
Orbix Tutorial C++
V6.3.14

Table of Contents

4Getting Started with Orbix

5Creating a Configuration Domain

5Prerequisites

5Licensing

6Run itconfigure

6Choose the domain type

7Specify service startup options

8Specify security settings

9Specify fault tolerance settings

10Select services

11Confirm choices

12Finish configuration

14Setting the Orbix Environment

14Prerequisites

14Setting the domain

16Hello World Example

17Development from the Command Line

17Define the IDL interface

18Generate starting point code

19Complete the server program

19Complete the client program

20Build the demonstration

21Run the demonstration

23Notices

23Copyright

23Trademarks

23Examples

23License agreement

24Corporate information

Table of Contents

- 2/25 -

24Contacting Technical Support

24Country and Toll-free telephone number

Table of Contents

- 3/25 -

1. Getting Started with Orbix

You can use the CORBA Code Generation Toolkit to develop an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client and server application
code, including makefiles. You then complete the distributed application by filling in the missing
business logic.

1. Getting Started with Orbix

- 4/25 -

2. Creating a Configuration Domain

This section describes how to create a simple configuration domain, simple, which is required for
running basic demonstrations. This domain deploys a minimal set of Orbix services.

2.1 Prerequisites
Before creating a configuration domain, the following prerequisites must be satisfied:

Orbix is installed

Some basic system variables are set up (in particular, the IT_PRODUCT_DIR , IT_LICENSE_FILE , and
PATH variables). For more details, see the Installation Guide.

2.1.1 Licensing
The location of the license file, licenses.txt , is specified by the IT_LICENSE_FILE system variable. If this
system variable is not already set in your environment, you can set it now.

Steps
To create a configuration domain, simple, perform the following steps:

Run itconfigure .

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

Finish configuration.

• •

• •

1.

2.

3.

4.

5.

6.

7.

8.

2. Creating a Configuration Domain

- 5/25 -

2.1.2 Run itconfigure
To begin creating a new configuration domain, enter itconfigure at a command prompt. An Orbix
Configuration Welcome dialog box appears:

Select Create a new domain and click OK.

2.1.3 Choose the domain type
A Domain Type window appears:

2.1.2 Run itconfigure

- 6/25 -

In the Configuration Domain Name text field, type simple. Under Configuration Domain Type, select
the Select Services radiobutton.

Click Next to continue.

2.1.4 Specify service startup options
A Service Startup window appears:

2.1.4 Specify service startup options

- 7/25 -

You can leave the settings in this Window at their defaults.

Click Next to continue.

2.1.5 Specify security settings
A Security window appears:

2.1.5 Specify security settings

- 8/25 -

You can leave the settings in this Window at their defaults (no security).

Click Next to continue.

2.1.6 Specify fault tolerance settings
A Fault Tolerance window appears

2.1.6 Specify fault tolerance settings

- 9/25 -

You can leave the settings in this Window at their defaults.

Click Next to continue.

2.1.7 Select services
A Select Services window appears:

2.1.7 Select services

- 10/25 -

In the Select Services window, select the following services and components for inclusion in the
configuration domain: Location, Node daemon, Management, CORBA Interface Repository, CORBA
Naming, and demos.

Click Next to continue.

2.1.8 Confirm choices
You now have the opportunity to review the configuration settings in the Confirm Choices window:

2.1.8 Confirm choices

- 11/25 -

If necessary, you can use the Back button to make corrections.

Click Next to create the configuration domain and progress to the next window.

2.1.9 Finish configuration
The itconfigure utility now creates and deploys the simple configuration domain, writing files into the
<OrbixInstallDir>/etc/bin , <OrbixInstallDir>/etc/domain , <OrbixInstallDir>/etc/log , and
<OrbixInstallDir>/var directories.

If the configuration domain is created successfully, you should see a Summary window with a message
similar to this:

2.1.9 Finish configuration

- 12/25 -

Click Finish to quit the itconfigure utility.

2.1.9 Finish configuration

- 13/25 -

3. Setting the Orbix Environment

3.1 Prerequisites
Before proceeding with the demonstration in this section you need to ensure:

The CORBA developer’s kit is installed on your host.

Orbix is configured to run on your host platform.

Your configuration domain is set (see Setting the domain).

The Administrator’s Guide contains more information on Orbix configuration, and details of Orbix
command line utilities.

OS/390, both native and UNIX system services, do not support the code generation toolkit and
distributed genies. For information about building applications in a native OS/390 environment, see
the readme files and JCL that are supplied in the DEMO data sets of your iPortal OS/390 Server
product installation.

3.2 Setting the domain
The scripts that set the Orbix environment are associated with a particular domain, which is the basic
unit of Orbix configuration.

