
Micro Focus
VisiBroker 8.5.4

Gatekeeper Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries. All
other marks are the property of their respective owners.

2017-01-25

VisiBroker GateKeeper Guide iii

Contents

Introduction to VisiBroker... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation conventions.. 1

Platform conventions... 2
Contacting Micro Focus .. 2

Further Information and Product Support ... 2
Information We Need .. 3
Contact information .. 3

Introduction to GateKeeper... 5
What is GateKeeper? ... 5
GateKeeper as a Gateway or Proxy.. 5
Additional capabilities of GateKeeper ... 6

Primary Use of GateKeeper .. 6
Installing GateKeeper .. 6
Starting GateKeeper.. 6

Starting GateKeeper from the command line .. 7
Command line options... 7

Running GateKeeper as an NT service.. 8
Removing GateKeeper as an NT service ... 8

Running GateKeeper as a servlet in a Web Server ... 8
Managing GateKeeper.. 8

Configuring GateKeeper and internetworking devices 9
Where to deploy GateKeeper .. 9

Client and server on the same network.. 9
Client and server on adjacent networks ... 10
Multiple networks between client and server... 14

Configuring a multi-homed host .. 19
Enable IP-forwarding... 19
Routing table ... 19

Configuring the firewall.. 21
Using Network Address Translation (NAT) ... 22
Configuring GateKeeper ... 22

Listener ports... 22
Administrative service ... 23
Enabling callbacks (VisiBroker 3.x style) .. 23
Enabling pass-through connections ... 23
Enabling the location service .. 24

Specifying the Smart Agent (osagent) ... 24
Specifying the Object Activation Daemon (OAD).. 24
Configuring GateKeeper server engines.. 24
Security services .. 25

SSL transport identity and trustpoint... 25
Installing SSL identity using wallet properties 25
Installing SSL identity on GateKeeper using certificate login 26
Setting peerAuthenticationMode ... 26

Applet and Java webstart ... 27
VisiBroker settings on a typical applet client 27
VisiBroker application deployed as a Java webstart.............................. 27

Configuring user programs.. 29
Using objects behind firewalls ... 29

iv Vis iBroker GateKeeper Guide

Programming a single POA ...29
Configuring the firewall policy for all POAs associated with a server................30
Loading a firewall package at runtime ..31

Configuring client properties ...31
Specify always proxy on a client..32
Specify HTTP tunneling on a client ...32
Specify secure connections on a client..33
Specify pass-through connections on a client ..33
Specifying the client bid order...34
Specifying a client callback listener port (for VisiBroker 3.x style)34

Configuring server properties ..34
Specifying the listener port of the server ..34

Random listener port ...34
Specific listener port..34
Port translation (NAT) ..35
Disabling the IIOP port ..35

Specifying communication paths to the server...35
Specify the component of a proxy server..36
Specify the component of a TCP firewall with NAT................................36

Advanced features ...39
Chaining of GateKeepers ..39

Static chaining of GateKeepers..39
Dynamic chaining of GateKeepers..39

Callbacks ...40
Callbacks without GateKeeper ...40
Callbacks without GateKeeper using bidirectional GIOP.................................41
Callback with GateKeeper's bidirectional support ...41

Bidirectional connection example ..42
Security considerations..43

Access control...44
Custom-designed access control in GateKeeper ...44

Load balancing and fault tolerance...46
Load balancing ...46
Custom-designed load balancing in GateKeeper...47
Fault tolerance..47

Scalability and performance guidelines ...48
GateKeeper performance tuning ..48

Bidding mechanism ...48
Cache management ..49
Message marshaling ..49
Thread management ...49
Connection management ...49

Impact of asynchronized invocation of GateKeeper50
GateKeeper performance properties ...50

Connection settings ...50
Thread related settings ..50
GateKeeper modes ..51
Call types...51

GateKeeper and SSL ..51
SSL connections to GateKeeper...52
SSL for forward and bidirectional calls..52

Enabling the Security Service in GateKeeper ...53
Enabling access to the Naming Service through GateKeeper57

Troubleshooting GateKeeper ...59
Preparation for troubleshooting ...59

VisiBroker GateKeeper Guide v

Getting debugging information ... 59
Starting GateKeeper in debugging mode .. 61
Environment settings .. 62
Tools for troubleshooting.. 63
Getting information about the computer network .. 63

Essential checks ... 65
Check the Smart Agent.. 65
Check the property files... 65
Check the routing table ... 65
Check pass-through connections... 66
Check the Java policy .. 66
Check SSL ... 66
Check the IOR files ... 66
Check firewall settings... 66

Common errors and FAQs .. 67
Proxy servers and GateKeeper .. 67

Appendix
GateKeeper properties ... 69

General properties .. 69
Exterior server engine ... 70

ex-hiop server connection manager (SCM) ... 71
ex-iiop server connection manager (SCM) .. 72
ex-hiops server connection manager (SCM).. 73
ex-ssl server connection manager (SCM) ... 75

Interior server engine.. 76
in-iiop server connection manager (SCM)... 77
in-ssl server connection manager (SCM) .. 78

Administration .. 79
Access control .. 80
VisiBroker 3.x style callback ... 81
Performance and load balancing.. 83
Support for bidirectional communications ... 84
Support for pass-through connections.. 85
Security services (SSL).. 86
Location services (Smart Agent) ... 86
Backward compatibility with VisiBroker 4.x and below.. 87
Server's properties for firewall specifications... 88
Miscellaneous ORB properties ... 89

Appendix
GateKeeper deployment scenarios ... 91

TCP firewall (without GateKeeper) ... 91
GateKeeper deployment... 99
GateKeeper with server-side firewall .. 105

Firewall in front of GateKeeper ... 105
Firewall in front and behind of GateKeeper ... 108

GateKeeper with client-side firewall ... 112
GateKeeper load balancing and fault-tolerance.. 113
GateKeeper chaining ... 116
Using VisiBroker in a multiple firewall/subnet environment 119
Firewall and Smart Agent ... 121
Using the Smart Agent with a firewall .. 122

If Smart Agent fails... 123
Client behavior for using the Smart Agent .. 123
Using GateKeeper with other CORBA services ... 123
Configuring GateKeeper with an HTTP proxy server.. 124

vi Vis iBroker GateKeeper Guide

Additional server engines in GateKeeper ... 124
Additional listeners or server connection managers in GateKeeper........................ 125
GateKeeper stress/load metrics ... 125
Deploying GateKeeper as a servlet... 125

Building the example ... 127
Running this example .. 128
web.xml... 129
Client.properties ... 131

Index ...133

VisiBroker GateKeeper Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enables you to build, deploy,
and manage distributed enterprise applications in your corporate
environment. These applications provide dynamic content by using JSP,
servlets, and Enterprise Java Bean (EJB) technologies.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows

• Choose Start > Programs > VisiBroker > Help Topics

• or, open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then enter the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for
italics Used for new terms and chapter or section titles.
bold italics Used for book titles.

2 VisiBroker GateKeeper Guide

Contact ing Micro Focus

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

computer Information that the user or application provides, sample
command lines and code.

bold computer In text, bold indicates information the user types in. In code
samples, bold highlights important statements.

[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

Convention Used for

http://www.microfocus.com

VisiBroker GateKeeper Guide 3

Contact ing Micro Focus

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (VisiBroker trial software)

• http://supportline.microfocus.com/
xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/
websync/productupdatessearch.aspx (updated VisiBroker files and other
software)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
http://supportline.microfocus.com/xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/websync/productupdatessearch.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

4 VisiBroker GateKeeper Guide

Contact ing Micro Focus

VisiBroker GateKeeper Guide 5

Introduction to GateKeeper
This section provides an overview of GateKeeper and describes different
ways to start it.

What is GateKeeper?
GateKeeper is an OMG-CORBA compliant General Inter-ORB Protocol
(GIOP) Proxy Server developed by Micro Focus which enables CORBA clients
and servers to communicate across networks while conforming to security
restrictions imposed by Internet browsers, firewalls, and Java sandbox
security. In effect, GateKeeper serves as a gateway or proxy for clients and
servers when security restrictions prevent clients from communicating with
the servers directly.

GateKeeper is often used when you do not want to expose the server
directly to clients or when a client's access to the server is restricted. In the
latter case, either the client is an unsigned applet or there is an intervening
firewall.

GateKeeper as a Gateway or Proxy
When a distributed system based on the VisiBroker ORB is deployed over
the Internet or an intranet, there are many security restrictions that can
apply to the system, including:

• server-side firewalls preventing clients from accessing certain server
hosts.

• client-side firewalls preventing outgoing connections.

• client-side firewalls prohibiting protocols other than HTTP.

GateKeeper, along with the VisiBroker ORB, provides mechanisms to work
with these restrictions based on the OMG CORBA Firewall specification by
acting as a gateway or proxy between the client and the server. When
certain restrictions prevent the client from connecting directly to the server,
the client can choose to connect to GateKeeper. The client can send
messages to GateKeeper which will forward the messages to the server.

When certain restrictions prevent the server from connecting back to the
client to do callbacks, the server can choose to connect to GateKeeper. The
server can send callback messages to GateKeeper which will forward the
messages to the client.

In short, GateKeeper provides the following features:

• Proxy to overcome firewalls

• Callback enabling

• Location transparency

Java

• HTTP tunneling

6 VisiBroker GateKeeper Guide

Addi t ional capabi l i t ies of GateKeeper

Additional capabilities of GateKeeper
In brief, the additional capabilities of GateKeeper are:

• Java: Acts as a simple Web Server to load Java classes. Java sandbox
security prevents unsigned Java applets from communicating with
servers other than the ones running on the host machine from which the
applets were downloaded. GateKeeper can be configured to overcome
this problem.

• Java: BootStrapping. GateKeeper can run as a servlet inside any Web
Server that supports servlets. This configuration enables IIOP over HTTP
(HIOP) and is useful for Java clients.

• Load Balancing and Fault Tolerance. A master GateKeeper and one or
more slave GateKeepers can be clustered together and viewed as a single
GateKeeper by the clients. This configuration provides the flexibility to
balance the load and allows some degree of fault tolerance.

• Customizable IP-based access control. GateKeeper can be configured to
deny or grant accessibility based on criteria such as operations, signed
by, and so forth.

Note

For more details on GateKeeper configurations, see “Advanced features”

Primary Use of GateKeeper
GateKeeper is primarily used as a proxy to overcome firewall and transport
restrictions. In addition, GateKeeper acts as a Web Server and also
incorporates load balancing and access control. GateKeeper, however,
should never be used like a full-fledged Web Server, a full-fledged load
balancing system, nor a full-fledged access control system. GateKeeper
should instead complement its full-fledged counterparts.

Installing GateKeeper
GateKeeper is shipped as a component of VisiBroker. GateKeeper requires
the following components:

• VisiBroker Smart Agent

• VisiBroker ORB Libraries

• VisiBroker GateKeeper properties file

• VisiBroker Console, for managing GateKeeper

Note

GateKeeper is a stand-alone process. It does not require any of the CORBA
IDL compilers.

Starting GateKeeper
The choice of the directory in which to start GateKeeper is determined by
how it is being used.

• As an IIOP proxy server for a firewall

• As a Web Server to support HIOP

VisiBroker GateKeeper Guide 7

Start ing GateKeeper

• In combination with a separate Web Server to support HIOP for VisiBroker
for Java

If you use GateKeeper as an IIOP proxy, consult your firewall administrator
because the firewall administrator typically is in charge of proxies.

If you use GateKeeper as a complementary Web Server, Micro Focus
recommends that you start GateKeeper in the same directory as the Java
applets' code base. You can either start GateKeeper at the command line or
as a Windows/NT service with the first two features listed above.

If you use GateKeeper in combination with a separate Web Server, you can
start GateKeeper as a servlet in the Web Server.

Starting GateKeeper from the command line
Use the following command to start GateKeeper:

prompt> gatekeeper <options>

Note

Before you can start GateKeeper from the command line, you must first
ensure that your CLASSPATH setting includes servlet.jar in its path. You
can locate servlet.jar under the VisiBroker installation directory:

<install_dir>/lib/

where <install_dir> represents the root directory location in which
VisiBroker is installed, such as: C:\MicroFocus\VisiBroker on Windows.

On Windows, for example, specify CLASSPATH as an environment variable
and include servlet.jar in the search path.

When you start GateKeeper, you will see a start up message followed by a
series of messages indicating which services are being started. An example
of this series of messages follows.

Sun Feb 16 23:43:28 2014: Starting GateKeeper for
VisiBroker ...
Sun Feb 16 23:43:31 2014: Request Forwarding Service is
started.
Sun Feb 16 23:43:31 2014: Administrative Service is
started.
Sun Feb 16 23:43:31 2014: IOR is stored in GateKeeper.ior.
Sun Feb 16 23:43:31 2014: GateKeeper for VisiBroker is
started.

Command line options
When using the gatekeeper command, the following command line options are
allowed:

Option Description
-props file_name Indicates the name of the GateKeeper’s properties

file. You can include the entire path when you
specify the file name. The default location for this
file is the directory where you installed GateKeeper.
The default name for this file is
gatekeeper.properties.

-J-D<Property-
name>=<value>

Specifies a property of GateKeeper at startup.

-h, -help, -usage, -? Displays usage information.
-quiet Specifies for GateKeeper to not generate output.

8 VisiBroker GateKeeper Guide

Managing GateKeeper

Running GateKeeper as an NT service
You can install GateKeeper as an NT service. Before you do so, make sure
that you can run GateKeeper from a DOS prompt on your target NT
platform.

