
CORBA Trader Service Guide Java
V6.3.14

Table of Contents

9Preface

9Audience

9Related documentation

10Typographical conventions

10Keying conventions

12An Introduction to the CORBA Trading Service

12Introduction

12How clients and servers use a trader

13Scalability

13Service Types

13Service type definition

14Service type names

14Interface types

14Property types

15Super types

16Service Offers

16Service offers

17The Trader Service’s Components

17Trader components

19Configuring the Trader Service

19Configuring and Running the Trader Service

19Preparatory steps

20Explanation

20Steps 1-2: Determine the hosts and ports to be used in the deployment

20Step 3: Enter the host and port information in the configuration

22Step 4: Configure the service to run with or without replication

22Step 5: Run the service in prepare mode to obtain initial references

23Step 6: Adding the initial references to the configuration

Table of Contents

- 2/113 -

24Step 7: Running the trader service

24Additional Configuration Information

25Getting Started with the Trader Service

25Starting the Trader Service

25Synopsis

25Stopping the Trader Service

26The Printer Application

26Interaction with the trader

27The IDL specification

27Trader Service Programming

28Connecting to the Trader

28Adding a New Service Offer Type

30Exporting a Service Offer

32Querying for a Service Offer

34Querying for Service Offers

34How the Trader Service Processes a Query

34Format of a query

35Policies

35A Basic Query for Service Offers

35Connecting to the trader

36Querying the trader

37Selecting a Service from Query Results

37Output parameters

38offers

38iterator

39limits_applied

39Forming Constraints for Queries

40Evaluating property values

41Combining expressions

41Testing for a property’s existence

Table of Contents

- 3/113 -

42Using arithmetic expressions

42Setting Preferences to Sort Service Offers

42Creating a preference string

42Constructing preference expressions

43Returning offers in the order of discovery

43Returning offers in descending order

43Returning offers in ascending order

44Returning offers by constraint

44Returning offers in random order

44Refining the Properties a Query Returns

44Specifying returned properties

47Understanding Trader Service Policies

47What is a policy?

47Policies that Affect Queries

47Query semantics

48Search policies

48Return policy

49List of query policies

50Policies that Affect Trader Functionality

50Evaluating policies

50Query policies

51Using Policies in a Query

51Policies parameter

51Creating a policy list

52Policy types

53Setting a Trader’s Global Policies

53Setting global policies

53Global policies

55Exporting and Managing Service Offers

55Server tasks

55Environment

Table of Contents

- 4/113 -

56Initializing Service Offer Properties

56Property structure

56Getting an offer type’s property list

57Read-only and mandatory properties

58Exporting a Service Offer to Trader

58Synopsis

59Example

60Getting Service Offer Data from Trader

60Reviewing offer information

60Modifying a Service Offer

60Using modify()

61Example

62Readonly properties

62Policy for supporting modifiable properties

62Withdrawing a Service Offer from Trader

63Programming Topics

63Managing the Service Type Repository

63Creating service type properties

65Adding a service type

66Managing service types

66Using Dynamic Property Values

66Dynamic property values

67Exporting a dynamic property value

68Using a dynamic property value

69Allowing dynamic properties

70Managing Links Between Traders

70Linked traders

70Setting policies for linked traders

71Adding links

72Removing links

Table of Contents

- 5/113 -

73Creating lists of links

74Trader Service Console

74Starting the Trader Console

74How to start the console

74Main Window

75GUI appearance

75Window elements

76The Toolbar

76Terms used in Trader Console

77The Trader Console Menus

77The Console menu

77The Edit menu

78Using the cut, copy and paste commands

78Using the Clone and Modify commands

78The View menu

79The Insert menu

79The Tools menu

79Managing Service Types

79IDL type support

79Adding a new service type

82Removing a service type

82Masking a service type

82Unmasking a service type

83Managing Offers

83Adding a new offer

85Modifying an offer

86Withdrawing offers

87Managing Proxy Offers

87Adding a new proxy offer

Table of Contents

- 6/113 -

88Withdrawing proxy offers

89Managing Links

89Adding a new link

90Modifying a link

90Removing a link

90Configuring the Trader Attributes

90Configuring attributes

91Support Attributes

92Import Attributes

94Link Attributes

95Admin Attributes

95Admin attributes

95Request identifier stem

96Executing Queries

96Executing a query

98Connecting to a New Trader

100The OMG Constraint Language

100Introduction

100Statement

100Language Basics

100Basic elements

101Precedence relations

102Legal property value types

102Operator restrictions

103Representation of literals

103The Constraint Language BNF

103The constraint language proper in terms of lexical tokens

105“BNF” for lexical tokens up to character set issues

105Character set issues

107Glossary

Table of Contents

- 7/113 -

111Notices

111Copyright

111Trademarks

111Examples

111License agreement

112Corporate information

112Contacting Technical Support

112Country and Toll-free telephone number

Table of Contents

- 8/113 -

1. Preface

CORBA Trader Service is a Java implementation of the Object Management Group (OMG) Trading
Service. The CORBA Trader Service provides facilities for object location and discovery. Unlike the CORBA
Naming Service where an object is located by name, an object in the Trading Service does not have a
name. Rather, a server advertises an object in the Trading Service based on the kind of service provided
by the object. A client locates objects of interest by asking the Trading Service to find all objects that
provide a particular service. The client can further restrict the search to select only those objects with
particular characteristics.

The Trader Service is compliant with the OMG CORBA services: Common Object Services Specification
ftp://www.omg.org/pub/docs/formal/98-12-09.pdf and conforms to the specification’s definition of a
full-service trader, meaning that the service supports all of the functionality described in the
specification.

1.1 Audience
This manual is aimed at users wanting to create a trader service for use by their applications.

1.2 Related documentation
The document set for Orbix includes the following:

CORBA Programmer’s Guide

Administrator’s Guide

CORBA Programmer’s Reference

• •

• •

• •

1. Preface

- 9/113 -

ftp://www.omg.org/pub/docs/formal/98-12-09.pdf

1.3 Typographical conventions
This guide uses the following typographical conventions:

1.4 Keying conventions
This guide may use the following keying conventions:

Constant
width

Constant width (courier font) in normal text represents portions of code and
literal names of items such as classes, functions, variables, and data
structures. For example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or information a system
displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new terms.

Italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your
particular system. For example:

% cd /users/*your_name* !!! note
Some command examples may use angle brackets to represent variable
values you must supply. This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple platforms, a prompt is not
used.

% A percent sign represents the UNIX command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or Windows command prompt.

1.3 Typographical conventions

- 10/113 -

... . . . Horizontal or vertical ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices enclosed in { } (braces) in
format and syntax descriptions.

1.4 Keying conventions

- 11/113 -

2. An Introduction to the CORBA Trading
Service

The Trader Service is a full implementation of the CORBA Trading Object Service. With this service, servers can
offer functionality by making a number of objects publicly available. Clients can then get references to objects
that match a specified functionality.

2.1 Introduction
The CORBA Trader Service is a Trading Object Service that allows an object to be registered with a
description of its functionality. This service greatly increases the scalability of distributed systems by
making services easier to locate. An example of a service that a client might search for is a printer.

2.1.1 How clients and servers use a trader
A trader contains a number of service types that describe a service. For example, a printer service type
might have properties such as pages_per_minute (a long) and location (a string). Service types are stored
in a Service Type Repository. Service offers, or offers, are instances of these service types.

Figure 1: Typical trading service process

A server can export an offer to the trader, which includes an object reference for one of its objects and
values for properties defined by the service type, for example, “50 pages per minute, located on the first
floor”.

2. An Introduction to the CORBA Trading Service

- 12/113 -

A client can then query the trading service based on these properties using a filter called a constraint.
For example, a client could search for a printer where “pages_per_minute > 200". The trader then
returns to the client an offer of a service. The client can then use the object reference in the offer to
invoke on the server.

2.1.2 Scalability
The trader can be a tool for constructing efficient distributed applications. The advantage of annotating
a service offer with properties, and allowing offers to be filtered on the basis of those properties using
a constraint, is that clients can select offers without having to incur the overhead of invoking
operations on each object.

For example, suppose that Printer2Interface , which is a subclass of PrinterInterface , has an additional
operation, cost() , which returned a value of type float:

In this situation, if the importer needed to select only those printers whose cost is within a certain
range, the importer would need to iterate over each printer returned by the trading service to invoke
the cost() operation. In a distributed environment, the overhead of this activity could be prohibitively
expensive. It is the developer’s responsibility to anticipate the types of queries that importers will need
to perform and design their service types accordingly.

2.2 Service Types

2.2.1 Service type definition
Service types are general descriptions of a kind of service. They consist of the following:

A type name (for example, printer) uniquely identifies the service type.

An interface type defines the IDL interface to which an advertised object of this type must conform
(for example, "IDL:MyAppModule/MyAppInterface:1.0").

A collection of property types defines additional attributes of the service offer (for example, “long
page_per_min”, “string location”).

//IDL
interface Printer2Interface : PrinterInterface {
void page_counter();
float cost();
};

• •

• •

• •

2.1.2 Scalability

- 13/113 -

2.2.2 Service type names
Each service type in the repository has a unique name. Orbix Trader supports two name formats:

Scoped names - These names have formats such as ::One::Two . Other supported variations
include Three::Four and simply Five .

Interface repository identifiers - These names adhere to the format of interface repository
identifiers. The most common format is

Although both naming formats follow interface repository conventions, service type names are
never used to look up information in the interface repository.

2.2.3 Interface types
An interface type describes the IDL signature of the advertised service. The interface type is a string
whose format should be a scoped name or an interface repository identifier as described above for
service type names. When a new service is exported, the trader may use the interface repository to
confirm that the object being advertised conforms to the interface defined by the interface type. An
object conforms to an interface if it implements that interface, or if it implements a subclass of that
interface.

2.2.4 Property types
A service type can have zero or more property types, representing additional information that can be
associated with an advertised service.

A property type definition consists of a name, a value type and a mode. The value type is a
CORBA::TypeCode , and the mode indicates whether a property is mandatory and whether it is read-only.

The property modes have the following semantics:

Mandatory—The exporter must provide a value for the property at the time the service is
exported. Mandatory properties cannot be removed.

Read-only—Once an exporter has supplied a value for the property, it cannot be modified. Read-
only properties can be removed.

• •

• •

IDL:[prefix/][Module/]Interface:X.Y

Note

• •

• •

2.2.2 Service type names

- 14/113 -

Mandatory and Read-only—The property must have a value when the service is exported, and
cannot subsequently be changed or removed.

A property that is neither mandatory nor read-only is considered optional, and can be changed
and removed.

Orbix Trader accepts Java-style identifiers as property names, meaning a property name must
start with a letter, and may consist of letters, numbers and underscores.

2.2.5 Super types
Service types can inherit from other service types, which enables the definition of super types that
encapsulate behavior and characteristics common to many service types. When a new service type is
created that has super types, the trader checks that several prerequisites are met:

All super types must already exist in the service type repository.

Any property type definitions in the new service type that have the same name as a definition in a
super type must be compatible with the super type definition. For two property definitions to be
compatible, their value types must match, and the mode of the new definition must be the same as,
or stronger than, the mode of the property in the super type according to the graph in Figure 2.

Figure 2: Property Mode Strengths

The interface type of the new service type must conform to the interface type of all super types. Orbix
Trader may use the interface repository to verify that this is true.

For example, consider two IDL interfaces, InterfaceA and InterfaceB , defined below:

Here, InterfaceB inherits from InterfaceA . Now, let’s define two service types:

• •

1. 1.

2. 2.

3. 3.

// IDL
interface InterfaceA {
void do_something();
};
interface InterfaceB : InterfaceA {
void do_something_else();
};

2.2.5 Super types

- 15/113 -

In the example above, ServiceTypeB inherits from ServiceTypeA . As such, it inherits all of the property
types from ServiceTypeA , and declares an interface type of InterfaceB , which conforms to the interface
type of its super type because InterfaceB is a subclass of InterfaceA .

Notice that ServiceTypeB redefines the mode of the “name” property. Whereas the definition in
ServiceTypeA does not specify a mode (making the property optional), the definition in ServiceTypeB
makes this property mandatory, therefore a value for the property must be supplied when the offer is
exported. The reverse is not allowed; a subtype cannot redefine a mandatory property to be optional.

ServiceTypeB also adds a new property, “cost”, which is defined to be read-only. Because the property is
not mandatory, an exporter does not need to supply a value for it at the time a service offer is exported.
However, once a value has been defined for this property, it cannot subsequently be changed.

2.3 Service Offers

2.3.1 Service offers
A service offer is an instance of a service type and represents the advertisement of a service by a service
provider.

A service offer has the following characteristics:

A service type name associates the offer with a particular service type.

An object reference provides the “pointer” (the object reference) to the advertised object that is
necessary for clients to invoke the service being offered.

A set of properties describe this service offer and must conform to the property types defined by
the service type.

service ServiceTypeA
{
interface InterfaceA;
property string name;
};
service ServiceTypeB : ServiceTypeA
{
interface InterfaceB;
mandatory property string name;
readonly property float cost;
};

• •

• •

• •

2.3 Service Offers

- 16/113 -

The trader uses the definition of the specified service type to perform several validation steps on a new
offer:

The exporter must provide values for all mandatory properties (including all mandatory properties
that the service type inherits from its super types, if any).

The object must conform to the interface type defined by the service type. Orbix Trader may use the
interface repository to verify that this is true.

The value types of all properties must match the value types as defined by the service type. For
example, a value of type double is not allowed for a property whose type is defined as string in the
service type.

Orbix Trader allows an exporter to supply values for named properties that are not defined in the
service type.

The value of a property in a service offer can be modified if the mode of the property is not read-only. A
property can be removed from a service offer if the property is not mandatory. New properties can also
be added to an existing service offer.

2.4 The Trader Service’s Components

2.4.1 Trader components
The Trader Service functionality is divided into components where each component has an associated
interface as follows:

Lookup

Register

Admin

Link

Proxy

The CORBA Trader Service is a full-service implementation of the OMG’s Trading Object Service
specification. The following table summarizes the different kinds of traders and the component
functionality offered:

1. 1.

2. 2.

3. 3.