See the Installation Guide and the Administrator’s Guide for further details on configuring your
environment.

To set the Orbix environment associated with the <domain-name> domain, enter:

Windows:

>config-dir\etc\bin\<domain-name>_env.bat

UNIX:

% . <config-dir>/etc/bin/<domain-name>_env

• •

• •

• •

Note

3. Setting the Orbix Environment

- 14/25 -

<config-dir> is the root directory where the Application Server Platform stores its configuration
information. You specify this directory while configuring your domain. <domain-name> is the name of a
configuration domain.

3.2 Setting the domain

- 15/25 -

4. Hello World Example

This section shows how to create, build, and run a complete client/system server demonstration with
the help of the CORBA code generation toolkit. The architecture of this example is shown here:

The client and server applications communicate with each other using the Internet Inter-ORB Protocol
(IIOP), which sits on top of TCP/IP. When a client invokes a remote operation, a request message is sent
from the client to the server. When the operation returns, a reply message containing its return values is
sent back to the client. This completes a single remote CORBA invocation.

All interaction between the client and server is mediated via a set of IDL declarations. The IDL for the
Hello World! application is:

The IDL declares a single Hello interface, which exposes a single operation getGreeting() . This
declaration provides a language neutral interface to CORBA objects of type Hello .

The concrete implementation of the Hello CORBA object is written in C++ and is provided by the server
application. The server could create multiple instances of Hello objects if required. However, the
generated code generates only one Hello object.

The client application has to locate the Hello object. It does this by reading a stringified object
reference from the file Hello.ref . There is one operation getGreeting() defined on the Hello interface.
The client invokes this operation and exits.

//IDL
interface Hello {
string getGreeting();
};

4. Hello World Example

- 16/25 -

5. Development from the Command Line

Starting point code for CORBA client and server applications can also be generated using the idlgen
command line utility.

The idlgen utility can be used on Windows and UNIX platforms.

You implement the Hello World! application with the following steps:

Define the IDL interface, Hello .

Generate starting point code.

Complete the server program by implementing the single IDL getGreeting() operation.

Complete the client program by inserting a line of code to invoke the getGreeting() operation.

Build the demonstration.

Run the demonstration.

5.1 Define the IDL interface
Create the IDL file for the Hello World! application. First of all, make a directory to hold the example
code:

Windows:

> mkdir C:\\OCGT\\HelloExample

UNIX:

% mkdir -p OCGT/HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or OCGT/HelloExample/hello.idl (UNIX) using
a text editor.

Enter the following text into the file hello.idl :

1.

2.

3.

4.

5.

6.

5. Development from the Command Line

- 17/25 -

This interface mediates the interaction between the client and the server halves of the distributed
application.

5.2 Generate starting point code
Generate files for the server and client application using the CORBA Code Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample (UNIX) enter the following
command:

idlgen cpp_poa_genie.tcl -all hello.idl

This command logs the following output to the screen while it is generating the files:

You can edit the following files to customize client and server applications:

Client:

client.cxx

Server:

//IDL
interface Hello {

string getGreeting();
};

hello.idl:
cpp_poa_genie.tcl: creating it_servant_base_overrides.h
cpp_poa_genie.tcl: creating it_servant_base_overrides.cxx
cpp_poa_genie.tcl: creating HelloImpl.h
cpp_poa_genie.tcl: creating HelloImpl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs.cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs.cxx
cpp_poa_genie.tcl: creating it_random_funcs.h
cpp_poa_genie.tcl: creating it_random_funcs.cxx
cpp_poa_genie.tcl: creating Makefile

5.2 Generate starting point code

- 18/25 -

server.cxx HelloImpl.h HelloImpl.cxx

5.3 Complete the server program
Complete the implementation class, HelloImpl , by providing the definition of the
HelloImpl::getGreeting() function. This C++ function provides the concrete realization of the
Hello::getGreeting() IDL operation.

Edit the HelloImpl.cxx file, and delete most of the generated boilerplate code occupying the body of the
HelloImpl::getGreeting() function. Replace it with the line of code starting with _result = below:

The function CORBA::string_dup() allocates a copy of the "Hello World!" string on the free store. It would
be an error to return a string literal directly from the CORBA operation because the ORB automatically
deletes the return value after the function has completed. It would also be an error to create a copy of
the string using the C++ new operator.

5.4 Complete the client program
Complete the implementation of the client main() function in the client.cxx file. You must add a couple
of lines of code to make a remote invocation of the getGreeting() operation on the Hello object.