To install GateKeeper as an NT service, type the following command at a
command line, where servicename is the name of the GateKeeper you are
installing.

gatekeeper -install ”servicename”

If you use the -props option to specify a properties file, make sure you
include the full path name of the properties file you specify.

After you've installed GateKeeper as an NT service, you can start it using
the standard Services control panel.

Removing GateKeeper as an NT service
To remove a GateKeeper NT service, use the following syntax at a command prompt:

gatekeeper -remove ”servicename”

Running GateKeeper as a servlet in a Web
Server
GateKeeper can run as a servlet inside any Web server that supports
servlets. GateKeeper is started with a special HIOP listener whose purpose
is to generate the right HIOP component in the GateKeeper’s IOR. The HIOP
component should contain the Web server's host, port and the path to the
GateKeeper servlet. The client will send HIOP requests to the GateKeeper as
specified in the HIOP component. The benefit of this feature is in
deployment and packaging to allow tighter integration with other
components of the system such as a Web server and Partitions.

Generally, there is no significant performance benefit in running
GateKeeper as a servlet under the Web Server because all tunnelled
requests still go through GateKeeper in the same way they do when
GateKeeper is run as a stand-alone process.

Note

If you run GateKeeper as a servlet instead of from the command line, you
will lose some administrative capabilities as well as GateKeeper output
capabilities.

Managing GateKeeper
The VisiBroker Console enables you to set GateKeeper’s properties to meet
the requirements of your networked system. GateKeeper's properties are
kept in a properties file that GateKeeper references at startup.

VisiBroker GateKeeper Guide 9

Configuring GateKeeper and
internetworking devices
This section describes how to configure GateKeeper and internetworking
devices to allow communications between client objects and server objects
across networks, starting with a explanation of where GateKeeper can be
deployed.

Where to deploy GateKeeper
This section describes some basic principles used to identify the correct
location of where to deploy GateKeeper.

Gather the following information:

• client location

• server location and the server's listener port

• networks connecting the client and server

• firewall, router, and gateway configurations in the connecting networks

Find a connecting path between the client and server; the path may cross
multiple networks. To enable the client to contact the server, there must be
a connecting path. Otherwise, the client cannot communicate with the
server.

Client and server on the same network
When the client and server are located on the same network, the client can
always contact the server directly. GateKeeper, however, may still be
required in some circumstances; as in the two cases shown in the following
examples. If GateKeeper is required, deploy GateKeeper on any host in the
same network.

Case 1: Restricted client transport type

Transport types that a client can use to connect to a server can be restricted
using the client side properties. GateKeeper is required when:

• a client always connects through a proxy (vbroker.orb.alwaysProxy)

• a client always use HTTP-tunneling mode (vbroker.orb.alwaysTunnel)

See “Configuring client properties” for details.

Case 2: Java sandbox security

Java sandbox security prevents unsigned Java applets from communicating
with server objects located on servers other than the ones running on the
host from which the applets were downloaded. In this case, GateKeeper is
required as a gateway between the client and server to overcome the
restriction of Java sandbox security.

10 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

Client and server on adjacent networks
When the client and server networks are adjacent to each other, the two
networks are connected using an internetworking device such as a gateway
or router. In some cases, a firewall may exist in either network or both
networks. To simplify the description, we will consider the firewall as part of
the internetworking device. The internetworking device is responsible for
forwarding and routing the messages between the two networks. It can also
block certain messages from crossing the networks; this is the role of a
firewall. The transport types that a client uses to connect to a server can be
restricted using the client's property.

GateKeeper is required when

• a client always connects through a proxy

• a client always uses HTTP-tunneling mode

See “Configuring client properties” for details.

Case 1: Java sandbox security

Java sandbox security prevents unsigned Java applets from communicating
with server objects located on servers other than the ones running on the
host from which the applets were downloaded. In this case, GateKeeper is
required as a gateway between the client and server to overcome the
restriction of Java sandbox security.

The following figure shows the client and server on adjacent networks.

Figure 1 Client and server on adjacent networks

Case 2: Restricted client transport type

For a client's message to reach the server, the internetworking device must
forward the message from the client network to the server network. To find
an appropriate location to deploy GateKeeper, determine the type of
messages that the internetworking device can forward from the client
network to the server network.

VisiBroker GateKeeper Guide 11

Where to deploy GateKeeper

Deployment locations

The following cases illustrate all the possible locations to deploy GateKeeper
for adjacent client and server networks.

Case 1: No GateKeeper required

GateKeeper is not required when the gateway can forward all client
messages from the client network to the server network.

The following diagram shows a client which sends a message of type A to
the server, which listens to type A messages. The gateway forwards the
message (type A) to the server network. The server then receives the
message (type A). Common examples of type A messages are IIOP and
IIOP/SSL.

Figure 2 No GateKeeper required

Case 2: GateKeeper in a server network

The following diagram shows a server that listens to messages of type S.
The gateway blocks messages of type S but can forward messages of type A
from the client network to the server network. If the client sends a message
of type S to the server, it will be blocked by the gateway. Instead, the client
has to send messages of type A so that the gateway can forward the
message to the server network. GateKeeper is required in the server
network to act as a proxy. The client communicates with GateKeeper using
type A message and GateKeeper in turn communicates with the server
using type S message. An example of type A and S is HTTP and IIOP,
respectively. An example for this scenario is HTTP Tunneling mode, where
IIOP packets are not allowed, but HTTP packets are allowed by the
Gateway/Firewall.

Figure 3 GateKeeeper in a server network

12 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

Case 3: GateKeeper in a client network

The server listens to messages of type A but the client can only use
transport type C to communicate with the server. The gateway blocks
messages of type C but forwards messages of type A. A GateKeeper is
needed in the client network. Client communicates with GateKeeper using
transport type C and GateKeeper communicates with the server using
transport type A. The gateway forwards the type A message from the
GateKeeper to the server network. An example of transport type C and
transport type A is HTTP and IIOP, respectively.

Figure 4 GateKeeper in a client network

Case 4: GateKeeper in both networks

The gateway blocks both the messages (type C) sent by clients and the
messages (type S) that the server can listen to. The gateway can forward
another type of message (type A). Therefore, GateKeeper is required in
both client and server networks. The client communicates with GK1 using
message type C. GK1 communicates with GK2 using message type A, which
can be forwarded by the GK2 which in turn communicates with the server
using message type S. An example of message type C is HTTP, message
type A is SSL and message type S is IIOP.

Figure 5 GateKeeper in both networks

VisiBroker GateKeeper Guide 13

Where to deploy GateKeeper

Case 5: GateKeeper in internetworking device (dual-homed)

Installing GateKeeper on a dual-homed host works in a similar way to
deploying GateKeeper on the server network (case 2). The difference is that
GateKeeper always listens to the exterior network for client messages. If a
client located in the interior network needs to bind to a server using the
same GateKeeper, the message must first be forwarded to the exterior
network before it can reach the GateKeeper listener. Examples of type A
and type S messages are HTTP and IIOP, respectively.

Figure 6 GateKeeper in internetworking device

14 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

Multiple networks between client and server
In a more complex environment, multiple networks exist between the client
and the server networks. Each pair of adjacent networks is connected using
an internetworking device.

Figure 7 Multiple networks between client and server.

For illustration purposes, the client network will be numbered as N0. The
network adjacent to the client network will be numbered as N1, the next
adjacent network as N2 and so on until the server network. The server
network will be numbered as Nn in the following discussions. Replace n with
the actual number depending to the network configuration. Also, the
internetworking device between network Nn-1 and Nn is numbered as GWn.

Clients can use different transport types to communicate with servers.
Examples of transport types are IIOP, IIOP/SSL, HTTP and HTTPS. For each

VisiBroker GateKeeper Guide 15

Where to deploy GateKeeper

valid transport type, locate the furthest network that the client message can
reach. The client located in network N0 sends a message to network N0.
GW1 may or may not forward the message to network N1. The message can
reach network N1 if GW1 can forward the message from N0 to N1.
Subsequently, GW2 may or may not forward the message to network N2.
Traverse the networks starting from the client network, then moving
towards the server network. Mark the last network that the message can
reach as Nc. In other words, GWc+1 cannot forward the message to the
network Nc+1.

A server has one or more listener ports. Each port listens to one type of
messages from clients. As an example, a server with an IIOP listener port
and an SSL listener port will use the IIOP port to listen to IIOP messages
and the SSL port to listen to IIOP over SSL messages. For each listener
port, find the furthest network from the server to which a client message
can reach the server. Mark the furthest network as Ns. In other words, a
client located in network Ns is able to send a message to the server.

Note

If callback for VisiBroker 3.x style is required, an additional condition is
required for Nc and Ns. The callback message from the server (from network
Nn) must be able to reach the network Ns. When GateKeeper is used, the
client must be able to set up a callback communication channel to network
Nc.

Case 1: Server can receive messages from the client network, s=0

Assume the server listens to transport type L. Messages of transport type L
from the client network can reach the server network and subsequently the
server.

If the client can send messages using transport type L, then GateKeeper is
not required because client messages of type L can be forwarded to the
server network. For example, the server listens to IIOP and the client can
send IIOP messages. The client's IIOP messages can be forwarded to the
server without being blocked by any firewalls, gateways or routers.

16 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

If the client cannot send messages using transport type L, deploy
GateKeeper on a network within N0 and Nc to proxy client messages of
other transport types (M) to transport type L. For example, the server
listens to IIOP and the client can only communicate using IIOP over HTTP.

VisiBroker GateKeeper Guide 17

Case 2: Client messages can reach the server network, c = n

Client messages of a particular transport type (M) can reach the server
network. GateKeeper is not required if the client transport type is one of the
server listening transport types. For example, the client sends IIOP
messages and the server also listens to IIOP.

If the server does not listen to the client's message transport type,
GateKeeper is required in any network within Ns and Nn. GateKeeper acts as
a proxy to relay client messages of type M to one of the server listener
types (L). For example, M (client message transport type) is IIOP over HTTP
and L (server listener type) is IIOP.

Case 3: Overlapping of reachable networks by client and to server, c
>= s

When c >= s, the client transport type (M) and the server listener type (L)
must be different. Deploy GateKeeper in any network between Ns and Nc
inclusive. In this case, GateKeeper acts as a proxy to relay client messages
of type M to the server listener port of type L. As an example, the client's
IIOP over HTTP messages can reach the networks up to Nc. IIOP messages
sent from any network between Ns and Nn can reach the server. Deploying
GateKeeper in between Ns and Nc will help bind the client's IIOP over HTTP
messages to the server's IIOP listener port.

18 VisiBroker GateKeeper Guide

Case 4: No overlapping of reachable networks by client and to
server, c < s

Check if GateKeeper chaining is possible or not. See “Chaining of GateKeepers”
for details of GateKeeper chaining. GateKeeper chaining is possible only
when there is another transport type (K) available for the two GateKeepers
to communicate successfully from Nc to Ns. Deploy one GateKeeper on
network (Nc) and another GateKeeper on network Ns. After which, chain
them together. For example, client sends IIOP over HTTP messages, the
server listens to IIOP messages and both GateKeeper instances can use SSL
to communicate with each other. The client connects to GateKeeper 1 using
HTTP, GateKeeper 1 communicates with GateKeeper 2 using SSL, and
GateKeeper 2 communicates with the server using IIOP.

If chaining is not possible, there is no suitable network to deploy
GateKeeper. The internetworking devices connecting networks Nc and Ns
must be reconfigured so that the appropriate type of messages can be
forwarded from Nc to Ns. After which, locate the new Nc and Ns, and refer to
the previous cases accordingly.

VisiBroker GateKeeper Guide 19

Configuring a multi-homed host
A multi-homed host or router connects two or more physical networks. It
has multiple network interfaces; also known as Network Interface Cards
(NIC). Each NIC connects to one network. The multi-homed host allows
communication between the connected networks. The following diagram
shows a network configuration with two multi-homed hosts (Gateway A and
Gateway B).

Figure 8 Multi-home machine network configuration.

To enable a multi-homed host to route data packets from one network to
another correctly, IP-forwarding must be enabled and its routing table must
be configured correctly. Similarly, the routing tables on the hosts must be
configured correctly.

Assuming a client located on Host 1 is trying to communicate with a server
located on Host 3, the client on Host 1 will first send the message to Host 3
on Network 2. Gateway A will accept the message on NIC 2 and route it to
Network 3 using NIC 3. Gateway B will then accept the message on NIC 4
and route it to Network 4 using NIC 5. The message will then reach the
server object on Host 3. This communication can happen only if IP-
forwarding is enabled and all the routing tables are configured correctly.

Enable IP-forwarding
The multi-homed host must enable IP-forwarding to forward data packets
from one network to another. If IP-forwarding is disabled, the multi-homed
host cannot forward or route data packets from one network to another.

Routing table
One entry of the routing table is used for one destination host or network.
Every entry must contain information about the:

• destination host or network

• gateway it should contact

• interface where the data packets should be sent out.

20 VisiBroker GateKeeper Guide

The following tables show examples of routing tables for the sample
network configuration.

A routing table in the multi-homed host stores the routing information
about which NIC to forward data packets to. The gateway information is
used to contact the next gateway in the route. (Refer to the routing table
for Gateway A in the example described above.) Using NIC 3, Gateway A
has to contact Gateway B to route packets to Network 4.

