Client main()
	Client business logic

	Build the application
	Run the application
	Prerequisites
	Steps

	Enhancing Server Functionality
	Initialize the ORB
	Programatically setting the orbclass property

	Create a POA for transient objects
	create_simple_poa()

	Create servant objects
	Activate CORBA objects
	Export object references
	Activate the POA manager
	Shut down the ORB

	Complete Source Code for server.java

	Defining Interfaces
	Modules and Name Scoping
	Nesting restrictions

	Interfaces
	Interface Contents
	Operations
	Parameter direction
	in:
	out:
	inout:

	One-way operations

	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of IDL Interfaces
	Multiple inheritance
	Inheritance of the object interface
	Inheritance redefinition

	Forward Declaration of IDL Interfaces
	Local Interfaces

	Valuetypes
	Abstract Interfaces
	IDL Data Types
	Built-in Types
	Integer types
	Floating point types
	char
	String types
	octet
	any

	Extended Built-in Types
	long long
	long double
	wchar
	wstring
	fixed

	Complex Data Types
	enum
	struct
	union
	arrays
	sequence

	Pseudo Object Types

	Defining Data Types
	Constants
	Integer
	Floating-point
	Character and string
	Wide character and string
	Boolean
	Octet
	Fixed-point
	Enumeration

	Constant Expressions
	Operator precedence
	Arithmetic operators
	Bitwise operators

	Developing Applications with Genies
	Genie Syntax
	Specifying Application Components
	Selecting Interfaces
	Including Files
	Implementing Servants
	-tie/-notie
	-inherit/-noinherit
	-default_poa

	Implementing the Server Mainline
	-threads/-nothreads
	-nothreads
	-threads

	-strategy Options
	-strategy simple:
	-strategy activator:
	-strategy locator:
	-strategy default_servant:

	-ns/-nons
	-ns:
	-nons:

	Implementing a Client
	Generating Build Files
	Controlling Code Completeness
	Servant Code
	Incomplete servant
	Complete servant

	Client Code

	General Options
	-jP:
	-dir:
	-v/-s:

	Compiling the Application
	Configuration Settings

	ORB Initialization and Shutdown
	Initializing the ORB Runtime
	Calling within main()
	Supplying an ORB name
	Java mapping
	Registering portable interceptors

	Shutting Down the ORB
	In this section
	Shutting Down a Client
	Shutting down a server

	Using Policies
	Creating Policy and PolicyList Objects
	Using POA policy factories
	Calling create_policy()

	Setting Orb and Thread Policies
	set_policy_overrides()
	get_policy_overrides()

	Setting Server-Side Policies
	Setting Client Policies
	Setting Policies at Different Scopes
	Managing Object Reference Policies
	get_client_policy()
	get_policy()
	get_policy_overrides()
	set_policy_overrides()
	validate_connection()

	Getting Policies

	Developing a Server
	Server tasks
	POAs, Skeletons, and Servants
	POA tasks
	POA skeleton class
	TIE class
	Server request handling

	Mapping Interfaces to Skeleton Classes
	Creating a Servant Class
	Activating CORBA Objects
	this()
	servant_to_reference()
	Explicit activation methods

	Handling Output Parameters
	Server-side rules
	Implementation example

	Delegating Servant Implementations
	Creating tie-based servants
	Example
	Removing tie objects and servants

	Explicit Event Handling

	Managing Server Objects
	Mapping Objects to Servants
	Mapping options

	Creating a POA
	Using multiple POAs
	Procedure for creating a POA
	Setting POA Policies
	Creating Policy objects
	Attaching policies to a POA
	POA Policy factories
	Setting proprietary policies for a POA
	Orbix-proprietary policies
	ObjectDeactivationPolicy
	PersistenceModePolicy
	WellKnownAddressingPolicy
	DispatchWorkQueuePolicy
	WorkQueuePolicy
	InterdictionPolicy

	Root POA Policies

	Using POA Policies
	In this section
	Enabling the Active Object Map
	RETAIN:
	NON_RETAIN:
	Servant manager and servant retention policy

	Processing Object Requests
	USE_ACTIVE_OBJECT_MAP_ONLY:
	USE_SERVANT_MANAGER:
	USE_DEFAULT_SERVANT:

	Setting Object Lifespan
	TRANSIENT:
	PERSISTENT:
	Transient object references
	Persistent object references
	Direct persistence
	Object lifespan and ID assignment