Edit the client.cxx file and search for the line where the call_Hello_getGreeting() function is called.
Delete this line and replace it with the last two lines of code below (CORBA ... and cout ...):

//C++
//File ’HelloImpl.cxx’
...
char *
HelloImpl::getGreeting() throw(
CORBA::SystemException
){
char * _result;
_result = CORBA::string_dup("Hello World!");
return _result;
} ...

5.3 Complete the server program

- 19/25 -

The object reference Hello1 refers to an instance of a Hello object in the server application. It is already
initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1 object reference. The ORB
automatically establishes a network connection and sends packets across the network to invoke the
HelloImpl::getGreeting() function in the server application.

The returned string is put into a C++ object, strV , of the type CORBA::String_var . The destructor of this
object will delete the returned string so that there is no memory leak in the above code.

5.5 Build the demonstration
The Makefile generated by the code generation toolkit has a complete set of rules for building both the
client and server applications.

To build the client and server complete the following steps:

Open a command line window.

Go to the ../OCGT/HelloExample directory.

Enter:

Windows:

> nmake

UNIX:

% **make -e**

//C++
//File: ‘client.cxx’
...
if (CORBA::is_nil(Hello1))
{
cerr << "Could not narrow reference to interface "
<< "Hello" << endl;
}
else
{
CORBA::String_var strV = Hello1->getGreeting();
cout << "Greeting is: " << strV << endl;
}
...

1. 1.

2. 2.

3. 3.

5.5 Build the demonstration

- 20/25 -

5.6 Run the demonstration
Run the application as follows:

Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services need to run for this
demonstration. Go to step 2.

If you have configured Orbix to use configuration repository based configuration, start the basic
Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:

start_<domain-name>_services

Where <domain-name> is the name of the configuration domain.

Set the Application Server Platform’s environment:

> <domain-name>_env*

Run the server program.

Open a DOS prompt, or xterm window (UNIX). From the C:\OCGT\HelloExample directory enter the
name of the executable file, server.exe (Windows) or server (UNIX). The server outputs the following
lines to the screen:

The server performs the following steps when it is launched:

It instantiates and activates a single Hello CORBA object.

The stringified object reference for the Hello object is written to the local Hello.ref file.

The server opens an IP port and begins listening on the port for connection attempts by CORBA
clients.

Run the client program.

Open a new DOS prompt, or xterm window (UNIX). From the C:\OCGT\HelloExample directory enter the
name of the executable file, client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

1. 1.

2. 2.

3. 3.

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

• •

• •

• •

4. 4.

5.6 Run the demonstration

- 21/25 -

The client performs the following steps when it is run:

It reads the stringified object reference for the Hello object from the Hello.ref file.

It converts the stringified object reference into an object reference.

It calls the remote Hello::getGreeting() operation by invoking on the object reference. This causes a
connection to be established with the server and the remote invocation to be performed.

When you are finished, terminate all processes:

Shut down the server by typing Ctrl-C in the window where it is running.

Stop the Orbix services (if they are running):

From a DOS prompt in Windows, or xterm in UNIX, enter:

stop_<domain-name>_services

The passing of the object reference from the server to the client in this way is suitable only for simple
demonstrations. Realistic server applications use the CORBA naming service to export their object
references instead.

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

• •

• •

• •

5. 5.

6. 6.

5.6 Run the demonstration

- 22/25 -

6. Notices

6.1 Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

6.2 Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

6.3 Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

6.4 License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

6. Notices

- 23/25 -

http://www.rocketsoftware.com/about/legal

6.5 Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

6.6 Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

6.7 Country and Toll-free telephone number

6.5 Corporate information

- 24/25 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

6.7 Country and Toll-free telephone number

- 25/25 -

	Orbix Tutorial C++
	V6.3.14

	1. Getting Started with Orbix
	2. Creating a Configuration Domain
	2.1 Prerequisites
	2.1.1 Licensing
	Steps

	2.1.2 Run itconfigure
	2.1.3 Choose the domain type
	2.1.4 Specify service startup options
	2.1.5 Specify security settings
	2.1.6 Specify fault tolerance settings
	2.1.7 Select services
	2.1.8 Confirm choices
	2.1.9 Finish configuration

	3. Setting the Orbix Environment
	3.1 Prerequisites
	3.2 Setting the domain

	4. Hello World Example
	5. Development from the Command Line
	5.1 Define the IDL interface
	5.2 Generate starting point code
	5.3 Complete the server program
	5.4 Complete the client program
	5.5 Build the demonstration
	5.6 Run the demonstration

	6. Notices
	6.1 Copyright
	6.2 Trademarks
	6.3 Examples
	6.4 License agreement
	6.5 Corporate information
	6.6 Contacting Technical Support
	6.7 Country and Toll-free telephone number