Hosts also have their own routing table. The gateway information is
essential for the host to contact the correct gateway which can route the
packet correctly. (Refer to the routing table for Host 2). Host 2 needs to
contact Gateway A to reach Network 1 and Network 2. But, Network 2 has
to contact Gateway B in order to reach Network 4.

Use the following methods to verify if the routing table is configured
correctly:

• Print the routing table.

• Ping the relevant host.

• Perform a trace route to the relevant host.

Destination Gateway Interface
Network 1 Gateway A NIC 1
Network 2 Gateway A NIC 2
Network 3 Gateway A NIC 3
Network 4 Gateway B NIC 3

Destination Gateway Interface
Network 1 Gateway A Host 1
Network 2 Host 1 Host 1
Network 3 Gateway A Host 1
Network 4 Gateway A Host 1

Destination Gateway Interface
Network 1 Gateway A Host 2
Network 2 Gateway A Host 2
Network 3 Host 2 Host 2
Network 4 Gateway B Host 2

VisiBroker GateKeeper Guide 21

Configuring the firewall
A firewall is a network device that performs filtering of data packets. A
firewall inspects every data packet it receives and then either forwards the
packet or drops it depending on the firewall's security policy.

Case 1: Restricted client transport type

The following figure shows an example of firewall packet filtering.

The firewall's security policy usually inspects the message type, message
source, and message destination to perform filtering. Firewalls are capable
of applying packet-filter rules based on the type of service (example:
stream-oriented or datagram-packets) and the underlying protocol type
(example: IP, ICMP, TCP, UDP). Suppose that the firewall identifies the
communication path as a TCP packet stream, then the firewall can apply the
packet-filtering rule defined in the security policy to decide if the packet
should be allowed or dropped. The TCP packet streams can carry different
kinds of data or payloads (example: HTTP, IIOP, FTP, SSL, etc). In general,
each stream is assigned a unique port number, and it carries only one class
or type of message. For example, IIOP messages can be carried on TCP Port
683 packet stream. Similarly, HTTP messages can be carried on TCP Port
80. The firewall may allow TCP Port 80, but may not allow TCP Port 683
depending on the packet-filtering rules. Using special techniques, a TCP
packet stream can carry more than one type of messages. GateKeeper uses
a special technique, called HTTP Tunnelling, to embed IIOP messages within
HTTP messages to be carried over TCP packet streams.

When a firewall exists in the communication path between the client and
server, the firewall may either forward or drop the data packets sent from
the client to the server. For a successful communication between the client
and server, the firewall must forward the client's messages to the server.
The server can be a user application, GateKeeper, or other VisiBroker
service providers such as the Smart Agent and the Naming Service.
Configure the firewall to forward client's messages sent to the server's
listener port.

22 VisiBroker GateKeeper Guide

Using Network Address Translation (NAT)
A multi-home host, router, and firewall can also perform NAT in addition to
their specialized functions. NAT can translate the source host address,
source port number, destination host address, and destination port number
found in every network packet.

On the client side, the firewall usually translates the source host address.
This method is commonly used to share a limited number of internet IP
addresses.

On the server side, the firewall may translate the destination host address
and/or the destination port number. This hides the real destination host
address from external parties. It provides the flexibility to change the
destination host address without notifying all external parties that must
access the server. This flexibility holds true for the port number as well.

GateKeeper supports only static NAT, it does not support dynamic NAT. In
static NAT, the translation is based on a predefined mapping table in which
every address and port is always translated to a fixed value. In dynamic
NAT, some rules can be set to translate addresses and ports to a range of
values where the exact translated address of the network packet cannot be
pre-determined because it can be any address within a given range.

See “Configuring server properties” for details on how to configure server
objects to use TCP firewall with NAT. Be sure that the NAT translation
mappings are added into the NAT device for successful communication
between client and server objects.

With NAT, the routing tables for all the gateways involved must be
configured to account for any fake network addresses in use. If not, the
data packets having fake destination addresses will not be routed correctly.
In addition, firewalls must be configured to forward messages to any fake
destination host addresses and fake ports used in NAT. If firewalls block the
fake address or fake port, a packet will not reach its destination.

Configuring GateKeeper
The following sections describe how to configure GateKeeper.

Listener ports are the most common parameters that must be configured.
Different firewalls usually do not open the same range of ports for
communications. GateKeeper has many services and some of them must be
enabled before they can be used.

Listener ports
The following properties specify GateKeeper's exterior IIOP and HTTP listener port
numbers. These are the ports on which GateKeeper listens to client requests.

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

If GateKeeper is deployed behind a firewall, external clients can only
contact GateKeeper if the firewall allows forwarding of IIOP or IIOP over
HTTP messages through ports 683 and 8088, respectively. If the firewall
can only allow other port numbers because of security restrictions, the
GateKeeper listener ports must be configured to use the authorized ports on
the firewall.

VisiBroker GateKeeper Guide 23

Administrative service
GateKeeper's administrative service provides the ability for you to use the VisiBroker
Console to manage and configure GateKeeper. The administrative service allows
dynamic configurations of GateKeeper while GateKeeper is active. The following
properties specify the administrative service port numbers; 0 and 9091 are the default
values for IIOP port and HTTP port, respectively. The value 0 tells GateKeeper to pick
a port at random when it starts.

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=0
vbroker.se.iiop_tp.scm.hiop_ts.listener.port=9091

Enabling callbacks (VisiBroker 3.x style)
The callback feature (VisiBroker 3.x style) has been replaced with bi-directional
support in VisiBroker versions 4.x and later. For GateKeeper to support clients that still
use VisiBroker 3.x callbacks, the following properties settings are required:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true

After setting the above properties, GateKeeper activates its interior server
engine to receive callback messages from the server. The listener can be
configured using the in-iiop and in-ssl SCMs. In addition, a callback
listener is activated for a client to establish an additional communication
channel for callback messages. See “VisiBroker 3.x style callback” for details on
specifying the listener port and additional related information. Be sure the
selected ports are reachable from the client and the server by ensuring that
these ports are not blocked by any firewalls.

Enabling pass-through connections
The following property enables pass-through connections in GateKeeper.

vbroker.gatekeeper.enablePassthru=true

If the client requests a pass-through connection, GateKeeper will not
examine any messages that pass between the server and client. When the
above property is set to false, GateKeeper binds the client to the server
using normal (non-pass-through) connections even when the client
requests a pass-through connection. In this case, GateKeeper examines the
exchanged messages for routing and binding purposes.

The following properties are provided to help configure pass-through
connections in GateKeeper:

vbroker.gatekeeper.passthru.blockSize=16384
vbroker.gatekeeper.passthru.connectionTimeout=0
vbroker.gatekeeper.passthru.logLevel=0
vbroker.gatekeeper.passthru.streamTimeout=2000
vbroker.gatekeeper.passthru.inPortMin=1024
vbroker.gatekeeper.passthru.inPortMax=65535
vbroker.gatekeeper.passthru.outPortMin=0
vbroker.gatekeeper.passthru.outPortMax=65535

See “Support for pass-through connections” for more information about the
above properties.

Caution

The pass-through feature heavily taxes the resources of GateKeeper. If you
choose to use this feature, be sure to configure GateKeeper with sufficient
memory and increased sockets.

24 VisiBroker GateKeeper Guide

Enabling the location service
GateKeeper provides a location service for clients, such as applets, that are unable to
communicate directly with the Smart Agent (osagent) because of Java sandbox
security or existing firewalls. The location service lets the clients “bind” to the server
through GateKeeper.

vbroker.gatekeeper.locationService=true

Specifying the Smart Agent (osagent)
GateKeeper uses the Smart Agent to locate server objects. GateKeeper can
automatically locate the Smart Agent if one is located on the same network.
When there is no Smart Agent running on the same network where
GateKeeper is running, the location of the Smart Agent must be specified
explicitly. You can also specify additional Smart Agents running on other
networks.

vbroker.agent.addr=<host>
vbroker.agent.addrfile=<filename>
vbroker.agent.port=<port>

The first property specifies the host IP address of the Smart Agent. The
second property specifies the file that defines a list of hosts running Smart
Agents. The third property specifies the OSAGENT_PORT. The default value
for the first two properties is null, which tells GateKeeper to contact the
Smart Agent running on the same network.

See “Using the Smart Agent” in the VisiBroker Developer's Guide for more
details about Smart Agent settings and other methods of setting Smart
Agent parameters.

Specifying the Object Activation Daemon
(OAD)
The OAD service enables GateKeeper to automatically start servers to which
it needs to bind. In such cases, the server is registered with the OAD
service, but is accessible only through GateKeeper (when an Applet invokes
a server, for example). To use the OAD service, GateKeeper must load the
OAD IOR. The following property tells GateKeeper where to locate the OAD
IOR.

vbroker.oad.iorFile=<OAD IOR>

See Using the Object Activation Daemon in the VisiBroker Developer's
Guide for more information about OAD.

Configuring GateKeeper server engines
GateKeeper contains a few default server engines. Each server engine
contains at least one server connection manager (SCM).

• The exterior server engine enables GateKeeper to bind client objects to
server objects. It contains two default SCMs which are named ex-hiop
and ex-iiop.

• The interior server engine provides callback services and is only available
when callback is enabled. It contains two default SCMs which are named
in-iiop and in-ssl.

• The iiop_tp server engine provides the administrative service. It contains
two default SCMs, which are named hiop_ts and iiop_tp.

VisiBroker GateKeeper Guide 25

See “Exterior server engine”, “Interior server engine” and “Administration” for the
full list of properties for the above SCMs.

Security services
Start GateKeeper with the following properties to enable IIOP/SSL and IIOP
over HTTPS:

vbroker.security.disable=false
vbroker.orb.dynamicLibs=com.borland.security.hiops.Init
vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-hiops

• The vbroker.security.disable=false property enables the required
security packages into the VisiBroker ORB of the GateKeeper.

• The vbroker.orb.dynamicLibs=com.borland.security.hiops.Init
property loads the additional HIOPS package, which allows IIOP
messages over HTTPS; it is loaded separately.

• The vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-
hiops property adds the SCM ex-ssl and ex-hiops into the exterior server
engine.

The unused SCM can be removed from the SCM list so that only required
SCMs are started. However, scm ex-iiop and in-iiop cannot be removed
from the list when they initially exist.

To make sure all communication is encrypted, you can disable the
nonsecure listener ports such as IIOP and HTTP as follows:

vbroker.se.exterior.scm.ex-iiop.listener.type=Disabled-
IIOP
vbroker.se.exterior.scm.ex-hiop.listener.type=Disabled-
IIOP

The IIOP/SSL and HTTPS listeners can be configured using the SCM
properties prefixed with vbroker.se.exterior.scm.ex-hiops and
vbroker.se.exterior.scm.ex-ssl. For a comprehensive list of these SCM
properties, see “Appendix GateKeeper properties”.

SSL transport identity and trustpoint
For SSL, transport identity is optional as SSL negotiation still can make use
of a Diffie Helman key agreement algorithm without someone's public key.

However, without transport identity clients configured with
peerAuthenticationMode require and require_and_trust will not
connect. Additionally, as an SSL server, if GateKeeper itself does not have a
client transport identity, it may not require client transport identities.

Installing SSL identity using wallet properties
The simplest way of installing certificates in GateKeeper is by using the
following wallet properties:

vbroker.security.wallet.type=Directory:<path_to_identities
>
vbroker.security.wallet.identity=<username>
vbroker.security.wallet.password=<password>
vbroker.security.trustpointsRepository=Directory:<path_to_
trustpoints>

26 VisiBroker GateKeeper Guide

Installing SSL identity on GateKeeper using certificate
login
Apart from using simple wallet and trustpoints property sets, SSL identity
can be installed on the GateKeeper during startup by means of credential
acquisitions (login). In the acquisition, the user must answer questions
about files and directories, where the certificates, private key and trusted
root certificates are stored. The password to decrypt the private key will
definitely be asked.

The files and directories asked in the login conversation vary based on the
type of certificate storage. The default storage is determined by JDK
security settings in the following file:

${JAVA_HOME}/jre/lib/security/java.security

Out of the JDK box, jks is set as java keystore (jks):

#
Default keystore type.
#
keystore.type=jks

For PKCS#12 storage, the above can be changed to string pkcs12. This
storage format is only a single file, which contains certificates, trusted
certificates and a private key. Consult the JDK keytool manual for details.

For certificate login, the following needs to be explicitly set on GateKeeper:

vbroker.security.login=true
vbroker.security.login.realms=<realm list>

In the realm list, among other realms, there needs to be
Certificate#CLIENT and/or Certificate#SERVER and/or
Certificate#ALL.

• Certificate#CLIENT is an SSL identity that is used for outgoing SSL
connections,

• Certificate#SERVER is for incoming SSL connections,

• Certificate#ALL can be used for both.

One extreme example is when in the <realm list> there appears all three
realms. In this case, three different sets of SSL identities will be acquired
from the user during GateKeeper startup.

When opening an outgoing SSL connection:

1 Certificate#CLIENT is used first.

2 If no identity is set in Certificate#CLIENT, then Certificate#ALL
will be used.

3 If there is also none set in Certificate#ALL, the outgoing SSL
connection will have no identity.

Similar priority also applies to incoming (server) SSL connection.

The identity that is set using a simple wallet property set will always go into
Certificate#ALL.

Setting peerAuthenticationMode
Use the peerAuthenticationMode policy as usual. Set the property as
follows:

vbroker.security.peerAuthenticationMode=none

VisiBroker GateKeeper Guide 27

Applet and Java webstart
The Java programming language is a powerful tool for the development of
programs that are deployed and run on the fly from one central location.
This becomes a very powerful feature when combined with CORBA, more
specifically with VisiBroker for Java.