	Assigning Object IDs
	SYSTEM_ID:
	USER_ID:

	Activating Objects with Dedicated Servants
	UNIQUE_ID:

	Activating Objects
	NO_IMPLICIT_ACTIVATION:
	IMPLICIT_ACTIVATION:

	Setting Threading Support
	ORB_CTRL_MODEL:
	SINGLE_THREAD_MODEL:
	Default work queues

	Explicit Object Activation
	Implicit Object Activation
	Calling _this()
	Calling _this() Inside an Operation
	Calling _this() Outside an Operation
	Servant inheritance of _default_POA() implementation
	Overriding _default_POA()
	Override _default_POA() to throw a system exception.
	Override _default_POA() in each servant to return the correct POA.
	Override _default_POA() in a common base class.

	Managing Request Flow
	POA manager states
	Holding state

	Work Queues
	DispatchWorkQueuePolicy
	WorkQueuePolicy
	Interface
	WorkQueue types
	ManualWorkQueue
	IDL
	Creating
	max_size

	How requests are processed

	AutomaticWorkQueue
	IDL
	Creating
	max_size
	initial_thread_count
	high_water_mark
	low_water_mark

	How requests are processed

	Using a WorkQueue
	Creating the WorkQueue
	Processing events in a manual work queue
	Processing events in an automatic work queue

	Controlling POA Proxification
	Policy
	Example

	Developing a Client
	Mapping IDL Interfaces to Proxies
	Using Object References
	Object Reference Operations
	Mappings
	Operation descriptions
	_is_a()
	_non_existent()
	_is_equivalent()
	_hash()

	Narrowing Object References
	String Conversions
	Operations
	object_to_string()
	string_to_object()
	Constraints
	Using corbaloc URL strings
	rir-argument:
	key-string:

	Initializing and Shutting Down the ORB
	Invoking Operations and Attributes
	Passing Parameters in Client Invocations
	Holder Class Types
	Holders for basic types
	Holders for user-defined types

	Holder Class Members
	Invoking an Operation With Holder Classes

	Client Policies
	RebindPolicy
	TRANSPARENT
	NO_REBIND
	NO_RECONNECT

	SyncScopePolicy
	SYNC_NONE
	SYNC_WITH_TRANSPORT
	SYNC_WITH_SERVER
	SYNC_WITH_TARGET

	Timeout Policies
	Setting absolute and relative times
	Imported Java packages
	Policies
	RelativeRoundtripTimeoutPolicy
	ReplyEndTimePolicy
	RelativeRequestTimeoutPolicy
	RequestEndTimePolicy
	BindingEstablishmentPolicy
	RelativeBindingExclusiveRoundtripTimeoutPolicy
	RelativeBindingExclusiveRequestTimeoutPolicy
	RelativeConnectionCreationTimeoutPolicy
	InvocationRetryPolicy

	Implementing Callback Objects

	Managing Servants
	Drawbacks of active object map usage
	Policies for managing many objects
	Using Servant Managers
	Servant manager types
	Registering a servant manager
	Servant Activators
	ServantActivator interface
	Implementing a servant activator
	Activating objects
	Deactivating objects
	Setting deactivation policies
	DELIVER:
	DISCARD:
	HOLD:

	Setting a POA’s servant activator

	Servant Locators
	Required policies
	Controlling servant lifespan
	ServantLocator interface
	Implementing a servant locator
	the_cookie
	operation

	Setting a POA’s servant locator

	Using a Default Servant
	Obtaining the current object
	Implementing a default servant
	Setting a Default Servant

	Creating Inactive Objects

	Exceptions
	Example IDL
	AccountNotFound
	AccountAlreadyExists

	Exception Code Mapping
	Subclasses

	User-Defined Exceptions
	Exception design guidelines
	Exceptions are thrown only for exceptional conditions.
	Exceptions carry complete information.
	Exceptions only carry useful information.
	Exceptions carry precise information

	Java mapping for user exceptions
	Constructors

	Handling Exceptions
	Handling User Exceptions
	Handling System Exceptions
	Precedence of exception handlers

	Evaluating System Exceptions
	completed
	minor
	Obtaining invocation completion status
	COMPLETED_NO:
	COMPLETED_YES:
	COMPLETED_MAYBE:

	Evaluating minor codes
	Subsystem minor codes
	Displaying minor code strings

	Throwing Exceptions
	Throwing System Exceptions

	Using Type Codes
	Type Code Components
	kind:
	description:
	TCKind enumerators
	tk_alias
	tk_null
	tk_Principal
	tk_TypeCode
	tk_value
	tk_value_box
	tk_void