Note

• •

• •

• •

• •

• •

2.4 The Trader Service’s Components

- 17/113 -

Table 1 Kinds of traders and their components

The functionality of each kind of trader depends on the interfaces that it supports. The following is a list
of the kinds of traders specified by the OMG:

The simplest trader is the Query trader, which just supports the Lookup interface. This could be
useful, for example, where a trader is pre-loaded and optimized for searching.

The simple trader supports not only the Lookup interface but it also supports exporting of offers
with the Register interface.

The stand-alone trader supports the interfaces of a simple trader and additionally supports
administration of the trader’s configuration settings using the Admin interface.

The proxy trader supports the interfaces of a stand-alone trader and additionally supports the
Proxy interface. The proxy trader essentially exports a lookup interface for delayed evaluation of
offers, and can be used for encapsulating legacy applications, or as a kind of service offer factory.

The linked trader supports the interfaces of a stand-alone trader and additionally supports
federation of traders using the Link interface.

The full-service trader combines the functionality of all component interfaces. The Orbix CORBA
Trader Service is a full-service trader.

Kind of Trader Component Interfaces

Lookup Register Admin Link Proxy

Full-Service CORBA Trader Service

Linked X X X X

Proxy X X X X

Stand-alone X X X

Simple X X

Query X

• •

• •

• •

• •

• •

• •

2.4.1 Trader components

- 18/113 -

3. Configuring the Trader Service

This chapter provides a description of the steps necessary to configure the Trader Service.

3.1 Configuring and Running the Trader Service
These instructions describe how to configure the Trader Service.

3.1.1 Preparatory steps
Several preparatory steps are necessary to configure and run the trader service. The specific actions
taken at each step are somewhat different depending on whether you want to run the service
replicated or non-replicated.

The general sequence of actions are as follows:

Determine on which hosts you want to run the master trader service and on which hosts any slaves
will run.

Determine the port number on which the master, slaves, and Replicators will listen.

Enter the host and port number information into the configuration.

Configure the trader service to run in replicated or non-replicated mode.

Run the trader service in “prepare” mode to obtain initial references needed to enable clients to
interact with the service.

Add each of the references obtained during step 4 to the configuration database.

Start the master trader service and any slaves.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

3. Configuring the Trader Service

- 19/113 -

3.1.2 Explanation
In the following explanation of the steps listed above, example settings are given assuming a
deployment of one master trader service instance running on host “master”, and one slave trader
service instance running on host “slave”. In addition, it will be pointed out where steps should be
modified or bypassed in order to run a single non-replicated instance of the service.

3.1.3 Steps 1-2: Determine the hosts and ports to be used in the
deployment

These steps are completely deployment-specific. Depending on the number of trader service instances
you want to deploy, you will need to select 1 or more distinct host/port pairs for each instance of the
service to use as a communication end-point. In our example, we use a replicated service with one
master and one slave. The master runs on host master and listens on port 15001; the slave runs on
host slave and listens on port 15001. The master and slave need not listen on the same port number.
Also, two or more replicas may run on the same host as long as they listen on different ports.

Furthermore, each trader service instance running in a replicated deployment scenario will also create a
Replicator object. You must also select the ports on which each Replicator will listen. In the sample
configuration, the Replicator always listens on port 15002.

3.1.4 Step 3: Enter the host and port information in the
configuration

The Trader Service configuration will contain variables set in a global scope (the outer scope not
contained within a named block), and variables set in one or more named scopes. The global scope
specifies configuration variable settings for all replicas in a replicated deployment, while the named
scopes each specify configuration variable settings that apply to a specific trader service instance. The
name of each scope corresponds to the ORB name that will be used when launching each instance of
the service.

In the default trader.cfg included with the trader service package, there are two named scopes: one for
ORB name trading0 , and the other for ORB name trading1 . All host/port information is set within a
named configuration scope.

The host/port information within a given configuration scope is contained in the following variables:

3.1.2 Explanation

- 20/113 -

In the sample configuration, these variables are set as follows in the trading0 scope:

These settings indicate that the trader service instance using ORB name trading0 will run on host
master and listen on port 15001. The service will be replicated, with the one replica participating in the
service running on host slave and listening on port 15001. The Replicator will listen on port 15002.

Note that if more replicas are being used in the deployment, an additional "+<hostname>:<port>" pair
would be appended to the list for each replica. If running the service non-replicated, only a single
"<hostname>:<port>" pair should be included in the trader:iiop:addr_list . Including additional pairs in
the list will only increase the size of IORs used by the service, but this will result in unnecessary resource
consumption when running non-replicated. In addition, in the non-replicated case, the second
addr_list variable listed above need not be set.

In the sample configuration, these same variables are set as follows in the trading1 configuration
scope:

These settings indicate that the trader service instance run with ORB name trading1 will run on host
slave and listen on port 15001. The service will be replicated, and the one other replica will run on host
master and also listen on port 15001. The Replicator used by this service instance will listen on port
15002.

trader:iiop:addr_list
replication:Replicator:iiop:addr_list

trader:iiop:addr_list = ["master:15001", "+slave:15001"];
replication:Replicator:iiop:addr_list = ["master:15002"];

trader:iiop:addr_list = ["slave:15001", "+master:15001"];
replication:Replicator:iiop:addr_list = ["slave:15002"];

3.1.4 Step 3: Enter the host and port information in the configuration

- 21/113 -

3.1.5 Step 4: Configure the service to run with or without
replication

Before running the trader service in “prepare” mode, you should decide if you want to run with
replication enabled or disabled, and if replication is enabled how many replicas will be used.

Whether replication is enabled or disabled is controlled by the setting of the configuration variable
replication:enable . This variable should be set to "True" to enable replication, and to "False" to disable
replication.

If running with replication enabled, you must also indicate the number of replicas that will be used by
setting the replication:replica_count to the appropriate value. This variable should be set to the total
number of replicas including the master and any slaves. In the example scenario with one master trader
service instance and one slave, this variable should be set to 2.

3.1.6 Step 5: Run the service in prepare mode to obtain initial
references

Now you are ready to run the service in prepare mode, and obtain the initial references necessary for
clients to connect to the service. Note that when running a replicated service, each individual replica
must be prepared. The command to run the trader service in prepare mode is:

If running with replication enabled, preparing each instance of the trader service will result in three
IORs being sent to standard output:

The IOR of the replicated trader service (which will be the same for all replicas)

The non-replicated, per-instance trader service IOR

The IOR of the per-trader service Replicator.

If running with replication disabled only the IOR of the prepared trader service instance will be output.

Save the values for use in step 6.

asp/*Version*/bin/ittrader prepare [-publish_to_file <filename>]

• •

• •

• •

3.1.5 Step 4: Configure the service to run with or without replication

- 22/113 -

3.1.7 Step 6: Adding the initial references to the configuration
The initial references of each trader service instance and each Replicator need to be added to the
configuration.

If running one non-replicated instance of the service, the initial reference to the service returned by
preparing the one instance should be set as the value of the following variable in the global
configuration scope:

If running with replication enabled, the IOR of the replicated trader service should be set as the value of
the trader service initial reference in the global scope (the same variable as described above for the
non-replicated case).

If replication is enabled, or if running multiple non-replicated instances of the service within the same
domain, the trader service initial reference variable within each named scope must also be set. If
replication is enabled, the value set for the following variable within each named scope should be the
non-replicated, per-instance trader service IOR:

In addition, the non-replicated IOR of each trader service instance, along with the Replicator IOR for
each instance, should be added to the configuration as the values of the variables of the form:

In the current example, the IORs returned by preparing the master replica are set as the values of the
following variables:

while the IORs returned by preparing the slave replica are set as the values of these variables:

initial_references:TradingService:reference

initial_references:TradingService:reference

replication:replica:<replica id>:TradingService:reference
replication:replica:<replica id>:Replicator:reference

replication:replica:0:TradingService:reference
replication:replica:0:Replicator:reference

3.1.7 Step 6: Adding the initial references to the configuration

- 23/113 -

3.1.8 Step 7: Running the trader service
To start the trader, enter the command:

3.2 Additional Configuration Information
There are some additional configuration settings to be aware of:

trader:database:dir=”./traderdb0”;

This variable should be modified, for each replica of the service, to contain the pathname (absolute or
relative to where the trader is launched from) of where the trader database will reside.

replication:replica_id = “0”;

This is a numeric ID for the instance of the trader being configured in the current scope.

Each replica should have a unique replica_id . If a replica’s replication:replica_id is the same value as
replication:master then it is the master replica.

direct_persistence

This variable specifies if the service runs using direct or indirect persistence. The default value is FALSE ,
meaning indirect persistence.

iiop:port

This variable specifies the port that the service listens on when running using direct persistence.

replication:replica:1:TradingService:reference
replication:replica:1:TradingService:reference

ittrader run

3.1.8 Step 7: Running the trader service

- 24/113 -

4. Getting Started with the Trader Service

This chapter shows an example of a simple printer service to illustrate most of the common functionality in
the Trader Service. A printer server makes a printer available for general use. Then, a client application asks
the Trader Service for a suitable printer, and uses it to print a document.

4.1 Starting the Trader Service
To start the trader, enter the command:

4.1.1 Synopsis

4.1.2 Stopping the Trader Service
Enter the command:

ittrader run

ittrader [-launcher_help]
[-ORBconfig_dir config_dir_value]
[-ORBconfig_domains_dir config_domains_dir_value] [-ORBdomain_name
domain_name_value]
[-ORBproduct_dir product_dir_value]
[-ORBlicense_file license_file]
[-bg | -background]
[-show_java_command]
[-version]
[run | prepare [publish_to_file = filename]

4. Getting Started with the Trader Service

- 25/113 -

4.2 The Printer Application
The print server creates a Printer service type, and exports the descriptions of several printers to the
trader. A client allows the user to execute queries and “print” files.

4.2.1 Interaction with the trader
Figure 3 shows the typical interactions clients and servers have with the trader:

Figure 3: Typical Interactions with the trader

An offer server adds a service type (Printer) to the trader. The Printer type describes properties that
office printers have, such as pages per minute. The service type names differ from the IDL interface
names in this example, mainly to make their use clearer. For example, there could also be a
book_printer service type that uses the PrintServer IDL interface, but it could have quite different
properties such as options for hard or soft book binding.

The printer server creates a printer_if object. It exports and object reference to this object to the
Trader Service as an offer of type Printer . It then waits for incoming requests, as normal.

The client process queries the Trader Service for a Printer offer.

The client process then uses the object reference in the offer obtained to invoke the printer server.

itadmin trd_admin stop

1. 1.

2. 2.

3. 3.

4. 4.

4.2 The Printer Application

- 26/113 -

4.2.2 The IDL specification
The example application uses the following PrintServer IDL interface to describe the interface to a
printer object:

4.3 Trader Service Programming
This section outlines the three major programming steps used to interact with the trader. These steps
are:

Add a service type using the offer server:

Create a service offer type if a corresponding one doesn’t already exist within the Trader Service. This
example creates an Printer service offer type.

Register a service offer using the printer server:

Create an object, for example, an instance of the IDL interface PrintServer .

Register the object reference with the Trader Service, within a service offer of type Printer . The
server then accepts incoming object invocations as normal.

Get a service offer using the client:

Query the Trader Service to get back a service offer.

Use the object reference specified in the service offer to invoke the object on the server.

Note that for simplicity, exception handling is omitted in the sample code.

// IDL
// This interface represents a print server that manages queues
// for several printers.
//
module TraderDemo
{
interface PrintServer
{
typedef unsigned long JobID;
// Add a file to a printer's queue.
//
JobID print (in string queue, in string file);
};
};

1. 1.

2. 2.

3. 3.

4.2.2 The IDL specification

- 27/113 -

4.3.1 Connecting to the Trader
Servers need to connect to the trader to add a service offer type, for example, or to register a service
offer. Clients need to connect to query the trader for service offers. The trader has a number of
components represented by IDL interfaces including Lookup , Register , and others. The
“TradingService” initial reference is a reference to the CosTrading::Lookup interface.

Do the following steps to get an object reference to the Trader Service:

Call resolve_initial_references() which returns a org.omg.CORBA.Object .

Narrow the object reference.

4.3.2 Adding a New Service Offer Type
An offer server inserts a service offer type called printer into the Trader Service. This is essentially a
type declaration of an offer. Other servers may then use this type to register printer objects by creating
instances of this type. Operations on service offer types are handled by the Service Offer Type
Repository component of the Trader Service.

Do the following steps to add an offer type to the Offer Type Repository:

[1](#connecting-to-
the-trader)

org.omg.CORBA.Object obj =
orb.resolve_initial_references("TradingService");

[2](#connecting-to-
the-trader)

if(obj != null)
{
org.omg.CosTrading.Lookup trader =
org.omg.CosTrading.LookupHelper.narrow(obj);
}

1. 1.

2. 2.

[1](#adding-a-new-
service-offer-
type)

org.omg.CORBA.Object obj = trader.type_repos();

[2](#adding-a-new-
service-offer-
type)

org.omg.CosTradingRepos.ServiceTypeRepository
trader_repos_obj =
org.omg.CosTradingRepos.ServiceTypeRepositoryHelper.
narrow(obj);

4.3.1 Connecting to the Trader

- 28/113 -

The code is described as follows:

[3](#adding-a-new-
service-offer-
type)

org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct[] props =
new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct[3];
props[0] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();
props[0].name = "name";
props[0].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string)
;
props[0].mode =
PropertyMode.PROP_MANDATORY_READONLY;
props[1] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();
props[1].name = "location";
props[1].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string)
;
props[1].mode = PropertyMode.PROP_MANDATORY;
props[2] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();
props[2].name = "page_per_min";
props[2].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_long);
props[2].mode = PropertyMode.PROP_NORMAL;
String[] superTypes = new String[0];

[4](#adding-a-new-
service-offer-
type)

type_repos_obj.add_type(
"Printer" // Service Type
"IDL:TraderDemo/PrintServer:1.0", // IDL type name
props, // offer properties
superTypes // no supertypes
);

4.3.2 Adding a New Service Offer Type

- 29/113 -

Get a reference to the Service Offer Type Repository.

The type CosTrading::TypeRepository_var is a typedef of CORBA::Object , and is essentially a forward
reference. After obtaining a reference of this type, narrow it to
org.omg.CosTradingRepos.ServiceTypeRepository .