Clients code can be downloaded on the fly and installed from a website as
either a Java applet or a Java webstart application utilizing Java Network
Launching Protocol (JNLP).

VisiBroker settings on a typical applet client
If the client is an applet, the following additional property settings are
required:

<applet archive=vbjorb.jar,vbsec.jar,lm.jar,sanct6.jar,
sanctuary.jar,code="ClientApplet.class" width="200"
 height="80">
 <param name="vbroker.security.disabled" value="false">
 <param name="vbroker.orb.dynamicLibs"
 value="com.borland.security.hiops.Init">
...
</applet>

Notes

• All VisiBroker jars do not need to be in the GateKeeper http root directory
(the current directory where you launch GateKeeper).

• The licensing jars lm.jar, sanct6.jar, and sanctuary.jar are
needed only when the applet code creates persistent POAs.

• When VisiSecure functionality is involved, vbsec.jar is needed in the
applet's archive list. The applet parameter that enables it is also needed.
Optionally, when HIOPS functionality is involved, it needs to be loaded
separately using dynamicLibs as above.

VisiBroker application deployed as a Java webstart
A Java webstart application can run without a web browser because it has
its own launcher, which can be launched directly from a command shell on
UNIX or by double-clicking on Windows. This launcher is the default mime
handler for application/x-java-jnlp-file which is associated
automatically when installing JDK/JRE on Windows and by any other means
on UNIX. Therefore, clicking a link on a web page that results in any http
response with that mime will launch the installed Java webstart launcher for
processing the content of that reply. The content is actually an XML
containing information about where to locate the required jars and other
information pertaining to running the application. For example, the required
java security permissions.

For a typical VisiBroker application deployed as a java webstart, see the
gatekeeper bank_jws example.

28 VisiBroker GateKeeper Guide

VisiBroker GateKeeper Guide 29

Configuring user programs
This chapter shows how to configure the user programs (clients and
servers) to use firewalls and GateKeeper. The settings are configured
through the client and server properties. See “Appendix GateKeeper properties”
for information on how to set the properties.

Using objects behind firewalls
You may need to configure both programming and runtime environments so
that objects can work behind firewalls. Configuring firewall policies for a
specific Portable Object Adapter (POA) must be done programmatically.
Setting the same firewall policies globally for all POAs, however, can be
accomplished using a single property setting and does not require source
code modifications.

Programming a single POA
To allow a server to traverse a firewall when you want to configure firewall
policies for a specific POA, you must specify a firewall policy on the POA
where the server is activated. In particular, the following code must be
added to the server. (The following examples use the Bank example as a
basis.)

To configure a single POA programmatically:

1 Create the firewall policy:

Java
org.omg.CORBA.Any fw_policy_value = orb.create_any();
com.inprise.vbroker.firewall.FirewallPolicyValueHelper.
insert(
 fw_policy_value,
com.inprise.vbroker.firewall.EXPORT.value);
org.omg.CORBA.Policy firewall_policy =
orb.create_policy(

com.inprise.vbroker.firewall.FIREWALL_POLICY_TYPE.value,
fw_policy_value);
org.omg.CORBA.Policy[] policies = {
 firewall_policy,
 rootPOA.create_lifespan_policy(LifespanPolicyValue.
PERSISTENT)
};

C++
CORBA::PolicyList policies;
policies.length(2);
policies[(CORBA::ULong)0] = rootPOA-
>create_lifespan_policy
 (PortableServer::PERSISTENT);
CORBA::Any policy_value;
policy_value <<= Firewall::EXPORT;
CORBA::Policy_ptr fpolicy= orb->create_policy

30 VisiBroker GateKeeper Guide

Using objects behind f i rewal ls

 (Firewall::FIREWALL_POLICY_TYPE, policy_value);
policies[(CORBA::ULong)1] = fpolicy;

2 Apply the policy to the POA on which the server will be activated:

Java
POA bankPOA = rootPOA.create_POA(”bank_agent_poa”,
rootPOA.the_POAManager(),
 policies);

C++
PortableServer::POA_var bankPOA = rootPOA-
>create_POA(”bank_agent_poa”,
 poa_manager, policies);

Only the root POA takes the default policy, so it can be used to activate any
server that must be accessed behind a firewall. You must also create
another POA to activate the Account server. Since the Account server
should not be bound by clients directly, you should create the POA as a
transient POA:

Java
 policies = new org.omg.CORBA.Policy[] {
 firewall_policy,

rootPOA.create_lifespan_policy(LifespanPolicyValue.TRANSIE
NT)
};

POA accountPOA = rootPOA.create_POA(
 ”account_agent_poa”, rootPOA.the_POAManager(),
policies);

C++
policies.length(2);
policies[(CORBA::ULong)0] = rootPOA-
>create_lifespan_policy
 (PortableServer::TRANSIENT);
policies[(CORBA::ULong)1] = fpolicy;
PortableServer::POA_var accountPOA = rootPOA-
>create_POA(”account_agent_poa”,
 poa_manager, policies);

Configuring the firewall policy for all POAs
associated with a server
The following property lets you set the firewall policy for all POAs associated
with a server:

-Dvbroker.orb.exportFirewallPath=true

If you specify the exportFirewallPath property, you do not need to add a
firewall policy when creating a POA and therefore, you do not have to
modify the source code.

VisiBroker GateKeeper Guide 31

Conf igur ing c l ient propert ies

Loading a firewall package at runtime
The clients and servers working with GateKeeper must load the firewall
package and its properties at runtime when either a server or a client first
initializes the ORB. This is when the following method is invoked.

Java
org.omg.CORBA.ORB.init(String[] args,java.util.Properties
property);

C++
CORBA::ORB_ptr CORBA::ORB_init(int& argc, char *const
*argv);

Java

The following property causes the firewall package to be loaded into the
VisiBroker for Java ORB. This property is necessary for both the Java client
and Java server in order to use a firewall and GateKeeper:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init

C++

The following property loads the required firewall library:

 vbroker.orb.enableFirewall=true

This property defaults to false. Setting it to true is necessary for both the
C++ client and C++ server when using a firewall with GateKeeper.

Configuring client properties
The method in which a client communicates with a server can be restricted.
In particular, using policies and properties, you can specify whether:

• Clients use a GateKeeper as a proxy for the real server

• Clients communicate to servers through IIOP/SSL

• Java: Clients communicate to servers through the HTTP-tunneled or
HTTPS-tunneled channel

VisiBroker for Java supports an extension for IIOP that is tunneled
through the HTTP protocol, called HIOP. In this mode, the ORB is able to
tunnel only one request at a time. So if there are concurrent threads in
the client making simultaneous requests, the ORB serializes those
requests. Thus the requests coming into the server are also serialized.
The number of simultaneous requests seen in the server will match the
number of ORBs on the client, when client(s) use HTTP tunneling. This is
a limitation of using HTTP tunneling on the client.

• Messages pass between client and server connections through a
GateKeeper entirely unexamined by the GateKeeper (called pass-through
mode)

• Clients choose the preferred transport from those available

The following sections show the various policies and their property settings
for the clients. You can also use different combinations of these policies to
determine how you want your client to communicate with the servers.

32 VisiBroker GateKeeper Guide

Conf igur ing cl ient propert ies

Specify always proxy on a client
The following property setting forces clients to use GateKeeper to proxy
requests to servers.

Client's Properties:

vbroker.orb.alwaysProxy=true

The above property is optional. If you do not set it, the client uses the
server's IOR to determine whether or not the object is hidden behind a
server-side firewall and traverses the firewall accordingly. It is sometimes
better to not set the above property, for example, when a client invokes
both local objects inside the trusted network and remote objects hidden
behind the firewall. Not setting the property enables the client to be more
efficient by invoking the local objects directly without going through
GateKeeper.

Client's Properties:

vbroker.orb.gatekeeper.ior=<IOR>

Clients can also specify the GateKeeper IOR using the above property. This
method is helpful when a client is not able to locate GateKeeper through a
Smart Agent.

Specify HTTP tunneling on a client
In VisiBroker for Java, the following property setting directs clients to
communicate to servers in the HTTP-tunneled channel.

Client's Properties:

vbroker.orb.alwaysTunnel=true

The above setting causes the client applet or application to communicate to
the GateKeeper through IIOP over HTTP and GateKeeper relays the request
to the actual server object through IIOP. Replies from the server object to
GateKeeper are communicated through IIOP. GateKeeper then forwards
those replies to the client through IIOP over HTTP.

Applets should set vbroker.orb.alwaysTunnel if the client will be
performing HTTP tunneling. Applet clients must set the property
vbroker.orb.gatekeeper.ior to get the GateKeeper's IOR using URL
naming or using a stringified IOR. In addition, the applet clients must not
set the vbroker.locator.ior property.

Tunneling has certain limitations:

• The HTTP protocol limits requests from being multiplexed on the same
connection. The ORB is able to tunnel only one request at a time. So if
there are concurrent threads in the client making simultaneous requests,
the ORB serializes those requests. Thus, the requests coming into the
server are also serialized.

The number of simultaneous requests seen in the server will match the
number of ORBs on the client, when client(s) use HTTP tunneling. This is
a limitation of using HTTP tunneling on the client.

The above setting causes the client applet or application to communicate
to the GateKeeper through IIOP over HTTP and GateKeeper relays the
request to the actual server object through IIOP. Replies from the server
object to GateKeeper are communicated through IIOP. GateKeeper then
forwards those replies to the client through IIOP over HTTP.

• You cannot use callbacks with HTTP tunneling.

VisiBroker GateKeeper Guide 33

Conf igur ing c l ient propert ies

Caution

HTTP tunneling may not work consistently with various types of proxy
servers because of differences that may exist in the implementation of HTTP
proxy servers. See the VisiBroker GateKeeper FAQ included in your
VisiBroker installation for more information. You can find this at:

<install_dir>\doc\faqs\VisiGateKeeperFAQ.html

Specify secure connections on a client
Client's Properties:

vbroker.orb.alwaysSecure=true

Clients talk to servers through IIOP/SSL or IIOP over HTTPS.

Client's Properties:

vbroker.orb.alwaysSecure=true
vbroker.orb.alwaysTunnel=true

Clients only talk to servers using IIOP over HTTPS.

Specify pass-through connections on a client
In this type of connection, GateKeeper does not terminate connections or
interpret messages. This type of connection is useful when GateKeeper does
not have SSL or the associated certificates to establish trust with the client.
In such cases, the client and server negotiate their SSL connection without
going through GateKeeper. Therefore, GateKeeper does not interpret
messages passed between the client and the server.

Client's Properties:

vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true

• The vbroker.orb.proxyPassthru property sets the value of the ORB-
level PROXY_MODE_POLICY property. If set to true, all objects using a
proxy on the client will request pass-through connections. You can also
set the PROXY_MODE_POLICY on specific objects so that only those
particular objects request pass-through connections.

• The vbroker.gatekeeper.enablePassthru property instructs
GateKeeper to accept pass-through connections. This property is global
to GateKeeper and affects GateKeeper's behavior only.

The vbroker.orb.proxyPassthru property tells the client to attempt to
acquire pass-through connections from GateKeeper. GateKeeper, however,
grants pass-through connections only if the
vbroker.gatekeeper.enablePassthru property is set to true. See
“Enabling pass-through connections” for other GateKeeper pass-through
properties.

Disabling pass-through connections

If the vbroker.gatekeeper.enablePassthru property is set to false,
GateKeeper does not allow pass-through connections to be established and
clients can only obtain normal (non-pass-through) connections to the
server. GateKeeper then examines the messages exchanged between the
client and server for routing and binding purposes. The connection will fail if
GateKeeper cannot provide an SSL authentication for an SSL message.

34 VisiBroker GateKeeper Guide

Conf igur ing server propert ies

Specifying the client bid order
Client's Properties

The client's bid order specifies the relative importance for the various
transports used to connect to the server. The transports that appear first
will have higher precedence. The following property setting instructs the
client to try the transport with the higher precedence first, whenever it is
available, in the server's IOR. When a transport fails, the client will try the
next available transport.

vbroker.orb.bidOrder=inprocess:liop:ssl:iiop:proxy:hiop:lo
cator

In the above example, if the IOR contains both LIOP and IIOP profiles, the
client will first try LIOP. Only if LIOP fails will it try IIOP.

Client's Properties

vbroker.orb.bids.critical=inprocess

The critical bid has the highest precedence no matter where it is specified in
the bid order. If there are multiple critical bids, then their relative
importance is determined by the bid order.

Specifying a client callback listener port (for
VisiBroker 3.x style)
The following properties specify the listener port of the client for servers to
establish VisiBroker 3.x style callback connection. The listener type is set to
Callback-IIOP to differentiate it from a normal IIOP listener.

Client's Properties

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port>
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Callback-IIOP

Configuring server properties
Use server properties to construct the server's IOR that is used by clients to
establish communication paths to the server.

Specifying the listener port of the server
The following sections describe the property settings used to specify a
server's listener ports.

Random listener port
The following property has the default value of 0 (zero) which tells the system to pick a
random port number when the server starts.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=0

Specific listener port
The following server property assigns the port on which the server will listen to IIOP
messages from clients.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

VisiBroker GateKeeper Guide 35

Conf igur ing server propert ies

Note

All clients on the same network can establish communication with a server
using the port, as specified in the above example, directly. Messages sent
by clients on different networks must be forwarded by the gateway or
router. If a server allows connections by clients outside the subnet, the
router or firewall should be configured to allow messages for the specified
port. Conversely, if the server only allows connections from clients on the
same subnet, the router or firewall should be configured to block messages
for the specified port to prevent unauthorized access by foreign client
objects.