	Type Code Operations
	General Type Code Operations
	equal()
	equivalent()
	Type-Specific Operations

	Type Codes for Basic Types
	Type Codes for User-Defined Types

	Using the Any Data Type
	IDL-Java mapping
	type
	value

	Constructing an Any Object
	Inserting Basic Types
	Inserting User-Defined Types
	Type safety

	Extracting Basic Types
	Extracting User-Defined Types
	Inserting and Extracting Bounded String Aliases
	Inserting a bounded string
	Extracting a bounded string

	Extracting Object References
	Any as a Parameter or Return Value
	Using DynAny Objects
	Interface hierarchy
	Generic operations
	assign()
	copy()
	destroy()
	equal()
	from_any()
	to_any()
	type()

	Creating a DynAny
	Create operations
	create_dyn_any()
	create_dyn_any_from_type_code()

	Returned types
	create_dyn_any()
	create_dyn_any_from_type_code()

	Inserting and Extracting DynAny Values
	Accessing basic DynAny values
	Insertion Operations
	Extraction Operations
	Iterating Over DynAny Components
	component_count()
	current_component()
	next()
	seek()
	rewind()
	Undefined current position

	Accessing Constructed DynAny Values
	DynEnum
	get_as_string() and set_as_string()
	get_as_ulong() and set_as_ulong()

	DynStruct
	DynUnion
	get_discriminator()
	set_discriminator()
	set_to_default_member()
	set_to_no_active_member()
	has_no_active_member()
	discriminator_kind()
	member()
	member_name()
	member_kind()

	DynSequence and DynArray
	get_length()
	set_length()

	DynFixed
	get_value()
	set_value()

	DynValue
	current_member_name()
	current_member_kind()
	get_members()
	set_members()
	get_members_as_dyn_any()
	set_members_as_dyn_any()

	DynValueBox
	get_boxed_value()
	set_boxed_value()
	get_boxed_value_as_dyn_any()
	set_boxed_value_as_dyn_any()

	Generating Interfaces at Runtime
	Using the DII
	Clients that use DII
	Steps
	Example IDL
	Constructing a Request Object
	In this section

	_request()
	Create a request object
	Set the operation’s return type
	Set operation parameters
	Set exception type codes
	Set the operation’s context clause

	_create_request()
	Creating the parameter list
	Example

	Invoking a Request
	invoke()
	send_deferred()
	send_oneway()
	send_multiple_requests_deferred()
	send_multiple_requests_oneway()

	Retrieving Request Results
	Invoking Deferred Synchronous Requests

	Using the DSI
	DSI Applications
	Invoking on a gateway
	Bidirectional gateways

	Programming a Server to Use DSI
	Dynamic implementation routine
	invoke() processing

	Using the Interface Repository
	Benefits
	Interface Repository Data
	Abstract Base Interfaces
	Container:
	Contained:
	IDLType:
	TypedefDef:

	Repository Object Types
	IDL-type objects

	Containment in the Interface Repository
	Containment interfaces
	Example
	Containment properties of interface repository objects
	Contained Interface
	Name attribute
	defined_in attribute
	balance attribute

	Container Interface
	lookup operations

	Repository Object Descriptions
	How to obtain object descriptions
	Accessing attributes
	Invoking describe()
	kind
	value

	Retrieving Repository Information
	Getting a CORBA object’s interface
	Browsing and listing repository contents
	lookup()
	lookup_name()
	contents()
	describe_contents()

	Finding an object using its repository id

	Sample Usage
	Repository IDs and Formats
	OMG IDL
	DCE UUID
	LOCAL

	Controlling Repository IDs with Pragma Directives
	ID pragma
	Prefix pragma
	Version pragma

	Naming Service
	Benefits
	Naming Service Design
	Naming graph organization
	Example

	Defining Names
	Name sequence
	Name components
	Representing Names as Strings
	Initializing a Name
	Setting name component members
	Converting a stringname to a name

	Converting a Name to a StringName

	Obtaining the Initial Naming Context
	Building a Naming Graph
	Binding Naming Contexts
	Orphaned naming contexts
	Erroneous usage of orphaned naming contexts

	Binding Object References
	Rebinding

	Using Names to Access Objects
	Setting object names
	Explicitly set the id and kind members of each Name element.
	Call to_name() on the initial naming context.