Construct the property information of a service offer type. In this example there are three properties:
name , location , and page_per_min . The main parts of a service offer type include the following:

The name of the service type.

The IDL interface id for this service.

The properties which are a description of the offer. These are as follows:

Invoke the add_type() function and pass it the relevant parameters.

4.3.3 Exporting a Service Offer
When a server wants to make its service offers available, it registers with the Trader Service by
exporting service offers. The code in Example 1 demonstrates the steps to export a service offer.

1. 1.

2. 2.

3. 3.

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY
};
struct PropStruct {
CosTrading::PropertyName name;
TypeCode value_type;
PropertyMode mode;
};
typedef sequence<PropStruct> PropStructSeq;

4. 4.

Example1 Exporting a service offer

[1](#exporting-a-
service-offer)

PrintServer_Impl print_server_impl = new
PrintServer_Impl();
PrintServer print_server =
print_server_impl._this(orb);;

4.3.3 Exporting a Service Offer

- 30/113 -

The printer server first creates an instance of the printer object.

The printer server connects to the Trader Service (as described in Connecting to the Trader) and gets
a trader_lookup_var . It then uses this to access the Trader Service’s register component, which
handles exporting of service offers.

The server initializes the service offer properties with relevant values.

The server finally invokes the export() function to register the service offer.

[2](#exporting-a-
service-offer)

org.omg.CORBA.Object trader =
orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(trader);
org.omg.CosTrading.Register register =
lookup.register_if();

[3](#exporting-a-
service-offer)

org.omg.CosTrading.Property[] props = new
org.omg.CosTrading.Property[3];
props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");
props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffee
machine");
props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);

[4](#exporting-a-
service-offer)

String id = reg.export(
print_server, // object reference to the CORBA
object
"Printer", // the service type
props // the service’s properties
);

1. 1.

2. 2.

3. 3.

4. 4.

4.3.3 Exporting a Service Offer

- 31/113 -

4.3.4 Querying for a Service Offer
Once offers have been exported to the trader service, clients can use the lookup interface to request
services. Example 2 demonstrates a basic query that requests a printer that can print more than 5
pages per minute and uses the first offer returned by the trader.

Example2 Querying for a service offer

// Trader Service reference, trader, acquired
earlier
org.omg.CosTrading.Policy[] policies = new
org.omg.CosTrading.Policy[0];
org.omg.CosTrading.LookupPackage.SpecifiedProps
desiredProps = new
org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPac
kage.HowManyProps.all);
org.omg.CosTrading.OfferSeqHolder offers = new
org.omg.CosTrading.OfferSeqHolder();
org.omg.CosTrading.OfferIteratorHolder iter = new
org.omg.CosTrading.OfferIteratorHolder();
org.omg.CosTrading.PolicyNameSeqHolder limits = new
org.omg.CosTrading.PolicyNameSeqHolder();

[1](#querying-for-
a-service-offer)

trader.query(
"Printer", // the service type
"ppm >5", // the constraint to match
"random", // the order to sort the results
policies, // no special policies
desiredProps, // set to return all properties
50, // max offers to return
offers, // offers returned
iter, // remaining offers
limits // polices applied by the trader
);

[2](#querying-for-
a-service-offer)

org.omg.CosTrading.Offer[] offer = offers.value;
if (offer.length() != 0)
{
PrintServer printer_obj =
PrinterServerHelper.narrow(offer[0].reference);

4.3.4 Querying for a Service Offer

- 32/113 -

The client queries the Trader Service for a service offer matching certain criteria. In this example:

The constraint is that the offers returned have a page_per_min value that is greater than 5 pages per
minute.

The results are returned in random order.

The default policies are used.

All properties are returned with the offer.

A limit is set for the number of offers returned in the offers parameter. The trader will make find all
of the possible matches, and return the remainder in the iter parameter.

The client selects a service offer from those returned in the query and invokes on the server. This
simple example uses the first offer in the sequence.

The client uses the service offer to invoke on the object. In this case, the document is printed using
the selected printer offer.

Any resources created by the trader for the iterator must be explicitly freed up.

[3](#querying-for-
a-service-offer)

printer_obj.print(doc, job_id);
}

[4](#querying-for-
a-service-offer)

// we are only interested in a single offer, so we
// destroy the offer iterator, if the Trader created
one for us
if(iter.value != null)
iter.value.destroy();

1. 1.

• •

• •

• •

• •

• •

2. 2.

3. 3.

4. 4.

4.3.4 Querying for a Service Offer

- 33/113 -

5. Querying for Service Offers

In order for clients to find out about and use services offered by the Trader Service, the client code performs
queries to obtain one or more service offers. A service offer contains, among other things, an object reference
to a service. Clients then use the object reference to access a desired service.

5.1 How the Trader Service Processes a Query
It is easy to see how the set of offers that a trader contains can get quite large. In addition, traders can
be linked together (federated) to search each other for service offers. This means that a query needs to
have controls that complete a search in a reasonable amount of time. A query also needs controls that
limit the amount of data returned.

5.1.1 Format of a query
A query starts with a service type name. A query then limits a search for appropriate offers by using a
constraint on one or more properties of the service. You can also specify other limiting factors
including the number of offers returned, a preference on the sort order, and the property values
actually returned.

Figure 4 shows how the Trader Service uses these factors to process a query and generate a sequence
of desired service offers.

Figure 4: How Query Parameters Affect Offers Gathered

5. Querying for Service Offers

- 34/113 -

When the Trader Service processes a query, it gathers a sequence of offers together by narrowing down
the set of all potential offers in all linked traders. The Trader Service uses query input to determine the
following:

Uses the service name to determine if an offer is of an appropriate service type.

Uses the property constraints to determine if the offer matches the criteria specified by the client.

Uses preferences to determine the order in which to place the offer in the sequence of offers created.

Uses desired properties to determine which of the offer’s property values (if any) are returned.

5.1.2 Policies
The Trader Service uses policies to control its behavior. For example, the maximum number of offers
that can be searched for. You can also include one or more policies and values in a query to control the
search behavior for a specific query.

5.2 A Basic Query for Service Offers

5.2.1 Connecting to the trader
Clients need to connect to the Trader Service before they query for service offers. Do the following in
your client to get an object reference to the trader:

First, call resolve_initial_references() which returns a org.omg.CORBA.Object. Then, narrow the object
reference to a trader Lookup object.

1. 1.

2. 2.

3. 3.

4. 4.

// Java
org.omg.CORBA.Object trader_obj =
orb.resolve_initial_references("TradingService");
if(trader_obj != null)
{
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(obj);
}

5.1.2 Policies

- 35/113 -

5.2.2 Querying the trader
After connecting to the trader, clients can query the trader for service offers that match any desired
criteria.

The input parameters to a query are explained in detail as follows:

The service type name parameter specifies the service type of the offers required. If the
exact_type_match import policy is specified as true, only the service type is considered and no
subtypes. If the exact_type_match policy is false or unspecified then subtypes are considered.

The constraint parameter specifies the constraint for restricting suitable offers. The constraint is a
string that conforms to the OMG Constraint Language. Use an empty string if no constraints are
required. See Forming Constraints for Queries for more constraint examples.

A preference parameter specifies the order of the returned sequence of offers. You can sort offers by
the following criteria:

¨ In the order in which the Trader Service finds the offers. (This is the default.)

// Java
lookup.query(
// Query input

[1](#querying-the-
trader)

"IDL:printer:1.0", // service type name

[2](#querying-the-
trader)

"(page_per_min > 5) and (page_type == ’A4’)", //
constraint

[3](#querying-the-
trader)

"random", // preference sort order

[4](#querying-the-
trader)

default_policies, // policies desired

[5](#querying-the-
trader)

return_properties, // properties to return

[6](#querying-the-
trader)

10, // Initial number of offers wanted
// Query Output
offers, // offers returned
iterator, // remaining offers
limits_reached // Limits reached during query
);

1. 1.

2. 2.

3. 3.

• •

5.2.2 Querying the trader

- 36/113 -

¨ In descending order based on property values.

¨ In ascending order based on property values.

¨ All offers that meet a constraint first, followed by those offers that do not meet the constraint.

¨ In random order.

Use an empty string if no sort preference is required. See Setting Preferences to Sort Service Offers
for sort preference examples.

For now, default policies are used for the policies parameter. Policies are discussed in Chapter 1.

A return-properties parameter specifies the properties to return for the sequence of offers. You can
choose to have none, some, or all properties returned. For example, if for your application it is
adequate to use the first valid service offer, you can improve efficiency by returning no properties for
the returned offers. See Refining the Properties a Query Returns for an example of how to specify
some properties to return.

The how-many-offers parameter specifies the number of offers to be initially returned via the offers
out parameter. This example requests 10 initial offers.

The offers are returned as a sequence of offers. You can check for more offers and obtain them by
using the iterator output parameter. If the Trader Service reached any policy limits during its search,
the policy name is returned in the limits_reached output parameter. The query() output and how to use
it is described in the next section.

5.3 Selecting a Service from Query Results
The previous section described how the input parameters to the query() operation controls the offers
you get. This section describes details of the output from query() .

5.3.1 Output parameters
The output parameters include a sequence of offers, an iterator object to obtain more offers, and a
sequence of policy limits that the Trader Service may have encountered as it collected the offers.

• •

• •

• •

• •

4. 4.

5. 5.

6. 6.

5.3 Selecting a Service from Query Results

- 37/113 -

5.3.2 offers
The offers parameter contains the returned sequence of offers. The client selects a service offer from
those returned in the query and invokes on the desired server. The following example simply uses the
first offer in the sequence:

5.3.3 iterator
The iterator parameter is an object reference to an OfferIterator interface. If all offers are returned in
the offers parameter then the iterator parameter has a null reference value. However, recall that a
query specifies the number of offers to be returned. If the number of offers requested is lower than the
number the Trader Service found, then an OfferIterator object reference is returned and the remaining
offers can be retrieved via that object.

This example shows how to peruse the remaining sequence of offers. In the example, the names of
properties are printed:

// Java
lookup.query(
// Query Input
// Query Output
offers, // offers returned
iterator, // remaining offers
limits_reached // Limits reached during query
);

// Java
org.omg.CosTrading.Offer[] offer = offers.value.
if (offer.length != 0)
{
PrintServer printer_obj = PrintServerHepler.narrow(offer[0].reference);
printer_obj.print(doc, job_id);
}

5.3.2 offers

- 38/113 -

Once you are done with the iterator, you must use its destroy() function to release the resources it
uses.

5.3.4 limits_applied
The limits_applied parameter is a sequence of policy names. If the Trader Service encounters any
policy limits during a query, it returns the names of the policies in this sequence. For example, if a
query generates more offers than the maximum number of offers the trader is allowed to search for,
the name max_search_card is returned in the sequence. The values of the policies are not returned.

5.4 Forming Constraints for Queries
This section describes how to use more features of the OMG constraint language to construct effective
constraint expressions when querying for service offers. See The OMG Constraint Language for a
complete specification of the constraint language.

Although service properties can be defined using the great variety of IDL data types available, not all
can be queried with the OMG constraint language. You can use the constraint language for properties
defined with the following simple IDL data types:

// Java
String name;
boolean more_offers = TRUE;
while (more_offers)
{
more_offers = iterator.next_n(2, offers);
org.omg.CosTrading.Offer[] offer = offers.value;
for (long i = 0; i < offer.length(); i++)
{
name = offer[i].properties[0].value.extract_string();
System.out.println(name);
}
}
// free up the resources used by the iterator
iterator.destroy();

5.3.4 limits_applied

- 39/113 -

You can also use the constraint language for properties defined with sequences of the above data
types.

5.4.1 Evaluating property values
A constraint contains a comparison of property values. The result of a comparison is a boolean . Thus, a
potential offer is a match if the Trader Service evaluates the constraint as true.

Comparison operators

Use the operators == , != , > , >= , < , or <= to compare two of the same simple types. For example, the
following constraint compares a float property with a float constant value:

Substring operator

Use the operator ~ to determine if the right operand is a substring of the left operand. The left operand
is a property of type string or Istring , and the right operand is another string or string constant. For
example:

String constants are delineated with apostrophes. To embed an apostrophe in a string, precede the
apostrophe with a backslash (\’).

Sequence operators

Use the in operator to test if a value is in a sequence of values. The left operand must be a simple IDL
type and the right operand must be a sequence of the same simple IDL type. For example:

boolean
short, unsigned short
long, unsigned long
float, double
char, Ichar
string, Istring

float_property == 1.0

string_property ~ ’String data’

5.4.1 Evaluating property values

- 40/113 -

5.4.2 Combining expressions
Constraints can include combinations of expressions by using the keywords and , or , and not . For
example, the following shows a constraint to obtain printers that produce output at a rate greater than
5 pages per minute and that support an A4 page type:

The following constraint is to obtain printers that do not produce output at a rate less than 5 pages per
minute:

You can use parentheses to group expressions for clarity or to override the precedence relations of the
constraint language.

5.4.3 Testing for a property’s existence
A constraint can test any service type property for its existence, even if the IDL data type used to define
it is not a simple data type or sequence of a simple data type. Use the exist keyword to test whether a
property exists for given offer:

Because properties with a mandatory mode must exist, it does not make sense to test for their
existence. However, searching for the existence of optional properties can provide a powerful means of
limiting the offers returned.

’duplex’ in output_options

(page_per_min > 5) and (page_type == ’A4’)

not (page_per_min < 5)

exist page_per_min

5.4.2 Combining expressions

- 41/113 -

5.4.4 Using arithmetic expressions
Constraints can include arithmetic expressions by using the standard operators */+- . However, you can
only use these operators between numbers and not between property names. For example:

You can use float and double values where appropriate. Exponential notation is also valid.

5.5 Setting Preferences to Sort Service Offers

5.5.1 Creating a preference string
When querying for service offers, you can set preferences to make the offers return in a particular
order. Create a preference string using one of the following formats:

A preference string consists of a keyword and, in some cases, an expression. You cannot specify
combinations of preferences by using more than one keyword in a single preference string.

5.5.2 Constructing preference expressions
Use the OMG constraint language to construct the preference expressions for max , min , and with
formats. When you submit a query with one of these preference expressions, the Trader Service
associates a sort value with each offer by evaluating the expression. The offers are then sorted with
respect to the sort value and the type of preference as follows:

A max preference sorts the offers in descending order from the maximum sort value evaluated.