Port translation (NAT)
If there is a port translation using Network Address Translation (NAT) from a fake port
(also called the proxy port) to the server's real IIOP listener port, use the following
property settings to publish the fake port in the server's IOR.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<real_port>
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<fake_po
rt>

The above settings tell the server to listen to the real port while clients send
messages to the fake port. The default value of the proxyPort property is
0 (zero), which means no proxy port is used.

Note

A better method of specifying NAT is to use the TCP firewall properties
described in the following section.

Disabling the IIOP port
Setting the following property will disable the server's IIOP listener port which forces
the server to allow client requests on a specified port, such as a secured port like IIOP/
SSL. The server will not allow IIOP messages on the published IIOP port.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

Specifying communication paths to the server
There may be multiple paths for a client's message to reach the server or
different paths for messages originating from different clients to reach the
same server. All these possible paths have to be configured in the server's
properties so that the generated IOR has the information needed for clients
to send messages to the server.

The following diagram illustrates two paths of firewall configurations and
shows the communication paths to the server. Configuration X has a chain
of two GateKeepers. Configuration Y has a single TCP firewall.

36 VisiBroker GateKeeper Guide

Conf igur ing server propert ies

Figure 9 Communication paths to the server

To configure the server for the configurations shown in the diagram above,
enter the following information in the server's properties file:

1 Declare all firewall paths:

vbroker.se.iiop_tp.firewallPaths=x,y

2 Identify the components for each path:

vbroker.firewall-path.x=a,b
vbroker.firewall-path.y=c

The following sections describe how to specify the firewall components.

Specify the component of a proxy server
The following example shows an IIOP proxy across a firewall.

Server's Property:

vbroker.firewall-path.x=a,b
vbroker.firewall.a.type=PROXY
vbroker.firewall.a.ior=http://www.inprise.com/GK/
gatekeeper.ior
vbroker.firewall.b.type=PROXY
vbroker.firewall.b.ior=IOR:<GateKeeper's stringified ior>

The first property defines the firewall components found in the path named
x. The second and fourth properties specify the types of the component
named a and b, respectively. Both component types are defined as PROXY,
which identifies GateKeeper as an IIOP proxy server to forward all IIOP
requests. The third property defines the IOR of GateKeeper a using URL
naming. The fifth property defines the IOR of GateKeeper b using a
stringified IOR.

Specify the component of a TCP firewall with NAT
Clients' messages may have to cross one or more TCP firewalls in order to reach the
server. The TCP firewall components have to be defined when NAT is performed in the
TCP firewall. If the TCP firewall does not perform NAT, the component can be ignored.

The following example shows how to use a router or firewall to forward an
IIOP message at the TCP level.

Server's Property:

vbroker.firewall-path.y=c
vbroker.firewall.c.type=TCP
vbroker.firewall.c.host=<fake_host>
vbroker.firewall.c.iiop_port=<IIOP fake port>
vbroker.firewall.c.ssl_port=<SSL fake port>
vbroker.firewall.c.hiop_port=<HTTP fake port>

VisiBroker GateKeeper Guide 37

The first property defines the firewall components found in the path named
y. The second property defines the type of component named c as TCP,
which provides a predefined port to forward all IIOP, SSL and IIOP over
HTTP messages on a router or other network device. The third property
defines the fake host of the server. The remaining last three properties
define the fake port for the following message types: IIOP, SSL and HTTP.

The TCP firewall specified as component “c” in the above example is
expected to perform host and port translation (NAT). The TCP firewall must
be configured to translate the fake host to the server's real host and
translate all the fake ports to the server's real listener ports.

Figure 10 TCP firewall with NAT

38 VisiBroker GateKeeper Guide

VisiBroker GateKeeper Guide 39

Advanced features
This section describes advanced features such as chaining GateKeepers,
callbacks, access control, load balancing, fault tolerance and SSL. It also
describes the factors that can improve the performance of GateKeeper.

Chaining of GateKeepers
GateKeepers can be chained together to provide paths through the
firewalls. There are two types of chaining

• static chaining

• dynamic chaining.

Static chaining of GateKeepers
In static chaining, the preceding GateKeeper is configured to forward
messages to the next GateKeeper. The communication path is fixed and is
therefore static.

Figure 11 Static chaining of GateKeepers

In the figure above, two chained GateKeepers are required to communicate
across a firewall. The client applet sends messages to GateKeeper1 which
will forward the messages across the firewall to GateKeeper2. GateKeeper1
is able to forward the message to GateKeeper2 because it has the
Interoperable Object Reference (IOR) of GateKeeper2. The IOR of
GateKeeper2 specifies how to send messages from GateKeeper1 to
GateKeeper2 and thus crosses the firewall.

Dynamic chaining of GateKeepers
In static chaining, the communication paths are specified in the
GateKeeper's IOR. In dynamic chaining, the communication paths are
specified in the server's IOR file. The client, if given the server's IOR file,
can use the information in the server's IOR to select a path. The client tries
the first path and the next if the first path fails, and so forth.

40 VisiBroker GateKeeper Guide

Cal lbacks

Figure 12 Dynamic chaining of GateKeepers

In the figure above, there are two paths from the client to the server. Both
paths require chaining of GateKeepers. The two paths are specified in the
server's IOR that the client reads, the first path is tried and on failure the
second path is tried. The path is chosen dynamically at runtime.

The way to specify the paths to the server is described in “Specifying
communication paths to the server”.

Callbacks
In most implementations, requests are initiated by the clients to which the
servers reply. There are also implementations where information must
arrive at a client that is not in response to a request from the client which
can be implemented by creation of callback objects. Callback objects can be
implemented in the three methods described below.

Callbacks without GateKeeper
The implementation shown in the following figure is applicable to cases
where the client and server can communicate in both directions. In these
cases, there are either no intervening firewalls or the intervening firewalls
do not hinder the communications between the clients and servers.

Figure 13 Using callbacks without GateKeeper

In the above example, the client creates an object, starts the listener,
generates an IOR and sends a request and IOR to the server. The server

VisiBroker GateKeeper Guide 41

Callbacks

calls the client's listeners and creates a callback connection. Subsequently,
all messages to the callback objects will be channeled through the callback
connection.

Callbacks without GateKeeper using
bidirectional GIOP
With bidirectional IIOP, servers use the client-initiated connections to
transmit asynchronous information back to the clients. Servers need not
initiate any connections to the client.

Figure 14 Using callbacks with bidirectional GIOP support without
GateKeeper

In the above figure, the client is able to establish a connection directly to
the server, but the server is unable to establish a separate callback
connection because of an intervening firewall. Therefore, the client and the
server negotiate a bidirectional GIOP connection and share the initial
connection established by the client for IIOP traffic in both directions.

The CORBA specification also adds a new policy to portably control this
feature. For more information about bidirectional communications exclusive
of GateKeeper, see the VisiBroker Developer's Guide.

Callback with GateKeeper's bidirectional
support
With bidirectional IIOP, servers use the client-initiated connections to
transmit asynchronous information back to the clients. Servers need not
initiate any connections to the client. The CORBA specification also adds a
new policy to portably control this feature. For information about
bidirectional communications exclusive of the GateKeeper, see the
VisiBroker for Java Developer's Guide or VisiBroker for C++
Developer's Guide for more information.

42 VisiBroker GateKeeper Guide

Cal lbacks

Figure 15 Callback with GateKeeper's bidirectional support

In the figure above, GateKeeper sits between the client and server and
therefore it acts as a server for the client and as a client for the server. The
Client/GateKeeper and the GateKeeper/Server communication channels can
be set to unidirectional or bidirectional connections.

You can also selectively set the channels to unidirectional or bidirectional. If
the client defines vbroker.orb.enableBiDir=client and the server
defines vbroker.orb.enableBiDir=server, the following table describes
the type of channels for the different values of vbroker.orb.enableBiDir
for GateKeeper.

Bidirectional connection example
An example that demonstrates GateKeeper's support for bidirectional connections is
located in the examples/vbroker/gatekeeper/bank_bidir subdirectory
under the VisiBroker installation.

The Bank BiDir example is similar to the Bank Callback example, except
that in the BiDir example, bidirectional connections are established between
the client, GateKeeper, and server. In other words, in the bidirectional
implementation, the same connection is used for both forward invocations
as well as callbacks.

This example demonstrates how to:

• Configure the client to enable bidirectional connections via the property
file.

• Program the client to create callback objects that can be passed as
arguments to invocations on server objects.

• Configure the server to set up firewall paths containing the server side
inbound firewall via property file. It also demonstrates how to configure
the server so that it can accept bidirectional connections.

• Program the server to export the firewall path in server objects IOR.

• Configure the GateKeeper so that it supports bidirectional connections.

The client

In this example, the client Client.java:

1 Creates a callback object on the POA named callback_poa. (This
callback object will be invoked by the server through the GateKeeper.)

vbroker.orb.enableBiDir= Client GateKeeper GateKeeper Server
client unidirectional bidirectional
server bidirectional unidirectional
both bidirectional bidirectional
none unidirectional unidirectional

VisiBroker GateKeeper Guide 43

Callbacks

2 Binds to the AccountManager object.

3 Sends the object reference of this callback object to the server by
opening a bank account by invoking open() and passing the callback
object as an argument.

4 Queries the Account object reference obtained for the balance, again
passing the callback object (this time it is passed to the balance method).

The server

In the example, the server Server.java:

1 Creates a persistent POA named bank_poa and a transient POA named
account_poa with firewall policy value of EXPORT.

2 Creates an instance of the AccountManager servant.

3 Activates that servant on bank_poa.

4 Starts waiting for client requests.

5 Responds to the requests by invoking a method on the client-initiated
callback object through the GateKeeper.

Security considerations

Caution

Use of bidirectional IIOP may raise significant security issues. In the
absence of other security mechanisms, a malicious client may claim that its
connection is bidirectional for use with any host and port it chooses. In
particular, a client may specify the host and port of security-sensitive
objects not even resident on its host. In the absence of other security
mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated
the connection. Further, the server might gain access to other objects
accessible through the bidirectional connection. This is why the use of a
separate, bidirectional SCM for callback objects is recommended. If there

File name Description
server.
properties

Property file used to configure the bank server. In this
example, the server is configured to accept listen points so
that the connection between the GateKeeper and the server
will be bidirectional. To make the connection unidirectional,
either remove the property vbroker.orb.enableBiDir or
set the value of this property to none. The other properties
in this file are for loading the firewall package and then
setting the firewall path so that server-side objects can be
bound and called by the client.

client.
properties

Property file used to configure the bank client. In this
example, the client is configured to publish its listen points
so that the connection between the client and the
GateKeeper will be bidirectional. To make the connection
unidirectional, either remove the
vbroker.orb.enableBiDir property or set its value to
none. As with the server, the vbroker.orb.dynamicLibs
property is set to load in the necessary firewall library so
that the client request can traverse the GateKeepers.

gatekeeper.
properties

Property file used to configure the GateKeeper. In this
example, the GateKeeper is configured to both publish the
listen points and accept the listen points. Hence, both the
client-GateKeeper and GateKeeper-server connections will
be bidirectional. These connections can be converted into
unidirectional by either removing the
vbroker.orb.enableBiDir property or by setting this property
to the value none.

44 VisiBroker GateKeeper Guide

Access control

are any doubts as to the integrity of the client, it is recommended that
bidirectional IIOP not be used.

For security reasons, a server running VisiBroker for Java will not use
bidirectional IIOP unless explicitly configured to do so. The property
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir gives
you control of bidirectionality on a per-SCM basis. For example, you might
choose to enable bidirectional IIOP only on a server engine that uses SSL to
authenticate the client, and to not make other, regular IIOP connections
available for bidirectional use. (See “Appendix GateKeeper properties” for more
information about how to do this.) In addition, on the client-side, you might
want to enable bidirectional connections only to those servers that do
callbacks outside of the client firewall. To establish a high degree of security
between the client and server, you should use SSL with mutual
authentication (set vbroker.security.peerAuthenticationMode to
REQUIRE_AND_TRUST on both the client and server).

Access control
GateKeeper has a rules-based access controller built into it. This controller
can deny or grant accessibility based on:

• operation

• signed by

• server's host/port

• server's subnet

• client's host/port

• client's subnet

All rules are evaluated in the order in which you specify them. Action is
taken based on the first matched rule. If there is no matched rule, the
default action you specify is taken. See , “Appendix GateKeeper properties” for
the syntax of the rules.