	Resolving names
	Resolving names with corbaname
	Exceptions Returned to Clients
	NotFound
	InvalidName
	CannotProceed
	AlreadyBound
	Not Empty

	Listing Naming Context Bindings
	Iterating over binding list elements
	Using a Binding Iterator
	Limiting number of bindings returned by list()
	how_many
	it

	Obtaining remainder of bindings

	Maintaining the Naming Service
	Federating Naming Graphs
	Benefits
	Federation models
	Hierarchal federation
	Fully-connected federation

	Sample Code
	Server code
	Client code

	Object Groups and Load Balancing
	Selection algorithms
	Round-robin:
	Random:
	Active load balancing:

	Load balancing interfaces
	Using Object Groups in Orbix
	Create an object group
	Add objects to an existing object group
	Remove objects from an object group
	Remove an object group
	Set member load values

	Load Balancing Example
	Defining the IDL for the application
	Creating an Object Group and Adding Objects
	Accessing Objects from a Client

	Event Service
	Overview
	Service capabilities
	Connections
	How many clients?
	Event delivery

	Event Communication Models
	Push model
	Pull model
	Mixing push and pull models
	Typed push model

	Developing an Application Using Untyped Events
	In this section
	Obtaining an Event Channel
	Event channel factory
	Event channel factory operations
	create_channel()
	find_channel()
	find_channel_by_id()
	list_channels()

	Example

	Implementing a Supplier
	Actions
	Instantiating the Supplier
	Connecting to a Channel
	obtain_push_consumer()
	obtain_pull_consumer()

	Sending Event Messages
	Disconnecting From the Event Channel

	Implementing a Consumer
	Actions
	Instantiating a Consumer
	Connecting to the Channel
	obtain_push_supplier()
	obtain_pull_supplier()

	Obtaining Event Messages
	pull()
	try_pull()

	Disconnecting From the Event Channel

	Developing an Application Using Typed Events
	In this section
	Creating the Interface
	Interface restrictions
	Example

	Obtaining a Typed Event Channel
	Event channel factory
	Typed event channel factory operations
	create_typed_channel()
	find_typed_channel()
	find_typed_channel_by_id()
	list_typed_channels()

	Example

	Implementing the Supplier
	Actions
	Instantiate the supplier
	Connecting to a typed event channel
	Pushing typed events
	Disconnecting From the Event Channel

	Implementing the Consumer
	Development tasks
	Implement the interface
	Instantiate the consumer
	Connecting to the channel
	Receiving event messages
	Disconnecting from the event channel

	Portable Interceptors
	Sample application
	Interceptor Components
	Interceptor implementations
	IOP::ServiceContext
	PortableInterceptor::Current
	IOP::TaggedComponent
	IOP::Codec
	PortableInterceptor::PolicyFactory
	PortableInterceptor::ORBInitializer
	Interceptor Types
	ClientRequestInterceptor
	ServerRequestInterceptor
	IORInterceptor
	Interception points
	Interception point data

	Service Contexts
	PICurrent
	Interface definition

	Tagged Components
	Codec
	Interface definition
	Codec operations
	encode
	decode
	encode_value
	decode_value

	Creating a codec

	Policy Factory
	ORB Initializer

	Writing IOR Interceptors
	Interception point
	IORInfo

	Using RequestInfo Objects
	Interface definition
	Timeout attributes

	Writing Client Interceptors
	Interception point definitions
	Client interceptor constructor
	Client interceptor arguments
	Interception Points
	Starting interception points
	send_request
	send_poll

	Ending interception points
	receive_reply
	receive_exception
	receive_other

	Interception Point Flow
	Scenario 1: Request-reply sequence is successful
	Scenario 2: Client receives LOCATION_FORWARD
	Scenario 3: Exception aborts interception flow
	Scenario 4: Interceptor changes reply

	ClientRequestInfo
	Client Interceptor Tasks
	Evaluating tagged components
	Obtaining service data
	Encoding service context data
	Adding service contexts to a request

	Writing Server Interceptors
	Interception Points
	Starting interception point
	receive_request_service_contexts

	Intermediate interception point
	receive_request

	Ending interception points
	send_reply
	send_exception
	send_other

	Interception Point Flow
	Scenario 1: Target object throws exception
	Scenario 2: Exception aborts interception flow
	Scenario 3: Interceptors change reply type

	ServerRequestInfo
	Server Interceptor Tasks
	Get server policies
	Get service contexts