A min preference sorts the offers in ascending order from the minimum sort value evaluated.

A with preference returns the offers that evaluate to true before the offers that evaluate to false.

page_per_min > 2 * 5

first
max *numerical_expression*
min *numerical_expression*
with *constraint_expression*
random

• •

• •

• •

5.4.4 Using arithmetic expressions

- 42/113 -

If the Trader Service cannot evaluate the expression for a particular offer (for example, an expression
that is based on an optional property may not evaluate), the offers are not discarded but are grouped
after those offers that can be evaluated.

5.5.3 Returning offers in the order of discovery
The default behavior of the Trader Service is to return offers in the same order in which they were
discovered. You can also specify this behavior by using the first preference.

5.5.4 Returning offers in descending order
Use the preference string format “ max numerical_expression” to sort the returned service offers in
descending order. For example:

In this example, printers with the highest page_per_min value are returned first. The rest of the offers are
returned in a descending order based on the sort value calculated in the numerical expression. Any
offers that do not have a value for page_per_min are returned last.

5.5.5 Returning offers in ascending order
Use the preference string format “ min numerical_expression” to sort the returned service offers in
ascending order. For example:

In this example, printers with the lowest number of jobs_in_queue are returned first, followed in
ascending order.

The max and min preference formats do not constrain the offers returned to a maximum or
minimum value. For example, the following is an incorrect expression that does not limit a sort to
the offers with a minimum page_per_min value of 8: min (page_per_min == 8) *This is an incorrect
format*

max page_per_min

min (jobs_in_queue)

Note

5.5.3 Returning offers in the order of discovery

- 43/113 -

5.5.6 Returning offers by constraint
Use the preference string format “ with constraint_expression” to order the returned service offers based
on a constraint expression. A constraint expression evaluates to either true or false. The offers with a
constraint preference that evaluates to true precede those that evaluate to false. For example:

This example sorts the returned offers into two groups: the first group has pages per minute values
greater than 10, and the second has pages per minute values less than or equal to 10.

5.5.7 Returning offers in random order
Use the random preference to make the Trader Service return offers in random order.

5.6 Refining the Properties a Query Returns

5.6.1 Specifying returned properties
You can specify which properties you want returned in the sequence of offers. For example, if your
application does not need to use all properties to determine which services to use, it can be more
efficient for your memory and network traffic to return only those properties you need.

Example 1 shows how to specify the properties to return.

with (page_per_min > 10)

Example1 Specifying the return of properties

// Java

[1](#specifying-
returned-
properties)

org.omg.CosTrading.LookupPackage.SpecifiedProps
desiredProps = new
org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps._default(org.omg.CosTrading.LookupPack
age.HowManyProps.some);

5.5.6 Returning offers by constraint

- 44/113 -

The code is described as follows:

You first declare a SpecifiedProps union for properties.

To return all properties use this code and go to step 4:

To return no properties use this code and go to step 4:

[2](#specifying-
returned-
properties)

org.omg.CosTrading.PropertyName[] properties = new
org.omg.CosTrading.PropertyName[2];
properties[0] = new
org.omg.CosTrading.PropertyName("location");
properties[1] = new
org.omg.CosTrading.PropertyName("ppm");

[3](#specifying-
returned-
properties)

desiredProps.prop_names(properties);
lookup.query(
"IDL:printer:1.0",
"(page_per_min > 5) and (page_type == ’A4’)",
"random",
default_policies,

[4](#specifying-
returned-
properties)

desiredProps, // properties to return
10,
offers,
iterator,
limits_reached
);

1. 1.

// Java
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps = new
org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowManyProps.all);

5.6.1 Specifying returned properties

- 45/113 -

If you want specific properties returned, create a property name sequence, property_seq . Make the
sequence long enough to contain the names of all properties to be returned and fill it with the names
of the desired properties.

Fill the desired_properties object with the list of properties to be returned.

Use the desired_properties object as a parameter in the query() function call.

// Java
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps = new
org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowManyProps.none);

2. 2.

3. 3.

4. 4.

5.6.1 Specifying returned properties

- 46/113 -

6. Understanding Trader Service Policies

Trader policies affect how the Trader Service works. Most policies control the scope of a search for offers. A few
policies determine certain functionality that applies to the trader itself, including whether a trader supports
modifiable properties, whether it supports dynamic properties, and whether it supports proxy offers.

6.1 What is a policy?
A policy is a data structure containing a pre-defined policy name and a value for that policy. The value’s
data type depends on the particular policy. For example, the supports_modifiable_properties policy can
have a boolean value. A value of 0 means that for the particular trader, properties of service offers
cannot be changed after an offer is exported to the trader. A value of 1 means that the trader allows
changes to its service offer properties.

6.2 Policies that Affect Queries

6.2.1 Query semantics
Most policies that affect queries are scoping policies. These policies relate to the scope of a search
when a query is submitted to the trader. Here are the high-level semantics when the trader processes a
query:

Consider the number of initial offers to be searched.

Match the offers against the constraints specified in the query.

Consider the number of “hops” between linked traders during a search.

Order the results according to the preference supplied in the query. (No policies relate to this.)

Return these offers to the user.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. Understanding Trader Service Policies

- 47/113 -

6.2.2 Search policies
The following policies govern the scope of this search:

These policies can be optionally specified in a query. Each of these policies have “tuning” policies
associated with them in the trader. The trader tuning policies are called def_ policy and max_ policy where
policy is the name of one of the policies listed above. For example, the search_card policy may be
specified in a query and the def_search_card and max_search_card policies have initial values in the Trader
Service when it starts up. The trader policies may be changed using functions from the
CosTrading::Admin interface.

If a query doesn’t specify a value for a policy, then the appropriate def_ policy value of the trader
applies. If the query specifies a value for a policy, then it applies for the duration of that query, except
where it exceeds the trader’s max_ policy value, in which case the value max_ policy is used. For example,
suppose that in the trader, def_search_card is 50, and max_search_card is 500:

If the query doesn’t specify a search_card , then at most 50 offers will be considered in the initial
search.

If the query specifies “search_card = 100”, then 100 offers will be initially considered.

If the query specifies “search_card = 600”, then, since this exceeds the trader’s maximum, at most
500 offers will be initially considered.

6.2.3 Return policy
The policy exact_type_match may also be defined in a query. The value of this policy is a boolean . If it is
specified as true, then only offers that exactly match the specified service type are considered; super-
types are omitted. Otherwise, offers of any conforming service type are considered.

search_card Consider at most this number of offers for the search.

match_card Match at most this number of offers before returning them to be ordered.

hop_count Allow at most this number of hops from one trader to another linked trader.

return_card Return at most this number of offers to the client.

• •

• •

• •

6.2.2 Search policies

- 48/113 -

6.2.4 List of query policies
Table 2 shows the policies you can set in a query, along with the associated trader policies that affect
the query policy. (A complete list and description of each policy is in the CORBA Programmer’s Reference.)

Table 2 Query policies and Trader Service policies

Policies You Can Set in a Query Related Trader Service Policies

Searching Service Offers

exact_type_match

search_card def_search_card

max_search_card

Matching Query Constraints

match_card def_match_card

max_match_card

Number of Returned Offers

return_card def_return_card

max_return_card

Links Between Traders

hop_count def_hop_count

max_hop_count

link_follow_rule default_follow_rule 1

def_follow_policy

limiting_follow_rule a

link_follow_rule

max_follow_policy

request_id_stem request_id_stem

starting_trader

6.2.4 List of query policies

- 49/113 -

1 a.These are set in the links created between traders. See Managing Links Between Traders.

6.3 Policies that Affect Trader Functionality
A trader may support some optional functionality. These include modifiable properties, dynamic
properties, and proxy offers. In a particular query, a client may chose not to consider offers that require
such functionality, even if the trader supports it (for example, to optimize the speed of a query).

6.3.1 Evaluating policies
To find out if a trader supports any of this functionality, the following attributes are provided in the
CosTrading::SupportAttributes interface. The get function for these attributes return a
booleanrepresenting the value of the policy:

supports_modifiable_properties (default: true)

supports_dynamic_properties (default: true)

supports_proxy_offers (default: true)

6.3.2 Query policies
In a query, these policies are specified using the following boolean variables. If the trader does not
support the functionality, then the corresponding query policy is ignored.

use_modifiable_properties

use_dynamic_properties

use_proxy_offers

Optional Trader Capabilities

use_dynamic_properties supports_dynamic_properties

use_modifiable_properties supports_modifiable_properties

use_proxy_offers supports_proxy_offers

• •

• •

• •

• •

• •

• •

6.3 Policies that Affect Trader Functionality

- 50/113 -

6.4 Using Policies in a Query

6.4.1 Policies parameter
You can use the policies parameter in a query to control the query and override some of the default
Trader Service policies. A Policy data structure contains two members:

A PolicyName is a pre-defined string identifier used by a trader to identify a policy.

A PolicyValue is the value specified for a policy. The PolicyValue is of type any . The type of the any
value should match the type of the corresponding policy.

An application may manipulate policies by using a PolicySeq , which is a sequence of Policy data
structures.

6.4.2 Creating a policy list
Example 2 shows how to create a policy sequence and pass it to a query() :

• •

• •

Example2 Creating a policy sequence

// Java

[1](#creating-a-
policy-list)

org.omg.CosTrading.Policy[] policies = new
org.omg.CosTrading.Policy[2];

[2](#creating-a-
policy-list)

org.omg.CORBA.Any any =
org.omg.CORBA.ORB.create_any();
any.insert_long(50);
policies[0] = new
org.omg.CosTradingPolicy("search_card", any);

[3](#creating-a-
policy-list)

any.insert_boolean(false);
policies[1] = new
org.omg.CosTradingPolicy("use_dynamic_properties",
any);
lookup.query("IDL:printer:1.0", "page_per_min >
5", "first",

6.4 Using Policies in a Query

- 51/113 -

First create a sequence of Policy structures, and set the number of policies you want to specify for
the query. This example uses just two policies.

Setting the search_card policy to 50 means that the query should look at a maximum of 50 offers
initially before matching this query.

Setting the use_dynamic_properties policy to false means that the query should not consider offers
with dynamic properties.

Use the policy sequence as a parameter in the query() function.

If the Trader Service encounters any policy limits during a query, it returns the names of the policies
in this parameter as a sequence of policy names. For example, if a query generates more offers than
the maximum number of offers the trader is allowed to search for, the name max_search_card is
returned in the sequence. The values of the policies are not returned.

6.4.3 Policy types
Table 3 shows the policies you can set and the associated IDL data type for each policy:

Table 3 Policies You Can Set for a Query

[4](#creating-a-
policy-list)

policies,
desired_properties,
how_many_offers,
offers,
offer_itr,

[5](#creating-a-
policy-list)

limits_applied
);

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Policy Name IDL Type

exact_type_match boolean

hop_count unsigned long

link_follow_rule CosTrading::FollowOption

match_card unsigned long

request_id_stem CosTrading::OctetSeq

return_card unsigned long

6.4.3 Policy types

- 52/113 -

6.5 Setting a Trader’s Global Policies

6.5.1 Setting global policies
For each policy in the trader, the CosTrading::Admin interface has an associated set function that you can
use to set the policy value. The set functions take the form set_policy_name(value), where policy_name is
the policy you wish to set. For example, you can use the Admin::set_max_match_card() function to set the
max_match_card attribute of the ImportAttributes interface.

Also see Setting policies for linked traders for another example of how to set policies.

6.5.2 Global policies
Table 4 summarizes the global trader policies an administration application can set:

Table 4 Trader policies

Policy Name IDL Type

search_card unsigned long

starting_trader CosTrading::TraderName

use_dynamic_properties boolean

use_modifiable_properties boolean

use_proxy_offers boolean

Policy Name Type

default_follow_rule CosTrading::FollowOption

def_follow_policy CosTrading::FollowOption

def_hop_count unsigned long

def_search_card unsigned long

def_match_card unsigned long

def_return_card unsigned long

6.5 Setting a Trader’s Global Policies

- 53/113 -

Policy Name Type

max_follow_policy CosTrading::FollowOption

max_hop_count unsigned long

max_search_card unsigned long

max_link_follow_policy CosTrading::FollowOption

max_list unsigned long

max_match_card unsigned long

max_return_card unsigned long

request_id_stem CosTrading::OctetSeq

supports_dynamic_properties boolean

supports_modifiable_properties boolean

supports_proxy_offers boolean

6.5.2 Global policies

- 54/113 -

7. Exporting and Managing Service Offers

Application servers can advertise their services by exporting service offers to the Trader Service. Servers can
also manage their service offers in the Trader Service by getting offer information, modifying an offer’s
properties, and withdrawing an offer.

7.1 Server tasks
This chapter describes the following service offer tasks for servers:

How to initialize service offer properties prior to exporting to the Trader Service.

How to export service offers to the Trader Service.

How to get service offer data from the Trader Service.

How to modify a service offer already in the Trader Service.

How to withdraw a service offer from the Trader Service.

7.2 Environment
All of this chapter’s discussion and associated programming examples can be done within a specific
application server, such as the printer server shown in the examples here. However, you might just as
likely do this programming with a management server that is separate from the servers supplying
specific resources. Whether it is better for your server to export and manage its own offer or for a
separate management program to do it depends on your programming style and application design.

• •

• •

• •

• •

• •

7. Exporting and Managing Service Offers

- 55/113 -

7.3 Initializing Service Offer Properties

7.3.1 Property structure
Offer properties are stored as a sequence of property structures, where each property is a name-value
pair, as follows:

7.3.2 Getting an offer type’s property list
Information about all services that the Trader Service can support is stored as service types in the
Trader Service repository. When you develop a server for a specific service, you will need to have the
information about the service type’s properties. There may be documentation describing these
properties or you may need to extract the information from the Trader Service. The section, Managing
the Service Type Repository explains how to add service types to a trader and how to list a trader’s
service type property information.