Custom-designed access control in GateKeeper
GateKeeper lets you plug-in custom designed Access Control mechanisms.
The Access Control Manager invokes all Access Controllers specified using
GateKeeper properties. The Access Control Manager uses the following
interface for implementation of an Access Controller:

package com.inprise.vbroker.gatekeeper.security;
public interface AccessController {
 public void init(org.omg.CORBA.ORB orb, String prefix);
}

VisiBroker GateKeeper Guide 45

Access contro l

Access Controllers use the TcpConnectionInfo interface to get more
information about the Client:

 package com.inprise.vbroker.orb;
 public interface TcpConnectionInfo {
 public String getLocalHostName();
 public int getLocalPortNumber();
 public String getHostName();
 public int getPortNumber();
 public long getTotalBytesRead();
 public long getTotalBytesWrote();
 public String name();
 public java.io.InputStream getInputStream();
 public java.io.OutputStream getOutputStream();
 }

The Access Control Manager calls the init method to initialize the Access
Controller. GateKeeper supports the following types of Access Controller
interfaces:

• ObjectAccessController: The isObjectAccessible() method is
invoked when the client requests GateKeeper to set up a proxy channel
(communication path) to the server object. It should return true if the
object is accessible:

package com.inprise.vbroker.gatekeeper.security;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.IOP.ServiceContext;
public interface ObjectAccessController extends
AccessController {
 public boolean isObjectAccessible(
 TcpConnectionInfo clientInfo,
 org.omg.CORBA.Object server,
 ServiceContext[] contexts,
 byte[] principal);
}

• OperationAccessController: The isOperationAccessible() method
is invoked when the client sends requests through the GateKeeper. It
should return true if a given operation is accessible:

package com.inprise.vbroker.gatekeeper.security;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.IOP.ServiceContext;
public interface OperationAccessController extends
AccessController{
 public boolean isOperationAccessible(
 TcpConnectionInfo clientInfo,
 TcpConnectionInfo serverInfo,
 org.omg.CORBA.Object server,
 String operation,
 ServiceContext[] services);}

You can program an access controller (for example, myAC) and install it on
GateKeeper using following properties:

 vbroker.gatekeeper.security.accessControllers=myAC

vbroker.gatekeeper.security.acl.myAC.type=com.inprise.vbro
ker.gatekeeper.security.myACImpl
 vbroker.gatekeeper.security.acl.myAC.rules=
 vbroker.gatekeeper.security.acl.myAC.default=grant

46 VisiBroker GateKeeper Guide

Load balancing and fault to lerance

An Access Controller can be implemented as follows:

package com.inprise.vbroker.gatekeeper.security;
import java.util.*;
import java.io.*;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.IOP.ServiceContext;
public class myACImpl implements
ObjectAccessController, OperationAccessController {
 public void init(org.omg.CORBA.ORB orb, String prefix) {
 }
 public boolean isObjectAccessible(
TcpConnectionInfo clt, org.omg.CORBA.Object svr,
ServiceContext[] contexts, byte[] principal) {
 return true;
 }
 public boolean isOperationAccessible(
TcpConnectionInfo clt, TcpConnectionInfo svr,
org.omg.CORBA.Object server, String operation,
ServiceContext[] services) {
 return true;
 }
}

The access control methods or rules can be defined by the implementation.

Load balancing and fault tolerance
GateKeeper is most often used to provide a single point of access to the
internal network, and therefore it can become congested or become the
single point of failure. These problems can be resolved by clustering
GateKeepers to provide a degree of fault tolerance and scalability.

Load balancing
A master GateKeeper and one or more slave GateKeepers can be clustered
together. The master GateKeeper is responsible for balancing the load
among the slave GateKeepers. The server should export the master
GateKeeper object reference only.

Figure 16 Load balancing using GateKeeper

The figure above shows the property setting for GateKeeper1 and the
server. The master GateKeeper can balance the load between a slave

VisiBroker GateKeeper Guide 47

Load balancing and faul t to lerance

GateKeepers on a per object level. On the object level, each client will be
redirected to one of the slave GateKeepers based on the load balancing
policy. In general, this will balance the load more evenly but potentially use
more resources and slower.

The default load balance policy is round-robin. This policy, however, can be
customized and is available as a standard package. Please contact Micro
Focus for more information.

Additionally, GK2 and GK3 can also have their own slave GateKeepers. In
this configuration, a hierarchy of master and slaves can be stacked over one
another.

Custom-designed load balancing in GateKeeper
The ORB default implementation of load distribution uses the round-robin
algorithm in which the client request is shared among a server and
GateKeeper in a sequential order. The following code example shows a
distributor implementation:

package com.inprise.vbroker.gatekeeper.ext;
import java.util.Enumeration;
import org.omg.Firewall.GIOPProxy;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.util.*;

public class MyDistributor implements Distributor {
 private Enumeration _enum;
 private UnGuardedVector _servers;
 public void init(ORB orb, UnGuardedVector v) {
 _servers = v;
 _enum = servers.elements();
 }
 public synchronized GIOPProxy next() {
 if (!_enum.hasMoreElements()) {
 _enum = _servers.elements();
 }
 return (GIOPProxy)_enum.nextElement();
 }
}

The Server Manager can collect current load related information of other
GateKeeper instances in a master/slave configuration. Based on the
available real-time information from the Server Managers, the master
GateKeeper can reallocate client requests to other GateKeepers. In another
scenario, a federation of GateKeepers can exchange load-statistics to
distribute the load.

Fault tolerance
A master GateKeeper and one or more backup GateKeepers can be
clustered together to be viewed as a single GateKeeper by the client. There
are two ways to cluster the GateKeepers:

• Cluster the GateKeepers as different firewall paths to the server.

This configuration is accomplished similarly to dynamic chaining of
GateKeeper. It requires no changes to the GateKeeper configuration; you
only need to configure the server to include all the backup GateKeepers
as a firewall path on the server listener. This approach, however, makes
the server configuration more complex.

48 VisiBroker GateKeeper Guide

Scalabi l i ty and performance guidel ines

• Fold all the backup GateKeeper's object references (profiles) into the
master GateKeeper's object reference. When the master GateKeeper
fails, the client would rebind to one of the other backup GateKeepers
automatically. This approach can make the GateKeeper's object reference
very large. The load balancing feature of GateKeeper follows this
approach.

Scalability and performance guidelines
When assessing GateKeeper performance, it is useful to compare a
GateKeeper scenario (Client-GateKeeper-Server) to a direct scenario
(Client-Server).

Note

Here performance is represented as response time and scalability is
represented as throughput.

The GateKeeper scenario requires two connections and thus two
invocations. As a result:

• Throughput is reduced: It may be reduced by as much as 50 percent
when compared to the direct scenario.

• Response Time is slowed: Response time will take longer when
compared to the direct scenario. In some cases, it may take up to 200
percent longer.

GateKeeper performance tuning
GateKeeper does not introduce any new performance threshold or
throughput threshold which means that GateKeeper will have the same
performance and throughput profile as the VisiBroker ORB. Because
GateKeeper is a CORBA application, it inherits the basic features of the
ORB. As such, all ORB specific performance tuning parameters apply to
GateKeeper as well. The following areas described below, however, can
affect the performance of GateKeeper:

Bidding mechanism
The client-side ORB can be programmed to select specific bids based on the
constraints set by the user. The order of selection of bids can be specified to
speed up the process of connection establishment:

• Constraint on Bid-Portfolio: The following properties are useful for
setting exclusive bids in the case of static chaining of GateKeeper:

 vbroker.orb.alwaysProxy
 vbroker.orb.alwaysTunnel
 vbroker.orb.alwaysSecure

For example, the vbroker.orb.alwaysProxy is useful when a specific
GateKeeper is statically chained to another GateKeeper. If you are very
sure that only HTTP Tunnelling will be used while chaining the
GateKeepers, then set vbroker.orb.alwaysTunnel property can be set to
avoid unnecessary bids. When the vbroker.orb.alwaysSecure property is
set, then the GateKeeper will use secure communication path only while
chaining. Please note that these properties are set on the outer
GateKeeper.

• Order of Bid-Selection: The order of the bid can affect the speed of the
selection of a specific bid. For example, if you are certain that most of the

VisiBroker GateKeeper Guide 49

Scalabi l i ty and performance guidel ines

connections allowed on a specific GateKeeper will be of a secure type,
you can place the SSL as the first entry in the string as follow:

vbroker.orb.bidOrder=inprocess:liop:ssl:iiop:proxy:hiop:
locator

• Specifying high-precedence Bid: You can set the following property to
the highest precedence bid. By default, it is set to inprocess in the ORB:

vbroker.orb.bids.critical=inprocess

Cache management
The following property sets the cache size of GateKeeper:

vbroker.gatekeeper.cache.size=100

Message marshaling
By setting the chunk size of the stream, you can increase the size of
messages exchanged between GateKeeper and the client/server
application. The chunk size can have significant impact on the performance
of the applications, particularly using HTTP Tunnelling:

vbroker.orb.streamChunkSize=4096

You can try using values such as: 4096, 8192, or 16384. The performance
of the applications may vary depending on the maximum size of the packets
on your network.

Thread management
Depending on the response needs of GateKeeper, different techniques of
thread management can be applied, such as thread pooling, thread-per-
session, and so forth. By default, the request forwarding IIOP service uses
ThreadPool, and the HIOP service uses ThreadSession:

vbroker.se.exterior.scm.ex-iiop.dispatcher.type=ThreadPool
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMax=100
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMin=0
vbroker.se.exterior.scm.ex-
iiop.dispatcher.threadMaxIdle=300

vbroker.se.interior.scm.in-iiop.dispatcher.type=ThreadPool
vbroker.se.interior.scm.in-iiop.dispatcher.threadMax=100
vbroker.se.interior.scm.in-iiop.dispatcher.threadMin=0
vbroker.se.interior.scm.in-
iiop.dispatcher.threadMaxIdle=300

vbroker.se.exterior.scm.ex-
hiop.dispatcher.type=ThreadSession

Connection management
The bi-directional GIOP has advantages of using the same communication path for
forward and backward communication. Therefore, Micro Focus recommends that you
use the vbroker.orb.enableBiDir property setting in callback scenarios. The
following properties let you optimize connection resource usage (see “Appendix
GateKeeper properties” for more details):

vbroker.se.exterior.scm.ex-iiop.manager.connectionMax
vbroker.se.exterior.scm.ex-iiop.manager.connectionMaxIdle

vbroker.se.interior.scm.in-iiop.manager.connectionMax
vbroker.se.interior.scm.in-iiop.manager.connectionMaxIdle

50 VisiBroker GateKeeper Guide

GateKeeper performance propert ies

vbroker.ce.iiop.ccm.connectionMax should not be used in the context
of GateKeeper, because GateKeeper should be allowed to connect to as
many servers as needed as it is an intermediate service to potentially many
clients. GateKeeper must not stop already connected clients from
proceeding with connections to servers just because the number of
outgoing connections it can open is limited. Instead, GateKeeper can
restrict the number of clients it is willing to service using the following
property:

vbroker.se.exterior.scm.ex-iiop.manager.connectionMax

vbroker.ce.iiop.ccm.connectionMaxIdle, however, can be used to
drop idle connections to servers. This is particularly useful when the number
of servers the GateKeeper would potentially connect to is large, the number
of connecting clients is small, and the clients mainly target only a few
servers.

Impact of asynchronized invocation of
GateKeeper
Asynchronized invocation of GateKeeper does not have a very significant
impact on performance and scalability.

GateKeeper performance properties
There are many properties that affect GateKeeper's performance. Those
properties related to connection, thread type, mode of operation and call
type are described here.

For more information, see “Performance and load balancing” for additional
properties that can be adjusted for better performance.

Connection settings
Connection related properties of GateKeeper are:

vbroker.se.<xxx>.scm.<yyy>.manager.connectionMax
vbroker.se.<xxx>.scm.<yyy>.manager.connectionMaxIdle

where <xxx> and <yyy> represent “exterior, ex-hiop”, “exterior, ex-iiop”,
“exterior, ex-hiops”, “exterior, ex-ssl”, “interior, in-iiop” or “interior, in-ssl”.

The first property specifies the maximum number of active connections
allowed. Limiting connections conserves GateKeeper resources, but may
decrease client performance. The default is no limit.

The second property specifies how long an inactive connection is idle before
it is closed. The default is 0 which means that inactive connections are
never closed.

Thread related settings
When the dispatcher type is “ThreadPool”, the following properties of
GateKeeper can be modified to fine-tune performance:

vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMin
vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMax
vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMaxIdle

where <xxx> and <yyy> pair is “exterior, ex-iiop”, “exterior, ex-ssl”,
“interior, in-iiop” or ”interior, in-ssl”.

VisiBroker GateKeeper Guide 51

GateKeeper and SSL

The first property ”threadMin” specifies how many threads are pre-created
so that requests can be quickly serviced. The default is 0.

The second property ”threadMax” specifies the maximum number of
threads that can be created so that the system cannot be overloaded with
too many threads. The default is 100. Any request that cannot be serviced
because of too few threads will wait for the next available thread.

The third property ”threadMaxIdle” specifies how long (in seconds) a thread
is idle before it is destroyed. The default is 300 seconds.

GateKeeper modes
GateKeeper can run in normal and pass-through mode. The pass-through
mode has lower performance because the content of the packets is not
examined by GateKeeper but still consume GateKeeper's resources. In fact,
each pass-through connection needs exclusive ports throughout the life-
span of the connections. A client process can request exclusive connection
using policies programmatically.

GateKeeper in its normal mode of operation gives the better performance.

The mode is normal unless the pass-through is enabled by setting the
property vbroker.gatekeeper.enablePassthru=true.

Call types
There are three types of calls:

• normal forward calls

• bidirectional callbacks

• VisiBroker 3.x style callbacks

Bi-directional callbacks use a single connection for both forward calls and
callbacks. It is more efficient than the VisiBroker 3.x style callbacks.

Bi-directional callbacks are as efficient as the normal forward calls.

GateKeeper and SSL
Note

SSL is a separate optional package; therefore for applets and server objects
to run in SSL mode, you must have a SSL component included in their ORB
runtime.