	Registering Portable Interceptors
	Implementing an ORB Initializer
	Obtain PICurrent
	Register an initial reference
	Create and register policy factories
	Create Codec objects
	Register interceptors

	Registering an ORBInitializer

	Setting Up Orbix to Use Portable Interceptors

	Bidirectional GIOP
	Introduction to Bidirectional GIOP
	Bidirectional GIOP draft specification
	Features
	Configuration versus programming approach
	Configuration approach
	Programming approach

	Bidirectional GIOP Policies
	Overview
	IDL for standard policies
	BidirectionalExportPolicy
	BidirectionalOfferPolicy
	BidirectionalAcceptPolicy
	IDL for proprietary policies
	BiDirIdGenerationPolicy
	BidirectionalGen3AcceptPolicy
	Policy granularity

	Configuration Prerequisites
	Client configuration
	Server configuration

	Basic BiDir Scenario
	In this section
	The Stock Feed Demonstration
	Demonstration code
	IDL for stock feed scenario
	Stock feed scenario
	Steps to establish a callback

	Setting the Export Policy
	Policy granularity
	Java example

	Setting the Offer Policy
	Policy granularity
	Java example

	Setting the Accept Policy
	Policy granularity
	Java example

	Advanced BiDir Scenario
	Multiple endpoints
	Multiple connections
	Bidirectional offer phase
	Exporting a callback object
	Bidirectional accept phase

	Interoperability with Orbix Generation 3
	Configuring an Orbix 6.1 server for Gen 3 interoperability
	Setting the BiDir Gen 3 accept policy
	Asymmetry of Gen 3 bidirectional support
	Limitations of Gen 3 bidirectional GIOP

	Locating Objects with corbaloc
	corbaloc URL Format
	Converting a corbaloc URL to an object reference
	corbaloc URL formats
	Basic corbaloc URL
	Multiple-address corbaloc URL
	Secure corbaloc URL
	Object keys
	URL escape mechanism

	Indirect Persistence Case
	Overview of the Indirect Persistence Case
	Stages in registering and finding a named key

	Registering a Named Key at the Command Line
	The itadmin named_key command
	Creating a named key using itadmin named_key create

	Registering a Named Key by Programming
	Server example in Java

	Using the corbaloc URL in a Client
	Client example in Java

	Direct Persistence Case
	Overview of the Direct Persistence Case
	Stages in registering and finding a plain text key

	Registering a Plain Text Key
	Server example in Java

	Using the corbaloc URL in a Client
	Client example in Java

	Named Keys and Plain Text Keys Used by Orbix Services

	Configuring and Logging
	The Configuration Interface
	The IT_Config::Configuration interface
	The ConfigList type
	Operations
	Reference

	Configuring
	Generating configuration domains
	Configuration sources
	Sample configuration
	Java accessing configuration settings
	References

	Logging
	Logging event
	Logging subsystem
	Event ID
	Event priority
	Message
	Local log stream
	System log stream
	Defining a subsystem ID and event IDs
	Java logging messages
	References

	Orbix Compression Plug-in
	Introduction to the ZIOP Plug-In
	Implementation
	Additional components

	Configuration Prerequisites
	Configuring the ziop plug-in
	Configuring the binding lists

	Compression Policies
	IDL for the compression policies
	CompressionEnablingPolicy
	CompressorIdPolicy

	Programming Compression Policies
	Java enable/disable compression on the server side
	Java enable/disable compression on the client side
	Java select compression algorithm on the server side

	Implementing Custom Compression
	The IT_Buffer Module
	Example
	Buffer IDL interface
	Buffer attributes
	Buffer operations
	Segment IDL interface
	Segment attributes

	Implementing a Compressor
	Compressor IDL interface
	Java implementation of Compressor

	Implementing a Compressor Factory
	CompressorFactory IDL interface
	Java implementation of CompressorFactory

	Registering a Compressor Factory
	The CompressionManager interface
	Java registering a CompressorFactory

	Orbix IDL Compiler Options
	Command Line Switches
	Syntax
	General switches

	Plug-in Switch Modifiers
	Modifiers for all C++ plug-in switches
	Modifiers for -base, -psdl, and -pss_r switches
	Modifiers for -jbase and -jpoa switches
	Modifiers for -poa switch

	IDL Configuration File

	Rocket Software Orbix Policies
	Client Side Policies
	POA Policies
	Security Policies
	Firewall Proxy Policies

	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