Before a server can export an offer to a trader, it must initialize the offer’s properties. A server initializes
the service offer properties with relevant values. For example:

// IDL
typedef Istring PropertyName;
typedef any PropertyValue;
struct Property {
PropertyName name;
PropertyValue value;
};
typedef sequence<Property> PropertySeq;

7.3 Initializing Service Offer Properties

- 56/113 -

7.3.3 Read-only and mandatory properties
Before you initialize an offer’s properties, check the service type information for any mandatory
properties and any readonly properties. You must set a value for mandatory properties in order to
successfully export an offer. Readonly properties cannot be modified once the offer is exported. Each
property has assigned to it one of the following modes:

// Java
org.omg.CosTrading.Property[] props = new org.omg.CosTrading.Property[3];
props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");
props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffee machine");
props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);

normal A service offer need not supply a value for this property.

readonly A service offer need not supply a value for this property. However if it
does, the value cannot be modified after its offer is exported.

mandatory A value for this property must always be provided when a service offer is
exported.

7.3.3 Read-only and mandatory properties

- 57/113 -

7.4 Exporting a Service Offer to Trader
Servers use the export() operation to register a service offer with the Trader Service.

7.4.1 Synopsis
The export() operation takes the following form:

It takes the following parameters:

export() returns a CosTrading::OfferId which uniquely identifies the service offer within the trader. This
value is needed to modify or withdraw the service offer.

mandatory and
readonly

A value for this property must be supplied and it cannot be modified after
it is exported.

// Java
org.omg.CosTrading.Register.export(
org.omg.CORBA.Object service_object,
String service_type,
org.omg.CosTrading.Property[] properties)

service_obj
ect

A reference to the object providing the service

service_ty
pe

The name of the service type that represents the service being offered

properties A sequence of Property which describes the offer’s properties. See
Initializing Service Offer Properties for more information.

7.4 Exporting a Service Offer to Trader

- 58/113 -

7.4.2 Example
Example 3 shows how to export a service offer:

Do the following programming steps to export the service offer:

Create an instance of the service object. For example, this application uses a printer service.

Connect to the Trader Service. Call the function resolve_initial_references() to get an object
reference to the trader and narrow the returned value to get the trader’s Lookup object.

Narrow the Lookup object to get the trader’s Register component, which handles service offer
exporting.

Invoke the export() function to export the service offer.

Example3 Exporting a service offer

// Java

[1]
(#example)

PrintServer_impl impl = new PrintServer_impl();
PrintServer print_server = impl._this(orb);

[2]
(#example)

org.omg.CORBA.Object trader =
orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(trader);

[3]
(#example)

org.omg.CosTrading.Register register =
lookup.regester_if();

[4]
(#example)

String offer_id = register.export(
print_server, // the object itself
"Printer", // service type
properties // initialized in previous example
);

1. 1.

2. 2.

3. 3.

4. 4.

7.4.2 Example

- 59/113 -

7.5 Getting Service Offer Data from Trader

7.5.1 Reviewing offer information
After a server exports an offer, you can review the information contained in the offer by using the
describe() operation of the Register interface. This function takes an OfferId as input and returns an
OfferInfo structure representing offer information. The following example continues from the previous
one:

The CosTrading::Admin interface includes an list_offers() function you can use to obtain a list of all
offers held by the Trader Service.

7.6 Modifying a Service Offer

7.6.1 Using modify()
You can modify any properties of an offer, other than those declared read-only, by using the modify()
operation of the trader’s Register object to delete, add, or change its properties.

modify() takes the following parameters:

// Java
org.omg.CosTrading.Register.OfferInfo offer_info =
register.describe(offer_id);

offer_id The OfferId returned by the trader when the offer was exported.

delete_li
st

A sequence of PropertName specifying which properties to delete from the
offer.

7.5 Getting Service Offer Data from Trader

- 60/113 -

7.6.2 Example
Example 4 shows how to delete a property and how to change the value of a property.

Create a sequence of the property names to be deleted.

Create the sequence of the properties to be added or modified.

Finally, call the modify() function

change_li
st

A sequence of Property specifying the properties to modify, along with their
new values. New properties can included in this list and they will be added to
the offer.

Example4 Deleting property

// Java

[1]
(#example)

org.omg.CosTrading.PropertyName[] delete_list = new
PropertyName[1]
delete_list[0] = new
org.omg.CosTrading.PropertyName("ppm’);

[2]
(#example)

org.omg.CosTrading.Property[] change_list = new
org.omg.CosTrading.Property[1]
change_list[0] = new org.omg.CosTrading.Property();
change_list[0].name = "location";
change_list[0].value = orb.create_any();
change_list[0].value.insert_string("A-wing, first floor");

[3]
(#example)

register.modify(offer_id, delete_list, change_list);

1. 1.

2. 2.

3. 3.

7.6.2 Example

- 61/113 -

7.6.3 Readonly properties
For situations in which you need to change readonly properties, you can withdraw an offer and then
export a new offer, but this changes the offer ID which may affect applications that already hold the
current offer.

7.6.4 Policy for supporting modifiable properties
The supports_modifiable_properties policy is a boolean attribute that indicates whether or not a specific
trader supports modifiable properties. Servers and administration applications can turn support for
modifiable properties on or off by using CosTrading::Admin::set_supports_modifiable_properties() . To
obtain the current value of this policy, query the
CosTrading::SupportAttributes::supports_modifiable_properties attribute.

7.7 Withdrawing a Service Offer from Trader
When it is necessary to withdraw an offer from the Trader Service, use the
CosTrading::Register::withdraw() function. The function requires as input the offer_id , which is obtained
as a result of the export() function:

Administration applications can use the following function to withdraw multiple offers satisfying a
specified service type and constraint:

register.withdraw(offer_id);

register.withdraw_using_constraint(type_name, my_constraint);

7.6.3 Readonly properties

- 62/113 -

8. Programming Topics

This chapter is a brief introduction to some advanced programming topics and features of the Trader Service.
These topics include adding service types, using dynamic properties, and managing links between traders.

8.1 Managing the Service Type Repository
Servers cannot export service offers to the Trader Service unless the appropriate service types are
stored in the Service Type Repository. You use the operations of the ServiceTypeRepository interface of
the CosTradingRepos module to manage service types in a trader. Service types are added to a trader only
occasionally, and usually by a management type of server. Service types are rarely removed from a
trader.

8.1.1 Creating service type properties
You create service type properties and then you add these properties along with other information to
the Trader Service. Example 5 shows how to create service type properties.

Example5 Creating service type properties

// Java

[1](#creating-
service-type-
properties)

org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct[] props = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct[3];

[2](#creating-
service-type-
properties)

props[0] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();

[3](#creating-
service-type-
properties)

props[0].name = "name";

8. Programming Topics

- 63/113 -

The code is described as follows:

Create a new sequence of property structures and set the length of the sequence to equal the
number of properties for the service type.

For each property, create a new instance to contain it.

For each property, assign a character string to represent the name of the property. This printer
example has three properties named name , location , and page_per_min .

Set the data type for the value of each property. This is standard Orbix programming for setting
values for typecodes.

Set the mode for each property.

A PROP_MANDATORY_READONLY mode means the property must be set when exporting a service offer of
this service type, but once it is exported, it cannot be changed.

A PROP_MANDATORY mode means the property must be set when exporting a service offer, but its value
may be changed later if needed, after the service offer is exported.

A PROP_READONLY mode (not shown) means the property may be set when exporting a service offer,
but once it is exported, it cannot be changed.

[4](#creating-
service-type-
properties)

props[0].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string)
;

[5](#creating-
service-type-
properties)

props[0].mode =
PropertyMode.PROP_MANDATORY_READONLY;
props[1] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();
props[1].name = "location";
props[1].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string)
;
props[1].mode = PropertyMode.PROP_MANDATORY;
props[2] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropS
truct();
props[2].name = "page_per_min";
props[2].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_long);
props[2].mode = PropertyMode.PROP_NORMAL;

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

• •

• •

• •

8.1.1 Creating service type properties

- 64/113 -

A PROP_NORMAL mode means the property may be set in a service offer but it is not required. It can be
changed later.

8.1.2 Adding a service type
Example 6 adds a service type named IDL:printer:1.0 to a trader. The interface type name from the IDL
file is IDL:TraderDemo/PrintServer:1.0 . The properties, created in Example 5 are the next parameter. The
super_types parameter is a list of types from which this service type is derived. A subtype must support
properties of its supertypes. In this example, there are no supertypes.

The code is described as follows:

Connect to the trader using resolve_initial_references , narrow the returned object to a Lookup object,
and use that to get a reference to the Trader Service’s Service Type Repository.

• •

Example6 Adding a service type

// Java

[1](#adding-a-
service-type)

org.omg.CORBA.Object trader =
orb.resolve_intial_references("TraderService");
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(trader);
org.omg.CORBA.Object obj = lookup.type_repos();
org.omg.CosTradingRepos.ServiceTypeRepository
trader_repos_obj =
org.omg.CosTradingRepos.ServiceTypeRepositoryHelper.na
rrow(obj);

[2](#adding-a-
service-type)

String[] superTypes = new String[0];

[3](#adding-a-
service-type)

type_repos_obj.add_type(
"IDL:printer:1.0" // Service Type
"IDL:TraderDemo/PrintServer:1.0", // IDL type name
properties, // offer properties
superTypes // no supertypes
);

1. 1.

8.1.2 Adding a service type

- 65/113 -

Create a list of the supertypes which define the service type being created. For this example, there
are no supertypes.

Call add_type to add the service type to the Service Type Repository.

8.1.3 Managing service types
After a service type is added to the Trader Service, applications can use other operations of the
CosTradingRepos::ServiceTypeRepository interface to manage service types. These include remove_type()
and list_types() . The describe_type() operation returns information that describes the type, and the
fully_describe_type() operation searches recursively to return information on all the supertypes for
this type.

You can also hide service types from outside the service type repository by using the mask_type()
operation. This may be used, for example, where a type is no longer needed, but it is the supertype of
other types in the type repository. Use the unmask_type() operation if you need to make a masked
service type visible again.

See also the SupportAttributes::type_repos attribute and the Admin::set_type_repos() operation. These
get a reference to the type repository interface and set the type repository interface in a trader.

8.2 Using Dynamic Property Values

8.2.1 Dynamic property values
Exported offers can contain dynamic property values. These are values that can change at runtime. For
example, the number of print jobs in a printer queue. This is done by exporting an object reference that
can be invoked to retrieve the current value from the server. Clients and the trader can then
dynamically determine the length of the printer queue at the time of a query. This is not as fast as
using static values, but it can greatly increase the flexibility involved.

The fact that a property has a dynamic value is only relevant at export time. There is no difference when
defining the property in the service type.

2. 2.

3. 3.

8.1.3 Managing service types

- 66/113 -

8.2.2 Exporting a dynamic property value
When a dynamic property value is being exported, then the type CosTradingDynamic::DynamicProp is used
rather than the expected type. The trader recognizes this as a special type, and treats it accordingly.

The following code shows how to set properties, including a dynamic property, and then export the
offer that contains the dynamic property.

Example7 Setting dynamic properties

// Java
org.omg.CosTrading.Property[] props = new
org.omg.CosTrading.Property[4];
props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");
props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffe
machine");
props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);
org.omg.CosTradingDynamic.DynamicProp dp = new
org.omg.CosTradingDynamic.DynamicProp();

[1](#exporting-a-
dynamic-property-value)

QueueLengthEval evalImpl = new
QueueLengthEval(orb, printer);
dp.eval_if = evalImpl._this(orb);

[2](#exporting-a-
dynamic-property-value)

dp.returned_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_s
hort);
dp.extra_info = orb.create_any();
props[3] = new org.omg.CosTrading.Property();
props[3].name = "queue_length";
props[3].value = orb.create_any();

8.2.2 Exporting a dynamic property value

- 67/113 -

The code is described as follows:

eval_if is essentially a callback object in the server. It implements the IDL interface
CosTradingDynamic::DynamicPropEval , which contains one operation evalDP , which returns the current
value of the property in the server when invoked.

The returned_type must be the same type as the corresponding property type defined in the service
type. extra_info is essentially ignored by the trader, but may be used by users to carry additional
information.

The dynamic value is assigned to the property value.

8.2.3 Using a dynamic property value
Clients may need to check if the value in a property is dynamic or not, if it is possible that the value may
be either a static or dynamic value.

[3](#exporting-a-
dynamic-property-value)

org.omg.CosTradingDynamic.DynamicPropHelper.in
sert(props[3].value, dp);
register_obj.export(
obj, // object reference
"IDL:printer:1.0", // service type name
props // seq of properties
);

1. 1.

2. 2.

3. 3.

8.2.3 Using a dynamic property value

- 68/113 -

Note that if the trader itself evaluates the dynamic property value, because it is used in a constraint
expression (for example, “queue_length < 10"), then it will return the static value at the time of
evaluation in the offer’s properties. This is to minimize the evaluation times on dynamic properties.

8.2.4 Allowing dynamic properties
While the Trader Service allows dynamic properties by default, a specific trader may be set to not allow
dynamic properties. The CosTrading::SupportAttributes::supports_dynamic_properties policy is a boolean
attribute that indicates whether or not the trader allows dynamic properties. Servers and
administration applications can set this policy value by using the operation
org.omg.CosTrading.Admin.set_supports_dynamic_properties() .

Example8 Using a dynamic property value

// Java
org.omg.CosTrading.Property prop = props[2];
short length;
if(prop.value.containsType(org.omg.CORBA.TCKind.tk_short))
{
length = prop.value.extract_short();
System.out.println("static queue_length ", length);
}
else if
(prop.value.containsType(org.omg.CosTradingDynamic._tc_DynamicProp))
{
org.omg.CosTradingDynamic dynam_prop =
org.omgCosTradingDynamicHelper.extract(prop.value);
org.omg.CosTradingDynamic:DynamicPropEval dynam_eval = dynam_prop.eval_if;
org.omg.CORBA.Any any_length = dynam_eval.evalDP(
prop.name,
dynam_prop.returned_type,
dynam_prop.extra_info);
length = length_any.extract_short();
System.out.println("dynamic queue_length ", length);
}

8.2.4 Allowing dynamic properties

- 69/113 -

8.3 Managing Links Between Traders

8.3.1 Linked traders
A linked trader shares information about its service offers with one or more other traders. Linked
traders allow administrators to organize service types and service offers in logical and more efficient
ways for specific environments.

This section describes the following Link function tasks:

Setting link trader policies.

Adding and removing links.

Listing links to other traders.