GateKeeper with SSL provides the following security features:

• relay IIOP/SSL connections between client and server

• support HTTPS tunneling

• enable IIOP/SSL callback (VisiBroker 3.x Style and bidirectional)

• perform authentication on behalf of server

• forward credentials

For more information about SSL, refer to the VisiBroker Security Guide.
Additional properties for setting SSL can also be found in “Appendix
GateKeeper properties”.

52 VisiBroker GateKeeper Guide

GateKeeper and SSL

Figure 17 SSL connections to GateKeeper

SSL connections to GateKeeper
The server determines if the connection uses SSL or a regular IIOP
connection. The client running in SSL mode may request the connection to
be SSL. The server running in SSL mode, however, requires the client to
connect to it in SSL mode.

If the client sets vbroker.orb.alwaysSecure=true in its property file, it
will always connect to the Server or GateKeeper in SSL mode and will not
first try other types of connections (which may fail if the Server or
GateKeeper does not accept other types of connection). This shortens the
time for connections.

Similarly, setting the same property will help GateKeeper when it connects
to the Server.

SSL for forward and bidirectional calls
You can set the following GateKeeper properties to enable SSL for calls from
the client (applet) to the server object (via the GateKeeper):

vbroker.se.exterior.host = <host address>
vbroker.se.exterior.scms = ex-iiop, ex-hiops, ex-ssl
vbroker.se.exterior.scm.ex-ssl.listener.port = <port
address>

The applet client opens an SSL connection to the GateKeeper. The client-
GateKeeper communication channel is in SSL mode. However, the mode of
the GateKeeper-server communication channel is determined by the server.
If the server's scm is set to SSL mode, the GateKeeper-server
communication channel will be in SSL mode.

Bidirectional calls use the same forward communication paths. However,
there is additional property setting for bidirectional callbacks.

VisiBroker GateKeeper Guide 53

Enabl ing the Secur i ty Service in GateKeeper

Enabling the Security Service in GateKeeper
While security is turned on by default, this feature applies to the licensing of
the Security Service only. There are, however, no license checks to turn on
the Security Service.

In VisiBroker the security is turned off by default as specified in the
following property:

 vbroker.security.disable=true

By setting the following property in VisiBroker, the application will prompt
for username and password for authentication:

 vbroker.security.login=true

You must create *.config files (examples shown below) to specify the
authentication and realm related parameters.

As a generic example of a security enabled GateKeeper, the IIOP, IIOP/SSL,
HIOP, and HIOPS listeners have been enabled in the following set of
properties:

gatekeeper.config

 System
 com.borland.security.provider.authn.HostLoginModule
required REALM=myrealm PRIMARYIDENTITY=true;

com.borland.security.provider.authn.ClientSideDataCollecti
on required REALM=testrealm;

 };
 myrealm
 com.borland.security.provider.authn.HostLoginModule
required;

 };

 anotherrealm {
 com.borland.security.provider.authn.HostLoginModule
required;
 };

54 VisiBroker GateKeeper Guide

Enabl ing the Secur i ty Service in GateKeeper

gatekeeper.properties

vbroker.security.disable=false

 vbroker.security.peerAuthenticationMode=none

 vbroker.security.secureTransport=false

 vbroker.security.trustpointsRepository=Directory:./
trustpoints

 vbroker.gatekeeper.referenceStore=./gkclnt.ior
 vbroker.orb.enableBiDir=both

 vbroker.orb.dynamicLibs=com.borland.security.hiops.Init

 vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-hiops
 vbroker.se.exterior.host=143.186.142.21
 vbroker.se.exterior.scm.ex-iiop.listener.port=25000
 vbroker.se.exterior.scm.ex-hiop.listener.port=25001
 vbroker.se.iiop_tp.scm.hiop_ts.listener.port=25002
 vbroker.se.exterior.scm.ex-ssl.listener.port=25003
 vbroker.se.exterior.scm.ex-hiops.listener.port=25004

 vbroker.se.interior.scms=in-iiop,in-hiop,in-ssl
 vbroker.se.interior.host=143.186.139.226
 vbroker.se.interior.scm.in-iiop.listener.port=15001

 vbroker.se.interior.scm.in-hiop.listener.port=15002

 vbroker.se.interior.scm.in-ssl.listener.port=15003

 # Enable callback using this GateKeeper

 vbroker.gatekeeper.callbackEnabled=true

 # Enable VBJ3.x (old style) callback also
 vbroker.gatekeeper.backcompat.callback=true

vbroker.gatekeeper.backcompat.callback.host=143.186.142.21

vbroker.gatekeeper.backcompat.callback.listeners=iiop,ssl

vbroker.gatekeeper.backcompat.callback.listener.iiop.port=
16001

vbroker.gatekeeper.backcompat.callback.listener.iiop.type=
IIOPCallback

vbroker.gatekeeper.backcompat.callback.listener.ssl.port=1
6002

vbroker.gatekeeper.backcompat.callback.listener.ssl.proxyP
ort=0

vbroker.gatekeeper.backcompat.callback.listener.ssl.type=S
SLCallback

 # Optional: enable GateKeeper specific Access Control
properties

VisiBroker GateKeeper Guide 55

Enabl ing the Secur i ty Service in GateKeeper

 vbroker.gatekeeper.security.accessControllers=myAC
 vbroker.gatekeeper.security.acl.myAC.default=grant
 vbroker.gatekeeper.security.acl.myAC.rules=rule1
 vbroker.gatekeeper.security.acl.myAC.rule1=grant
[operation=”*”]

 # Optional: Identity of GateKeeper

 vbroker.security.wallet.identity=<username>
 vbroker.security.wallet.password=<password>
 vbroker.security.wallet.type=Directory:<path-to-
identities>

The property settings in the following example tell the client to specifically
request a secure transport using GateKeeper. The client application collects
the username and password and sends this conformation to the server via
GateKeeper.

client.config

 System {

com.borland.security.provider.authn.ClientSideDataCollecti
on required REALM=myrealm;
 };

 Client {

com.borland.security.provider.authn.ClientSideDataCollecti
on required;
 };

client.properties

vbroker.security.disable=false
 vbroker.security.login=true

vbroker.security.authentication.callbackHandler=com.borlan
d.security.provider.authn.HostCallbackHandler
 vbroker.security.authentication.config=client.config

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.scms=iiop_tp,ssl
 vbroker.orb.alwaysProxy=true
 vbroker.orb.alwaysSecure=true

The property settings in the following example disables the IIOP listener
and the server is assumed to be a secure application that uses SSL
transport only:

56 VisiBroker GateKeeper Guide

Enabl ing the Secur i ty Service in GateKeeper

server.config

 System {
 com.borland.security.provider.authn.HostLoginModule
required REALM=myrealm PRIMARYIDEHostITY=true;

com.borland.security.provider.authn.ClientSideDataCollecti
on required REALM=testrealm;
 };

 myrealm {
 com.borland.security.provider.authn.HostLoginModule
required;
 };

 anotherrealm {
 com.borland.security.provider.authn.HostLoginModule
required;
 };

VisiBroker GateKeeper Guide 57

Enabl ing access to the Naming Service through GateKeeper

server.properties

 vbroker.security.disable=false
 vbroker.security.login=true

vbroker.security.authentication.callbackHandler=com.borlan
d.security.provider.authn.HostCallbackHandler
 vbroker.security.authentication.config=server.config

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.orb.exportFirewallPath=true

 vbroker.se.iiop_tp.host=143.186.142.21

 vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-
IIOP
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=25000
 vbroker.se.iiop_tp.scm.ssl.listener.port=25005

 vbroker.se.iiop_tp.firewallPaths=intranet
 vbroker.firewall-path.intranet=first,second

 vbroker.firewall-path.internet=first
 vbroker.firewall.first.type=PROXY
 vbroker.firewall.first.ior=http://localhost:16085/
gatekeeper.ior

 vbroker.firewall.second.type=TCP
 vbroker.firewall.second.host=192.75.11.14
 vbroker.firewall.second.iiop_port=32000
 vbroker.firewall.second.hiop_port=32001
 vbroker.firewall.second.ssl_port=32005

Enabling access to the Naming Service through
GateKeeper

To start the Naming Service on a fixed IP address and port, you must set
the following properties. In the following example, the Naming Service is
running on the IP host address: 143.186.142.21 and listener port: 32101:

namingservice.properties

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873
 vbroker.orb.logger.output=ns_debug.log

 vbroker.naming.logLevel=7
 vbroker.naming.iorFile=ns.ior

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.host=143.186.142.21
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=32010

58 VisiBroker GateKeeper Guide

gatekeeper.properties

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873
 vbroker.agent.enableLocator=false

vbroker.orb.initRef=NameService=corbaloc::143.186.142.21:3
2010/NameService
 vbroker.gatekeeper.referenceStore=gkclnt.ior
 vbroker.se.exterior.host=143.186.142.21
 vbroker.se.interior.host=143.186.139.226
 vbroker.se.exterior.scm.ex-iiop.listener.port=25000
 vbroker.se.exterior.scm.ex-hiop.listener.port=25001
 vbroker.se.iiop_tp.scm.hiop_ts.listener.port=25002

VisiBroker GateKeeper Guide 59

Troubleshooting
GateKeeper
This section describes how to obtain debugging information from
GateKeeper and its clients and servers. It also highlights potential problems
such as incorrect environment and registry settings and describes some
common tools useful for troubleshooting GateKeeper.

Preparation for troubleshooting
The following sections describe the preparations that must be done or
observed before troubleshooting GateKeeper.

Getting debugging information
Comprehensive debugging information can be obtained by setting the
properties of the client, server and GateKeeper. The following table shows
the relevant settings and whether they are applicable to the client, server,
or GateKeeper. The properties must be set in their respective properties
file.

Log levels have numeric levels along with corresponding text values and
either can be used to describe the situation. Levels 4 and higher are useful
for debugging. The following table describes the log level values.

Log level
value Description
0 or EMER System is unusable. A panic condition.
1 or ALERT A condition that should be corrected immediately, such as a

corrupted system database.
2 or CRIT Critical conditions, such as hard device errors.
3 or ERR Error conditions.
4 or WARNING Warning conditions such as connection failures due to

authentication problems, such as incorrect password and
authorization failures. This is the default.

5 or NOTICE Conditions that are not critical, but may require special handling
configuration settings.

6 or INFO Informational such as all user accesses to specific methods
requested to the server.

7 or DEBUG Debug information meant to be understood only by the
developer. These messages are not internationalized

60 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

The following table describes the property settings useful for debugging
GateKeeper. See also the sections VisiBroker Properties and Debug Logging
Properties in the VisiBroker for Java Developer's Guide or VisiBroker
for C++ Developer's Guide for more detailed information on how the
logging features and properties in VisiBroker operate.

Property Description
Set in
Property File

vbroker.orb.logger.output=<filename
>

Log file
Specifies the name
of the file where
the log is recorded.

If not specified, the
default is
gkdebugfile.log.

Log information can
also be sent to
stdout.

Server, client
and GateKeeper

vbroker.orb.bufferDebug=true ORB
Forces the internal
buffer manager to
display the buffers
used by ORB.

Server, client
and GateKeeper

vbroker.orb.debug=true ORB
Displays debugging
from the ORB

Server, client
and GateKeeper

vbroker.orb.warn=<warning level> ORB
Specifies which
warning of a
particular level to
be displayed by the
ORB. The values
can be 0, 1 or 2.
Level 2 will display
warnings of all
levels.

Server, client
and GateKeeper

vbroker.orb.logLevel=<loglevel> ORB

The log level can
take one of the
values described
above.

Server, client
and GateKeeper

vbroker.orb.logger.appName=<Applica
tion Name>

ORB
Specifies the
application name to
be displayed in the
log.

Server, client
and GateKeeper

vbroker.events.debug=true Event Service
Displays Event
Service diagnostic
messages.

Event Service

vbroker.orb.dynamicLibs=com.inprise
.vbroker.gatekeeper.trace.Init

vbroker.gatekeeper.trace.demo=true

GateKeeper
Displays trace
information from
GateKeeper's built-
in trace facility.

GateKeeper

vbroker.agent.debug=true GateKeeper and
Smart Agent
Displays debugging
information of
interactions
between
GateKeeper and
the Smart Agent.

GateKeeper

VisiBroker GateKeeper Guide 61

Preparat ion for t roubleshoot ing

Starting GateKeeper in debugging mode
In addition to the properties described above, the gatekeeper and vbj
command line utilities can output additional environment and parameter
setting information at start-up. The -VBJdebug option produces this
additional output. The following table shows examples of the debugging
commands:

Note

The -VBJdebug option affects only the gatekeeper and vbj commands
and has no relationship to the diagnostic property settings described above.
The diagnostic properties will produce the same output regardless of
whether or not the -VBJdebug option is used.

vbroker.locationservice.debug=true Location Service
Displays debugging
information of the
Location Service.

Server, client
and GateKeeper

vbroker.URLNaming.debug=true URLNaming
Displays debugging
information of the
URLNaming service
loaded in the ORB
runtime. This
setting is often
used to detect if
the correct IOR is
retrieved.

Server, client
and GateKeeper

vbroker.poa.logLevel=emerg POA
Displays debugging
information from
the POA.
GateKeeper has
exterior, interior
and iiop_tp POA.

Server and
Server Side of
GateKeeper

vbroker.gatekeeper.passthru.logLeve
l=<emerg>

Pass-through
Displays debugging
information of
pass-through mode
in GateKeeper.

GateKeeper

vbroker.security.logLevel=<logLevel
>

Security Service
Displays logging
information of the
security service
such as SSL on
GateKeeper.