8.3.2 Setting policies for linked traders
Understanding Trader Service Policies introduced several policies that relate to linked traders including
hop_count , link_follow_rule , and default_follow_rule . A client query can set some of these policies to
control the search for offers, but other policies relating to linked traders control the links and may
override the query policies.

Example 9 shows the use of request_id_stem . This should be a unique value per trader. It will be used in
queries send to other traders, to prevent infinite looping. When a trader sees an incoming query with its
own request id stem, it does not process the query, and returns a result of zero offers to the calling
trader.

The following code shows how to set other trader policies relating to links:

• •

• •

• •

Example9 Using request_id_stem

// Java
//set request_id_stem to "1"
byte[] stem = new byte[1];
stem[0]="1";
// admin_obj is a pointer to the Admin interface of the Trader Service
admin_obj.set_request_id_stem(stem);

8.3 Managing Links Between Traders

- 70/113 -

8.3.3 Adding links
Example 10 shows how to add a link from one trader to another. The trader1 establishes a link to
trader2 . The link is called link_to_trader2 .

// Java
// set the following options
org.omg.CosTrading.FollowOption max_follow =
org.omg.CosTrading.FollowOption.always
org.omg.CosTrading.FollowOption max_link_follow =
org.omg.CosTrading.FollowOption.always;
org.omg.CosTrading.FollowOption def_follow =
org.omg.CosTrading.FollowOption.always;
// set options for hops between traders
int max_hop = 10;
int def_hop = 10;
admin_obj.set_max_follow_policy(max_follow);
admin_obj.set_def_follow_policy(def_follow);
admin_obj.set_max_link_follow_policy(max_link_follow);
admin_obj.set_def_hop_count(def_hop);
admin_obj.set_max_hop_count(max_hop);

8.3.3 Adding links

- 71/113 -

8.3.4 Removing links
Example 11 shows how to remove a link. The link removed is the one created in Example 10:

Example10 Linking from one trader to another

// Java
org.omg.CosTrading.LinkName name = "link_to_trader2"
// set CosTrading.FollowOptions for add_link
org.omg.CosTrading.FollowOption def_pass_on_follow_rule =
org.omg.CosTrading.FollowOption.always;
org.omg.CosTrading.FollowOption limiting_follow_rule =
org.omg.CosTrading.FollowOption.always;
// link_var is a pointer to the Link Interface of trader1
// target is a pointer to trader2 Lookup Interface
link_var.add_link(
name,
target,
def_pass_on_follow_rule,
limiting_follow_rule);

8.3.4 Removing links

- 72/113 -

8.3.5 Creating lists of links
Example 12 shows how to create a listing of the links to other traders:

Example11 Removing a link

// Java
// set LinkName
org.omg.CosTrading.LinkName name = "link_to_trader2";
// link_var is a pointer to the Link Interface of trader1
link_var.remove_link(name);

Example12 Creating a list of links to traders

// Java
// lists links of trader1
org.omg.CosTrading.LinkName[] link_names = link_names =
link_var.list_links();
// This prints the link names
for(int i = 0; i < link_names.length; i++)
System.out.println(link_names[i]);

8.3.5 Creating lists of links

- 73/113 -

9. Trader Service Console

The Trader Service Console allows you to manage all aspects of the Trader Service, including service types,
offers, proxy offers and links. It also lets you perform queries, and configure the trader attributes.

The Trader Service Console is no longer automatically installed. It is available as an optional
component. To install, please download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from our Software License & Download (SLD) site

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

9.1 Starting the Trader Console

9.1.1 How to start the console
Run the following command in a command window:

9.2 Main Window

Note

ittrader_console

9. Trader Service Console

- 74/113 -

9.2.1 GUI appearance
The Trader Service Console main window appears as shown in Figure 5.

Figure 5: The Trader Console main window

9.2.2 Window elements
The main window includes the following elements:

Menu bar Provides access to all of the application’s features

Toolbar Shortcuts for the most common menu commands

Item type
selector

Selects which type of item is shown in the item list

Item list Displays the names or identifiers of all items contained in the trader

Item
description

Provides a textual summary of the selected item

9.2.1 GUI appearance

- 75/113 -

9.2.3 The Toolbar
The toolbar contains buttons for the most common menu commands.

Figure 6: Trader Console toolbar

9.2.4 Terms used in Trader Console
The Trader Service Console uses the term item to generically refer to the four types of data managed by
a trader service:

Service types

Offers

Proxy offers

Links

The console window is used to browse these items. The window only shows one type of item at a
time, which you can change with the item type selector drop-down list or by selecting a type
from the View menu. When a new item type is selected, the current list of items is retrieved from
the trader service and displayed in the item list.

Menu bar Provides access to all of the application’s features

Status bar Displays information about the trader to which the console is currently
connected, including the host, port and IDL interface

• •

• •

• •

• •

9.2.3 The Toolbar

- 76/113 -

9.3 The Trader Console Menus

9.3.1 The Console menu
You use the commands in the Console menu to manage the console windows.

9.3.2 The Edit menu
The console supports the typical notion of a clipboard, which can be manipulated with cut, copy and
paste commands. However, the console does not use the system clipboard, and therefore the
application clipboard can only be accessed by windows from the same execution of the application. In
other words, if you start two instances of the application, you cannot cut and paste between them. You
can cut and paste if you start a single instance of the application, and create multiple windows with the
Console/New Window command.

New
Window

Creates a new console window, connected to the current trader.

Connect Opens the Connect dialog box, allowing you to connect to a different trader
service.

Close Closes the current console window. If this window is the last console window
present, the application exits.

Exit Quits the application.

Cut Copies the selected items to the clipboard and then permanently removes
the selected items

Copy Copies the selected items to the clipboard

Paste Pastes the items from the clipboard into the current trader

Select All Selects all of the items in the item list

Clone Creates a clone of the selected item. The appropriate dialog box is displayed to
allow you to create a new item, but the fields of the dialog box are initialized
with the values from the selected item.

Modify Edits the currently selected item

9.3 The Trader Console Menus

- 77/113 -

9.3.3 Using the cut, copy and paste commands
There are some issues to be aware of when using the cut, copy and paste operations:

Service types and links must have unique names; therefore, you will not be able to paste one of
these items if an item already exists in the trader with the same name.

A certain amount of forethought is advised when you wish to cut and paste service types. Since
service types can inherit from other service types, you cannot cut a service type that has subtypes.
If you wish to cut or delete a number of service types, and if inheritance relationships exist
between any of them, you must cut the types that don’t have any subtypes first. The same
principle applies to pasting service types, in that you cannot paste a type if its supertypes do not
exist or have not yet been pasted. It is recommended that you only operate on one service type at
a time when using the cut, copy, paste or delete commands.

9.3.4 Using the Clone and Modify commands
Note the following when using the clone and modify operations:

Some types of items, namely service types and proxy offers, cannot be modified. The Modify
command (and its toolbar equivalent) are disabled while these types are displayed.

The Clone and Modify commands operate on a single item at a time. If more than one item is
currently selected, the application uses the first of the selected items.

9.3.5 The View menu
You use the View menu to select the type of items you wish to be displayed in the item list. Selecting a
new type of item from this menu is equivalent to changing the setting of the item type selector.

The Refresh command causes the application to retrieve an updated list of items from the trader and
display them in the item list. This command can be useful if you know (or suspect) that the list of items
has been changed by some other client of the trader service.

Cut Copies the selected items to the clipboard and then permanently removes
the selected items

Delete Permanently removes the selected items

• •

• •

• •

• •

9.3.3 Using the cut, copy and paste commands

- 78/113 -

9.3.6 The Insert menu
You use the Insert menu when you want to create a new item. It displays a dialog box in which you can
supply the information about the new item. If you need to create a new item that is similar to an
existing item, you can also use the Edit/Clone command.

9.3.7 The Tools menu
The commands available in the Tools menu provide access to additional features of the trader service.

9.4 Managing Service Types

9.4.1 IDL type support
Although the Trader Service supports properties with user-defined IDL types, the console only supports
simple IDL types and sequences of simple IDL types.

Refer to Service Types for more information on service types.

9.4.2 Adding a new service type
To add a new service type:

Query Perform query operations on the trader and review the matching
offers

Attributes Configure the trader attributes

Withdraw
Offers

Removes offers using a constraint expression

Mask Type Masks the selected service type

Unmask Type Unmasks the selected service type

9.3.6 The Insert menu

- 79/113 -

Select Insert/Service Type. The New Service Type dialog box appears as shown below.

Figure 7: New Service Type dialog box

Enter a name for the service type in the Service type name text box. The name must be unique
among all of the service types managed by the trader.

Enter an interface repository identifier in the Interface text box. If the interface repository service is
available, clicking the Browse... button displays an interface repository browser as shown below.

Figure 8: Browsing for an interface

1. 1.

2. 2.

3. 3.

9.4.2 Adding a new service type

- 80/113 -

The browser displays only modules and interfaces. When you select an interface, its identifier is
displayed in the ID text box below. Click OK to accept the identifier you have selected.

Use the Add... and Delete buttons to add and remove super types. Clicking the Add... button displays
the Super Types dialog box as shown below. Select any service types you wish to use as super types
for the new type and click OK. The order in which you add super types is not important.

Figure 9: Selecting super types

Use the Add..., Edit... and Delete buttons to manipulate the properties for this service type. Clicking
the Add... or Edit... buttons displays the Property dialog box as shown below. Enter a name for the
property, select a property type, and use the checkboxes to indicate the mode of this property. Click

OK to add the new property.

Figure 10: Adding a property

Click OK on the New Service Type dialog box to add the new service type.

4. 4.

5. 5.

6. 6.

7. 7.

9.4.2 Adding a new service type

- 81/113 -

9.4.3 Removing a service type
To remove a service type, do the following:

Select View/Service Types to display the service types in the item list.

Select the service type you wish to remove.

Select Edit/Delete. A confirmation dialog appears.

Click Yes to permanently remove the service type.

If a service type has subtypes, you will not be able to remove the type until all of its subtypes have
been removed.

9.4.4 Masking a service type
To mask a service type, do the following:

Select View/Service Types to display the service types in the item list.

Select the service type you wish to mask.

Select Tools/Mask Type.

9.4.5 Unmasking a service type
To unmask a service type, do the following:

Select View/Service Types to display the service types in the item list.

Select the service type you wish to unmask.

Select Tools/Unmask Type.

1. 1.

2. 2.

3. 3.

4. 4.

Note

1. 1.

2. 2.

3. 3.

1. 1.

2. 2.

3. 3.

9.4.3 Removing a service type

- 82/113 -

9.5 Managing Offers

9.5.1 Adding a new offer
To add a new offer, do the following:

Select Insert/Offer. The New Offer dialog box appears as shown below.

Figure 11: Adding a new offer

Select a service type from the drop-down list. Each time you select a service type, the Properties table
is updated to reflect the properties defined for that service type.

Select a method for specifying the object reference for this offer. Select the IOR toggle if you want to
paste the stringified interoperable object reference into the text box. If you want the application to
read the reference from a file, select From file and enter the filename in the text box, or click the
Browse... button to display a file selection dialog box. If the trader service is configured to allow nil
objects, and you do not wish to specify an object reference for this offer, you may leave the object
reference blank.

Enter values for the properties in the Properties table. All properties have a checkbox to the left of
the property name. For a mandatory property, the checkbox is disabled, meaning that a value must
be provided for this property. For an optional property, you can use the checkbox to indicate whether
this property should be included with the offer. To enter a value for a property, double-click on the
property value field. For properties with sequence types, you can enter multiple values by separating
them with commas. Press Return when you are finished entering the value for a property.

1. 1.

2. 2.

3. 3.

4. 4.

9.5 Managing Offers

- 83/113 -

Click the Add... button if you wish to add a property that is not defined by the service type. The Add
Property dialog box appears as shown below. Enter a name for the property, select the property’s
type from the drop-down list, and enter a value in the text box. The name you use for the property
must not be the same as any existing properties. Click OK to add the property to the Properties

table.

Figure 12: Adding a property

Once the property has been added to the Properties table, you can edit it directly, just as you can
with any other property. If you later decide that you do not want to include the property with the
offer, simply uncheck the property’s checkbox.

If you wish to make a property dynamic, select the property and click the Dynamic... button. The
Dynamic Property dialog box appears as shown below. Select a method for specifying an object
reference as outlined in step 3 above. If you wish to include additional data, select a type from the
drop-down list and enter a value in the text box. Click OK to save the dynamic property. The property
table displays <dynamic> as the value of a dynamic property.

Figure 13: Making a property dynamic

5. 5.

Note

6. 6.

9.5.1 Adding a new offer

- 84/113 -

To clear the value of a property, select the property and click Reset. You can use this command to
convert a property from a dynamic property to a regular property.

Click OK to add the new offer. The application validates the information and reports any errors in a
dialog box.

For properties of type string , an empty value is accepted as a valid value, even for mandatory
properties.

9.5.2 Modifying an offer
To modify an offer, do the following:

Select View/Offers to display the offers in the item list.

Select the offer you wish to modify.

Select Edit/Modify. The Edit Offer dialog box appears as shown below.

Figure 14: Editing an offer

You can modify a property by double-clicking on the property value. Press Return when you have
finished editing a property value.

You can remove an existing property from the offer (if it is an optional property) by unchecking its
checkbox. Similarly, you can add a property to the offer by checking its checkbox and entering a value
for the property.

7. 7.

8. 8.

Note

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

9.5.2 Modifying an offer

- 85/113 -

See the discussion of adding a new offer above for details on adding new properties and configuring
dynamic properties.

Click OK to update the offer.

9.5.3 Withdrawing offers
There are two distinct ways to withdraw offers. The first way is by selecting individual offers, as outlined
below:

Select View/Offers to display the offers in the item list.

Select the offer(s) you wish to withdraw.

Select Edit/Delete. A confirmation dialog appears.

Click Yes to withdraw the offers.

The above method is suitable for withdrawing a limited number of specific offers. A more efficient
method for removing a large quantity of offers for a single type, or for removing offers without having
to manually search for the right ones, is by withdrawing offers with a constraint expression:

Select Tools/Withdraw Offers. The Withdraw Offers dialog box appears as shown below.

Figure 15: Withdrawing an offer

Select the service type from the drop-down list. Offers with this service type or a subtype of this
service type are considered for withdrawal.

Enter a constraint expression in the text box. See Service Types for more information on constraint
expressions.

Click OK to withdraw the offers. Only offers that match the constraint expression are withdrawn. An
error message appears if no matching offers were found.

6. 6.

7. 7.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

4. 4.

9.5.3 Withdrawing offers

- 86/113 -

A simple way to remove all of the offers for a service type is to use TRUE for the constraint
expression.

9.6 Managing Proxy Offers

9.6.1 Adding a new proxy offer
To add a new proxy offer, do the following:

Select Insert/Proxy Offer. The New Proxy Offer dialog box appears as shown below.

Note

1. 1.

9.6 Managing Proxy Offers

- 87/113 -

Figure 16: Adding a new proxy offer

Select a service type from the drop-down list. Each time you select a service type, the property table is
updated to reflect the properties defined for that service type.

Select a method for specifying the object reference of the target CosTrading::Lookup object for this
proxy offer. Select the IOR toggle if you want to paste the stringified interoperable object reference
into the text box. If you want the application to read the reference from a file, select From file and
enter the filename in the text box, or click the Browse... button to display a file selection dialog box.

Enter the constraint recipe in the text box.

Select If match all if a matching service type is all that is required for this proxy offer to be
considered a match during a query.

Enter values for the properties in the Properties table. See Adding a new offer for more information
on entering offer properties.

Use the Add..., Edit... and Delete buttons to manipulate the policies to be passed on to the target
object. Clicking the Add... or Edit... buttons displays the Policy dialog box as shown below.

Figure 17: Adding a policy to a proxy offer

Click OK to add the new proxy offer. The application validates the information and reports any errors
in a dialog box.

9.6.2 Withdrawing proxy offers
To withdraw a proxy offer, do the following:

Select View/Proxy Offers to display the proxy offers in the item list.

Select the proxy offer you wish to withdraw.

Select Edit/Delete. A confirmation dialog appears.

Click Yes to withdraw the proxy offer.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

1. 1.

2. 2.

3. 3.

4. 4.

9.6.2 Withdrawing proxy offers

- 88/113 -

9.7 Managing Links

9.7.1 Adding a new link
To add a new link, do the following:

Select Insert/Link. The New Link dialog box appears as shown below.

Figure 18: Adding a link

Enter a name for this link in the text box.

Select a method for specifying the target trader’s object reference for this link. Select the IOR toggle
if you want to paste the stringified interoperable object reference into the text box. If you want the
application to read the reference from a file, select From file and enter the filename in the text box,
or click the Browse... button to display a file selection dialog box.

Select the appropriate link-follow rules from the drop-down lists.

Click OK to add the new link.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

9.7 Managing Links

- 89/113 -

9.7.2 Modifying a link
To modify a link, do the following:

Select View/Links to display the links in the item list.

Select the link you wish to modify.

Select Edit/Modify. The Edit Link dialog box appears.

Update the settings for the link-follow rules.

Click OK to update the link.

9.7.3 Removing a link
To remove a link, do the following:

Select View/Links to display the links in the item list.

Select the link you wish to remove.

Select Edit/Delete. A confirmation dialog appears.

Click Yes to remove the link.

9.8 Configuring the Trader Attributes

9.8.1 Configuring attributes

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

1. 1.

2. 2.

3. 3.

4. 4.

9.7.2 Modifying a link

- 90/113 -

To configure the trader attributes, select Tools/Attributes. The Attributes dialog box appears,
containing a tabbed folder with four tabs.

Figure 19: Configuring trader attributes

The tabs provide access to the attributes from the following four IDL interfaces:

CosTrading::SupportAttributes

CosTrading::ImportAttributes

CosTrading::LinkAttributes

CosTrading::Admin

Each of the tabs is described below. Click OK when you have finished modifying the attributes.

9.8.2 Support Attributes

Supports modifiable properties
If enabled, the trader considers offers with modifiable properties (that is, properties that are not read-
only) during a query, unless the importer requests otherwise with the use_modifiable_properties policy.
If disabled, the trader does not consider offers with modifiable properties, regardless of the importer's
wishes. This setting also determines the behavior of the modify operation in the CosTrading::Register
interface. If enabled, the server allows modification of offers. If disabled, the modify operation raises
the NotImplemented exception.

• •

• •

• •

• •

9.8.2 Support Attributes

- 91/113 -

Supports dynamic properties
If enabled, the trader considers offers with dynamic properties during a query, unless the importer
requests otherwise with the use_dynamic_properties policy. If disabled, the trader does not consider
offers with dynamic properties, regardless of the importer's wishes. The trading service specification
does not define the behavior of a trader when this option is disabled and an offer is exported that
contains dynamic properties; however, the Trader Service always accepts offers containing dynamic
properties.

Supports proxy offers
If enabled, the trader considers proxy offers during a query, unless the importer requests otherwise
with the use_proxy_offers policy. If disabled, the trader does not consider proxy offers, regardless of the
importer's wishes. This setting also determines the behavior of the proxy_if attribute in the
CosTrading::SupportAttributes interface. If enabled, proxy_if returns the reference of the server's
CosTrading::Proxy object. If disabled, proxy_if returns nil .

Service type repository
The IOR of the service type repository currently in use by the trader is displayed in the text box. In order
to change the service type repository, you first need to select a method for specifying its object
reference. Select the IOR toggle if you want to paste the stringified IOR into the text box. If you want
the application to read the reference from a file, select From file and enter the filename in the text box,
or click the Browse... button to display a file selection dialog box.

9.8.3 Import Attributes

9.8.3 Import Attributes

- 92/113 -

Import attributes
Many of the Import attributes have default and maximum values. The default value is used if an
importer does not supply a value for the corresponding importer policy. The maximum value is used as
the allowable upper limit for the importer policy. If an importer supplies a policy value that is greater
than the maximum value, the importer’s policy value is overridden and the maximum value is used

instead.

Figure 20: Import attributes

Search cardinality
The number of offers to be searched during a query. The corresponding importer policy is search_card .

Match cardinality
The number of matched offers to be ordered during a query. The corresponding importer policy is
match_card .

Return cardinality
The number of ordered offers to be returned by a query. The corresponding importer policy is
return_card .

Link hop count
The depth of links to be traversed during a query. The corresponding importer policy is hop_count .

9.8.3 Import Attributes

- 93/113 -

Link follow policy
The trader’s behavior when considering whether to follow a link during a query. The default value is
used if an importer does not specify a value for the link_follow_rule policy. The maximum value
overrides the policy established for a link as well as the link_follow_rule policy proposed by an
importer.

Maximum list count
The maximum number of items to be returned from any operation that returns a list, such as the
list_offers operation in CosTrading::Admin or the next_n operation in CosTrading::OfferIterator . This
attribute may override the number of items requested by a client.

9.8.4 Link Attributes

Link attributes

The following is the Link Attributes pane.

Figure 21: Link attributes

Maximum link follow policy
Determines the server's upper bound on the value of a link's limiting follow rule at the time of creation
or modification of a link. The server raises the LimitingFollowTooPermissive exception if a link's limiting
follow rule exceeds the value of this attribute.

9.8.4 Link Attributes

- 94/113 -

9.9 Admin Attributes

9.9.1 Admin attributes
The following is the Admin attributes pane.

Figure 22: Admin attributes

9.9.2 Request identifier stem
The request identifier stem is used as a prefix by the server to generate unique request identifiers
during a federated query. Although the IDL attribute request_id_stem returns a sequence of octets, this
property is defined in terms of a string, with the characters of the string comprising the octets of the
stem. You need to provide a value for this property only if the server will have links to other traders and
you want to ensure that circular links are handled correctly.

9.9 Admin Attributes

- 95/113 -

9.10 Executing Queries

9.10.1 Executing a query
To execute a query, do the following:

Select Tools/Query. The Query dialog box appears as shown below.

Figure 23: Executing a query

Select a service type from the drop-down list.

Enter a constraint expression in the Constraint text box.

(Optional) Enter a preference expression in the Preference text box. If this field is blank, the trader
uses a default preference expression of "first" .

If you wish to specify which properties are returned in the matching offers, click Desired properties
to activate the text box below and enter the names of the properties in the text box. Use commas to
separate the property names.

To include importer policies, click the Policies... button. The Policies dialog box appears as shown
below. Next to each field label is a checkbox. You must check the box for a policy for it to be included
in your query. Click the Defaults button to load the trader’s default import attributes into the fields of

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

9.10 Executing Queries

- 96/113 -

the dialog box. Click OK to accept your changes.

Figure 24: Query policies

Click Query to execute the query operation. If matching offers were found, the Query Results dialog
box appears as shown below. You can scroll through the matching offers with the < and > buttons.
Click Close when you have finished examining the results.

7. 7.

9.10.1 Executing a query

- 97/113 -

Figure 25: Query results

The Query Results dialog box cannot be used to edit offers.

9.11 Connecting to a New Trader
When the console is started, the first console window to appear is already connected to the trader you
specified using the command line options. If you are managing multiple traders, you can connect to a
different trader with the Console/Connect command. The Connect dialog appears as shown below.

Figure 26: The Connect dialog box

There are three methods of connecting to the trader.

To provide the stringified object reference, select the Trader IOR option and paste the IOR into the
text box.

To obtain the stringified object reference from a file, select IOR from file and enter the filename in
the text box, or click the Browse... button to display a file selection dialog box.

To connect to a linked trader, select the Link option and choose the link from the drop-down list.

Click OK to connect to the trader. The contents of the current console window are updated to reflect the
new trader.

Note

1. 1.

2. 2.

3. 3.

9.11 Connecting to a New Trader

- 98/113 -

If you want to be connected to two or more traders at the same time, use the Console/New Window
command to create a new console window, then select Console/Connect to connect the new
window to another trader.

Note

9.11 Connecting to a New Trader

- 99/113 -

10. The OMG Constraint Language

This appendix provides the BNF specification of the CORBA standard constraint language (reproduced from
Annex B in the OMG Trading Object Specification with the kind permission of the OMG). It is used for
specifying both the constraint and preference expression parameters to various operations in the trader
interfaces.

10.1 Introduction

10.1.1 Statement
A statement in this language is an Istring . Other constraint languages may be supported by a
particular trader implementation; the constraint language used by a client of the trader is indicated by
embedding “ <<Identifier major.minor>> ” at the beginning of the string. If such an escape is not used, it
is equivalent to embedding “ <<OMG 1.0>> ” at the beginning of the string.

10.2 Language Basics

10.2.1 Basic elements
Both the constraint and preference expressions in a query can be constructed from property names of
conforming offers and literals. The constraint language in which these expressions are written consists
of the following items (examples of these expressions are shown in square brackets below each
bulleted item):

Comparative functions:

== (equality)

!= (inequality)

> , >= , < , <=

~ (substring match),

in (element in sequence)

• •

10. The OMG Constraint Language

- 100/113 -

The result of applying a comparative function is a boolean value. [“ Cost < 5 ” implies only consider
offers with a Cost property value less than 5; “ ’Visa’ in CreditCards ” implies only consider offers
in which the CreditCards property, consisting of a set of strings, contains the string ’ Visa ’]

Boolean connectives:

and

or

not

[“ Cost >= 2 and Cost <= 5 ” implies only consider offers where the value of the Cost property is in
the range 2 <= Cost <= 5]

Property existence:

exist

Property names

Numeric and string constants

mathematical operators:

+ , - , * , /

[“ 10 < 12.3 * MemSize + 4.6 * FileSize ” implies only consider offers for which the arithmetic
function in terms of the value of the MemSize and FileSize properties exceeds 10]

grouping operators:

()

Note that the keywords in the language are case sensitive.

10.2.2 Precedence relations
The following precedence relations hold in the absence of parentheses, in the order of highest to
lowest:

• •

• •

• •

• •

• •

• •

10.2.2 Precedence relations

- 101/113 -

10.2.3 Legal property value types
While one can define properties of service types with arbitrarily complex IDL value types, only the
following property value types can be manipulated using the constraint language:

boolean , short , unsigned short , long , unsigned long , float , double , char , Ichar , string , Istring

sequences of the above types

The exist operator can be applied to any property name, regardless of the property’s value type.

10.2.4 Operator restrictions

() exist unary-minus
not
* /
+ -
~
in
== != < <= > >=
and
or

• •

• •

exist can be applied to any property

~ can only be applied if left operand and right operand are both strings or both
Istrings

in can only be applied if the left operand is one of the simple types described
above and the right operand is a sequence of the same simple type

== can only be applied if the left and right operands are of the same simple type

!= can only be applied if the left and right operands are of the same simple type

< can only be applied if the left and right operands are of the same simple type

<= can only be applied if the left and right operands are of the same simple type

> can only be applied if the left and right operands are of the same simple type

>= can only be applied if the left and right operands are of the same simple type

10.2.3 Legal property value types

- 102/113 -

The comparative functions < , <= , > , >= imply use of the appropriate collating sequence for characters
and strings; TRUE is greater than FALSE for booleans.

10.2.5 Representation of literals

10.3 The Constraint Language BNF

10.3.1 The constraint language proper in terms of lexical tokens

+ can only be applied to simple numeric operands

- can only be applied to simple numeric operands

* can only be applied to simple numeric operands

/ can only be applied to simple numeric operands

boolean TRUE or FALSE

integers sequences of digits, with a possible leading + or -

floats digits with decimal point, with optional exponential notation

characte
rs

char and Ichar are of the form ‘ <char> ’, string and Istring are of
the form ‘ <char><char>+ ’; to embed an apostrophe in a string, place a
backslash (\) in front of it; to embed a backslash in a string, use \\ .

10.2.5 Representation of literals

- 103/113 -

<constraint> := /* empty */
| <bool>
<preference> := /* <empty> */
| min <bool>
| max <bool>
| with <bool>
| random
| first
<bool> := <bool_or>
<bool_or> := <bool_or> or <bool_and>
| <bool_and>
<bool_and> := <bool_and> and <bool_compare>
| <bool_compare>
<bool_compare> := <expr_in> == <expr_in>
| <expr_in> != <expr_in>
| <expr_in> < <expr_in>
| <expr_in> <= <expr_in>
| <expr_in> > <expr_in>
| <expr_in> >= <expr_in>
| <expr_in>
<expr_in> := <expr_twiddle> in <Ident>
| <expr_twiddle>
<expr_twiddle> := <expr> ~ <expr>
| <expr>
<expr> := <expr> + <term>
| <expr> - <term>
| <term>
<term> := <term> * <factor_not>
| <term> / <factor_not>
| <factor_not>
<factor_not> := not <factor>
| <factor>
<factor> := (<bool_or>)
| exist <Ident>
| <Ident>
| <Number>
| - <Number>
| <String>
| TRUE
| FALSE

10.3.1 The constraint language proper in terms of lexical tokens

- 104/113 -

10.3.2 “BNF” for lexical tokens up to character set issues

10.3.3 Character set issues
The previous BNF has been complete up to the non-terminals <Leader> , <Follow> , <Alpha> , <Digit> ,
and <Other> . For a particular character set, one must define the characters which make up these
character classes.

Each character set which the trading service is to support must define these character classes. This
annex defines these character classes for the ASCII character set.

<Ident> := <Leader> <FollowSeq>
<FollowSeq> := /* <empty> */
| <FollowSeq> <Follow>
<Number> := <Mantissa>
| <Mantissa> <Exponent>
<Mantissa> := <Digits>
| <Digits> .
| . <Digits>
| <Digits> . <Digits>
<Exponent> := <Exp> <Sign> <Digits>
<Sign> := +
| -
<Exp> := E
| e
<Digits> := <Digits> <Digit>
| <Digit>
<String> := ’ <TextChars> ’
<TextChars> := /* <empty> */
| <TextChars> <TextChar>
<TextChar> := <Alpha>
| <Digit>
| <Other>
| <Special>
<Special> := \\
| \’

10.3.2 “BNF” for lexical tokens up to character set issues

- 105/113 -

<Leader> := <Alpha>
<Follow> := <Alpha>
| <Digit>
| _
<Alpha> is the set of alphabetic characters [A-Za-z]
<Digit> is the set of digits [0-9]
<Other> is the set of ASCII characters that are not <Alpha>, <Digit>, or
<Special>

10.3.3 Character set issues

- 106/113 -

11. Glossary

A

ART

Adaptive Runtime Technology. A modular, distributed object architecture, which supports dynamic deployment and configuration of
services and application code. ART provides the foundation for Orbix software products.

C

CFR

See configuration repository.

client

An application (process) that typically runs on a desktop and requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a program that requests services from CORBA objects.

configuration

A specific arrangement of system elements and settings.

configuration domain

Contains all the configuration information that Orbix ORBs, services and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior. This information consists of configuration variables and their
values. Configuration domain data can be implemented and maintained in a centralized Orbix configuration repository or as a set of
files distributed among domain hosts. Configuration domains let you organize ORBs into manageable groups, thereby bringing
scalability and ease of use to the largest environments. See also configuration file and configuration repository.

configuration file

A file that contains configuration information for Orbix components within a specific configuration domain. See also configuration
domain.

configuration repository

A centralized store of configuration information for all Orbix components within a specific configuration domain. See also
configuration domain.

configuration scope

Orbix configuration is divided into scopes. These are typically organized into a root scope and a hierarchy of nested scopes, the fully-
qualified names of which map directly to ORB names. By organizing configuration properties into various scopes, different settings
can be provided for individual ORBs, or common settings for groups of ORB. Orbix services, such as the naming service, have their
own configuration scopes.

11. Glossary

- 107/113 -

CORBA

Common Object Request Broker Architecture. An open standard that enables objects to communicate with one another regardless of
what programming language they are written in, or what operating system they run on. The CORBA specification is produced and
maintained by the OMG. See also OMG.

CORBA objects

Self-contained software entities that consist of both data and the procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and Java.

D

deployment

The process of distributing a configuration or system element into an environment.

I

IDL

Interface Definition Language. The CORBA standard declarative language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose in a server application. Clients use these interfaces to access
server objects across a network. IDL interfaces are independent of operating systems and programming languages.

IFR

See interface repository.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined by the OMG, for communications between ORBs and
distributed applications. IIOP is defined as a protocol layer above the transport layer, TCP/IP.

implementation repository

A database of available servers, it dynamically maps persistent objects to their server’s actual address. Keeps track of the servers
available in a system and the hosts they run on. Also provides a central forwarding point for client requests. See also location
domain and locator daemon.

IMR

See implementation repository.

installation

The placement of software on a computer. Installation does not include configuration unless a default configuration is supplied.

Interface Definition Language

See IDL.

11. Glossary

- 108/113 -

interface repository

Provides centralized persistent storage of IDL interfaces. An Orbix client can query this repository at runtime to determine
information about an object’s interface, and then use the Dynamic Invocation Interface (DII) to make calls to the object. Enables
Orbix clients to call operations on IDL interfaces that are unknown at compile time.

invocation

A request issued on an already active software component.

IOR

Interoperable Object Reference. See object reference.

L

location domain

A collection of servers under the control of a single locator daemon. Can span any number of hosts across a network, and can be
dynamically extended with new hosts. See also locator daemon and node daemon.

locator daemon

A server host facility that manages an implementation repository and acts as a control center for a location domain. Orbix clients
use the locator daemon, often in conjunction with a naming service, to locate the objects they seek. Together with the
implementation repository, it also stores server process data for activating servers and objects. When a client invokes on an object,
the client ORB sends this invocation to the locator daemon, and the locator daemon searches the implementation repository for the
address of the server object. In addition, enables servers to be moved from one host to another without disrupting client request
processing. Redirects requests to the new location and transparently reconnects clients to the new server instance. See also location
domain, node daemon, and implementation repository.

N

naming service

An implementation of the OMG Naming Service Specification. Describes how applications can map object references to names.
Servers can register object references by name with a naming service repository, and can advertise those names to clients. Clients, in
turn, can resolve the desired objects in the naming service by supplying the appropriate name. The Orbix naming service is an
example.

node daemon

Starts, monitors, and manages servers on a host machine. Every machine that runs a server must run a node daemon.

O

object reference

Uniquely identifies a local or remote object instance. Can be stored in a CORBA naming service, in a file or in a URL. The contact
details that a client application uses to communicate with a CORBA object. Also known as interoperable object reference (IOR) or
proxy.

OMG

Object Management Group. An open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including CORBA. See www.omg.com.

11. Glossary

- 109/113 -

http://www.omg.com

ORB

Object Request Broker. Manages the interaction between clients and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a distributed computer environment. Key component in CORBA.

P

POA

Portable Object Adapter. Maps object references to their concrete implementations in a server. Creates and manages object
references to all objects used by an application, manages object state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB products. Can be transient or persistent.

protocol

Format for the layout of messages sent over a network.

S

server

A program that provides services to clients. CORBA servers act as containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T

trader service

An implementation of the OMG CORBA Trading Object Service Specification. Facilitates the offering and the discovery of services.
Other objects can use it to advertise their capabilities and to match their needs against those of advertised services.

11. Glossary

- 110/113 -

12. Notices

12.1 Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

12.2 Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

12.3 Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

12.4 License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

12. Notices

- 111/113 -

http://www.rocketsoftware.com/about/legal

12.5 Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

12.6 Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

12.7 Country and Toll-free telephone number

12.5 Corporate information

- 112/113 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

12.7 Country and Toll-free telephone number

- 113/113 -

	CORBA Trader Service Guide Java
	V6.3.14

	1. Preface
	1.1 Audience
	1.2 Related documentation
	1.3 Typographical conventions
	1.4 Keying conventions

	2. An Introduction to the CORBA Trading Service
	2.1 Introduction
	2.1.1 How clients and servers use a trader
	2.1.2 Scalability

	2.2 Service Types
	2.2.1 Service type definition
	2.2.2 Service type names
	2.2.3 Interface types
	2.2.4 Property types
	2.2.5 Super types

	2.3 Service Offers
	2.3.1 Service offers

	2.4 The Trader Service’s Components
	2.4.1 Trader components

	3. Configuring the Trader Service
	3.1 Configuring and Running the Trader Service
	3.1.1 Preparatory steps
	3.1.2 Explanation
	3.1.3 Steps 1-2: Determine the hosts and ports to be used in the deployment
	3.1.4 Step 3: Enter the host and port information in the configuration
	3.1.5 Step 4: Configure the service to run with or without replication
	3.1.6 Step 5: Run the service in prepare mode to obtain initial references
	3.1.7 Step 6: Adding the initial references to the configuration
	3.1.8 Step 7: Running the trader service

	3.2 Additional Configuration Information

	4. Getting Started with the Trader Service
	4.1 Starting the Trader Service
	4.1.1 Synopsis
	4.1.2 Stopping the Trader Service

	4.2 The Printer Application
	4.2.1 Interaction with the trader
	4.2.2 The IDL specification

	4.3 Trader Service Programming
	4.3.1 Connecting to the Trader
	4.3.2 Adding a New Service Offer Type
	4.3.3 Exporting a Service Offer
	4.3.4 Querying for a Service Offer

	5. Querying for Service Offers
	5.1 How the Trader Service Processes a Query
	5.1.1 Format of a query
	5.1.2 Policies

	5.2 A Basic Query for Service Offers
	5.2.1 Connecting to the trader
	5.2.2 Querying the trader

	5.3 Selecting a Service from Query Results
	5.3.1 Output parameters
	5.3.2 offers
	5.3.3 iterator
	5.3.4 limits_applied

	5.4 Forming Constraints for Queries
	5.4.1 Evaluating property values
	5.4.2 Combining expressions
	5.4.3 Testing for a property’s existence
	5.4.4 Using arithmetic expressions

	5.5 Setting Preferences to Sort Service Offers
	5.5.1 Creating a preference string
	5.5.2 Constructing preference expressions
	5.5.3 Returning offers in the order of discovery
	5.5.4 Returning offers in descending order
	5.5.5 Returning offers in ascending order
	5.5.6 Returning offers by constraint
	5.5.7 Returning offers in random order

	5.6 Refining the Properties a Query Returns
	5.6.1 Specifying returned properties

	6. Understanding Trader Service Policies
	6.1 What is a policy?
	6.2 Policies that Affect Queries
	6.2.1 Query semantics
	6.2.2 Search policies
	6.2.3 Return policy
	6.2.4 List of query policies

	6.3 Policies that Affect Trader Functionality
	6.3.1 Evaluating policies
	6.3.2 Query policies

	6.4 Using Policies in a Query
	6.4.1 Policies parameter
	6.4.2 Creating a policy list
	6.4.3 Policy types

	6.5 Setting a Trader’s Global Policies
	6.5.1 Setting global policies
	6.5.2 Global policies

	7. Exporting and Managing Service Offers
	7.1 Server tasks
	7.2 Environment
	7.3 Initializing Service Offer Properties
	7.3.1 Property structure
	7.3.2 Getting an offer type’s property list
	7.3.3 Read-only and mandatory properties

	7.4 Exporting a Service Offer to Trader
	7.4.1 Synopsis
	7.4.2 Example

	7.5 Getting Service Offer Data from Trader
	7.5.1 Reviewing offer information

	7.6 Modifying a Service Offer
	7.6.1 Using modify()
	7.6.2 Example
	7.6.3 Readonly properties
	7.6.4 Policy for supporting modifiable properties

	7.7 Withdrawing a Service Offer from Trader

	8. Programming Topics
	8.1 Managing the Service Type Repository
	8.1.1 Creating service type properties
	8.1.2 Adding a service type
	8.1.3 Managing service types

	8.2 Using Dynamic Property Values
	8.2.1 Dynamic property values
	8.2.2 Exporting a dynamic property value
	8.2.3 Using a dynamic property value
	8.2.4 Allowing dynamic properties

	8.3 Managing Links Between Traders
	8.3.1 Linked traders
	8.3.2 Setting policies for linked traders
	8.3.3 Adding links
	8.3.4 Removing links
	8.3.5 Creating lists of links

	9. Trader Service Console
	9.1 Starting the Trader Console
	9.1.1 How to start the console

	9.2 Main Window
	9.2.1 GUI appearance
	9.2.2 Window elements
	9.2.3 The Toolbar
	9.2.4 Terms used in Trader Console

	9.3 The Trader Console Menus
	9.3.1 The Console menu
	9.3.2 The Edit menu
	9.3.3 Using the cut, copy and paste commands
	9.3.4 Using the Clone and Modify commands
	9.3.5 The View menu
	9.3.6 The Insert menu
	9.3.7 The Tools menu

	9.4 Managing Service Types
	9.4.1 IDL type support
	9.4.2 Adding a new service type
	9.4.3 Removing a service type
	9.4.4 Masking a service type
	9.4.5 Unmasking a service type

	9.5 Managing Offers
	9.5.1 Adding a new offer
	9.5.2 Modifying an offer
	9.5.3 Withdrawing offers

	9.6 Managing Proxy Offers
	9.6.1 Adding a new proxy offer
	9.6.2 Withdrawing proxy offers

	9.7 Managing Links
	9.7.1 Adding a new link
	9.7.2 Modifying a link
	9.7.3 Removing a link

	9.8 Configuring the Trader Attributes
	9.8.1 Configuring attributes
	9.8.2 Support Attributes
	Supports modifiable properties
	Supports dynamic properties
	Supports proxy offers
	Service type repository

	9.8.3 Import Attributes
	Import attributes
	Search cardinality
	Match cardinality
	Return cardinality
	Link hop count
	Link follow policy
	Maximum list count

	9.8.4 Link Attributes
	Link attributes
	Maximum link follow policy

	9.9 Admin Attributes
	9.9.1 Admin attributes
	9.9.2 Request identifier stem

	9.10 Executing Queries
	9.10.1 Executing a query

	9.11 Connecting to a New Trader

	10. The OMG Constraint Language
	10.1 Introduction
	10.1.1 Statement

	10.2 Language Basics
	10.2.1 Basic elements
	10.2.2 Precedence relations
	10.2.3 Legal property value types
	10.2.4 Operator restrictions
	10.2.5 Representation of literals

	10.3 The Constraint Language BNF
	10.3.1 The constraint language proper in terms of lexical tokens
	10.3.2 “BNF” for lexical tokens up to character set issues
	10.3.3 Character set issues

	11. Glossary
	12. Notices
	12.1 Copyright
	12.2 Trademarks
	12.3 Examples
	12.4 License agreement
	12.5 Corporate information
	12.6 Contacting Technical Support
	12.7 Country and Toll-free telephone number