GateKeeper

Component Command line options example
Java Server vbj -VBJdebug Server -DORBpropStorage=server.prop Server

GateKeeper gatekeeper -VBJdebug -J-Dvbroker.log.enable=true -J-
Dvbroker.log.logLevel=debug -props gk.prop

Java Client vbj -VBJdebug Client -DORBpropStorage=client.prop Client

Property Description
Set in
Property File

62 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

Environment settings
GateKeeper reads in the environmental variables at startup. On Windows,
GateKeeper also reads settings in the registry. The precedence of the
settings (UNIX and Windows) is as follows:

1 command line

2 properties file

3 environment settings

4 registry settings (Windows only)

5 system default (Windows only)

The following table lists the common environment variables used by
GateKeeper.

Environment
variable Description
CLASSPATH CLASSPATH should include the directories of the Java

Development Kit and Java Servlet Development Kit.
Specifically, CLASSPATH must include servlet.jar. For
example, in Windows NT, at the DOS prompt enter:

set CLASSPATH=C:\BES\lib\servlet.jar;c:\
bes\jdk\jdk1.4.1\lib

If the classpath includes multiple versions of the JDK,
compatibility issues may arise.

JAVA_HOME Specifies the home directory of Java. If the Java directory is
not defined in the CLASSPATH environment variable, the
system will try to locate Java libraries from this directory.

Note: On UNIX systems, this variable must be set. On
Windows systems, it may be preset in the registry.

JDK_HOME Specifies the home directory of JDK. If the JDK directory is
not defined in the CLASSPATH environment, the system will
try to locate JDK libraries from this directory.

Note: On UNIX systems, this variable must be set. On
Windows systems, it may be preset in the registry.

PATH The PATH environment is set automatically during VisiBroker
installation and should include the directory in which
GateKeeper exists. For example, on Windows, at the
command prompt enter:

set PATH=%VBROKERDIR%\bin;%PATH%

OSAGENT_PORT Specifies the port used to contact the Smart Agent. Ensure
the appropriate Smart Agent listens to this port and
GateKeeper is able to reach this port (and the host).

BES_LIC_DIR Specifies the path of the directory location in which the
license data file exists.

VisiBroker GateKeeper Guide 63

Preparat ion for t roubleshoot ing

Tools for troubleshooting
The following table describes some tools that are useful for troubleshooting
GateKeeper.

Getting information about the computer
network
A good understanding of the computer network is needed to configure
GateKeeper properly. You should work closely with the network
administrators to identify problems that might arise from an improper
configuration of GateKeeper and the firewall or the network itself. Many
times configuration problems arise due to an incorrect configuration of the
router or firewalls.

Firstly, you should try to understand the network diagram, firewall policies,
routing tables, packet filters, and the location and configuration of basic
TCP/IP stack servers. Most network administrators can provide you with
logical network diagrams that show the physical wiring and the components
in their network. When making deployment plans for GateKeeper, we
recommend that you start by analyzing and understanding these diagrams.

Next, you need to understand the firewall policies in place. Understanding
the firewall policies and the physical network diagrams will help you
determine whether messages from the client application are allowed to pass
through various hops of the networks to reach the server and vice versa.

Names Description
osfind (Windows and
UNIX)

Included with the VisiBroker distribution. It is used
to locate all objects registered within a given Smart
Agent domain and to display information known to
the agent. Normally, Smart Agents are restricted to
a subnet only.

printIOR (Windows and
UNIX)

Included with the VisiBroker distribution. It is used
to print all the information encoded in an IOR into a
human readable format.

ping (Windows and UNIX) Part of TCP/IP networking tool set and usually
included with the operating system. It is used to test
where a packet is bounced back from a remote host
to the current host and can be useful for firewall
configuration verification.

tracert (Windows)
traceroute (UNIX)

Part of TCP/IP networking tool set and distributed
with some operating systems. It prints the route or
path taken by a data packet to reach the destination
host. It can help you identify a problem with
firewalls as it shows where packets fail when being
forwarded by routers.

route (Windows and UNIX) Part of TCP/IP networking tool set and distributed
with some operating systems. It prints the routing
table and can be useful with firewall configurations.

netstat (Windows and
UNIX)

Part of TCP/IP networking tool set and distributed
with some operating systems. It displays protocol
statistics and current TCP/IP network connections
and can be useful to verify the state of connections
and port availability.

nslookup (Windows and
UNIX)

Part of TCP/IP networking tool set and distributed
with some operating systems. It queries Internet
domain name servers for hostname mapping.

regedit (Windows) Part of Microsoft Windows operating system
distribution and lets you to edit the Windows
registry.

64 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

This information in turn determines where you should deploy GateKeeper
and it will save a considerable amount of time when troubleshooting
GateKeeper's configuration.

An external router routes packets to/from the Internet and perimeter
networks. Additionally, the external router can be programmed so that only
a restricted set of protocols can enter from the Internet to the perimeter
network. This additional information is only available in the firewall policy. If
the routes are not configured properly, the packets will be forwarded to the
wrong destination or will be ignored. Whenever there is any change in the
routing table or firewall policies, the network administrator should notify
you.

A multi-homed firewall can filter and route packets from the perimeter
network into the internal network and the de-militarized zone. It may also
perform Network Address Translation in which the real IP address of the
internal network is replaced with the fake IP address and vice versa.

The following figure is an example of a network diagram that shows the
physical wiring layout of three subnets; the Perimeter Internet,
Demilitarized zone, and internal network.

Figure 18 Typical network diagram example

• The External Router routes packets to/from the Internet and Perimeter
Internet. Additionally, the external router can be programmed such that
only a small restricted set of protocols enter from Internet to the
Perimeter Internet. This additional information is only available in the
Firewall policy; that is the routing table.

• The Multi-Homed Firewall filters packets and routes packets from the
Perimeter Internet into the two subnets; internal Network and
Demilitarized Zone. It may also perform Network Address Translation in

VisiBroker GateKeeper Guide 65

Essent ia l checks

which the real IP address of the internal network is replaced with the fake
IP address and vice versa.

Note

The example above illustrates one of many possible network configurations
and, therefore, it is very important to know where such information can be
obtained before deploying GateKeeper.

Essential checks
GateKeeper acts like a proxy and problems can arise in the client,
GateKeeper, or the server. The following sections describe some essential
checks you can make when GateKeeper fails to work properly. The checks
described below are not meant to be exhaustive and are not arranged in
order of importance or performance sequence, but are provided here to
serve as a guideline for preliminary troubleshooting.

Check the Smart Agent
GateKeeper uses the Smart Agent to locate server objects and it can
automatically locate the Smart Agent on the network. If the Smart Agent
fails to detect the server object or if GateKeeper is unable to locate the
Smart Agent automatically, you may use one of the following solutions to
troubleshoot the Smart Agent:

• Check the environment variable settings described above.

• Start the Smart Agent in debugging mode:
osagent -v

• Find all Smart Agents that are reachable from where GateKeeper is
installed. You may use the osfind command.

• Check if the IP and port addresses are set correctly in the client,
GateKeeper, and the server.

Check the property files
Check the settings in the property files of the client, server and GateKeeper.
The most common problem is setting the port and host addresses
incorrectly.

Check the routing table
A multi-homed host allows communication between the connected
networks. In order for the multi-homed host to route data packets from one
network to another correctly, you must configure the routing tables
correctly in the hosts. If the routing table fails to send data correctly, you
may use the following methods to troubleshoot this program:

• Use route print and traceroute to check for routing tables. Locate the
communication breakdown and configure the routing tables correctly.

• Use tools such as ping and tracert to examine and verify the
communication paths.

66 VisiBroker GateKeeper Guide

Essent ia l checks

Check pass-through connections
You may use one of the following methods to check if the pass-through
connection is set correctly:

• If you are using GateKeeper in the pass-through mode, you must set the
following properties in GateKeeper correctly:

vbroker.gatekeeper.passthru.inPortMin
vbroker.gatekeeper.passthru.inPortMax
vbroker.gatekeeper.passthru.outPortMin
vbroker.gatekeeper.passthru.outPortMax

The inPortMin and inPortMax properties specify the range of ports a client
uses to connect to GateKeeper. Therefore, you must ensure that the
clients are able to overcome firewalls to connect to these ports.

Similarly, the outPortMin and outPortMax properties specify the range of
ports GateKeeper uses to connect to the server-side network. Therefore,
you must ensure that GateKeeper is able to overcome the firewalls to
connect to these ports on the server.

• Use tools such as ping, tracert, traceroute, and route to check if the
destination is reachable.

Check the Java policy
If the client is an applet using the java plug-in, make sure the following
properties are added to the java.policy file. If these settings are not
specified in the JRE's java.policy file, a security exception may occur.
Note that these properties are the client's settings and
“192.73.8.25:25001” is the IP and port address of GateKeeper's host and
HIOP port.

grant codeBase ”http://192.73.8.25:25001/*” {
 permission
java.lang.reflect.ReflectPermission”suppressAccessChecks”;
 permission java.io.SerializablePermission
”enableSubclassImplementation”;
 permission java.lang.RuntimePermission
”accessDeclaredMembers”;
};

Check SSL
If you are using SSL, ensure the certificate is installed properly in the client
(Web browser), the server, and GateKeeper.

Check the IOR files
To check the content of an IOR file, use the following methods:

• Set the vbroker.URLNaming.debug property in the client, GateKeeper,
or the server to trace which IOR files are retrieved.

• Use the printIOR command to print the content of an IOR file.

Check firewall settings
Firewall settings can be the most problematic settings.

VisiBroker GateKeeper Guide 67

Common errors and FAQs

• See “Configuring the firewall” and “Troubleshooting GateKeeper”

• Work closely with the network administrator to understand the firewall
restrictions.

• Check the NAT (Network Address Translation) configuration.

Common errors and FAQs
1 A comprehensive list of Frequently Asked Questions is included in your

VisiBroker installation for more information. You can find this at:

<install_dir>\doc\faqs\VisiGateKeeperFAQ.html

2 Common errors made while setting properties are spelling mistakes for
property names, such as ”vroker” instead of “vbroker”. Also, on
Windows, some word processors automatically change the first character
on a line into a capital letter. Therefore, vbroker becomes Vbroker
which is not valid.

3 Socket binding errors can occur when the IP and/or port addresses are
invalid or are already in use. The following table shows some typical
errors:

Proxy servers and GateKeeper
GateKeeper can work in conjunction with HTTP proxy servers. These proxy
servers are used by the HIOP protocol for the HTTP Tunneling feature of
GateKeeper.

In general, the latest firewall products have a built-in capability to handle
HTTP traffic. Certain firewalls have built-in HTTP proxy servers (such as
Microsoft's ISA Server) while other firewalls can forward HTTP messages to
an HTTP proxy server that can perform load balancing using proprietary
mechanisms. In some cases, an HTTP proxy server uses caching techniques
to increase performance. GateKeeper requests that HTTP proxy server
caching is disabled for its messages.

When an HTTP proxy server is used in conjunction with GateKeeper, the
HTTP proxy server acts like a NAT device for GateKeeper because the HTTP
proxy server forwards packets. GateKeeper is hidden behind the HTTP
proxy server and, as such, it is important to configure the proxy host
properties or TCP firewall properties to specify the HIOP fake host/port.

Error Message Error Type Solution
“Bind Exception: Cannot
assign requested address”

Wrong IP Address Correct the IP and/or port
address.

“Bind Exception: Address
in use”

IP port already
in use

Correct the IP and/or port
address.

“Invalid GIOP Proxy ior:
Communication Problem”

Wrong IP Address Correct the IP and/or port
address.

“Invalid GIOP Proxy ior:
Connect Exception”

Wrong Port
Address

Correct the IP addresses in the
IOR file (property file)

“Invalid GIOP Proxy ior:
Invalid Object Ref, File Not
Found Exception”

Wrong IOR Name Correct the name of the
referenced IOR file.

68 VisiBroker GateKeeper Guide

Proxy servers and GateKeeper

VisiBroker GateKeeper Guide 69

Appendix
GateKeeper properties
This appendix describes the properties that may be set on GateKeeper, with
the exception of “Server's properties for firewall specifications”, which are
properties set on the server.

Note

The following notations are used for the column “Default/Options” in the
tables:

• Options are in bold; gatekeeper.ior

• <empty> is a blank space or an empty string.

• Options enclosed in angle brackets (<>) are user supplied values, for
example, <port number> or <integer values>.

General properties
The following table lists the common properties used by GateKeeper.

Property Default/Options Description
vbroker.gatekeeper.name null - no name is defined <a

user defined name>
Specifies the name of a GateKeeper
instance to differentiate it from
other GateKeepers instances.

vbroker.gatekeeper.referen
ceStore

gatekeeper.ior - in the current
directory of GateKeeper.
<Relative pathname> <Full
pathname>

Specifies the name of the
GateKeeper IOR file. You may
define the full path name if this file
is not stored in the GateKeeper
current directory.

vbroker.gatekeeper.locatio
nService

true (default) - enabled
false - disabled

Enables or disables the location
service using GateKeeper. This
service is provided for clients such
as applets that are not able to
communicate with the Smart Agent
(OSAgent) to do the bind. If this
property is set to false, the client
will get a NO_PERMISSION exception
during the binding operation
through GateKeeper.

vbroker.gatekeeper.cache.s
ize

-1 - cache is disabled
0 - cache size is unlimited
64 (default)

Defines the size of the GateKeeper
cache. A value that is a positive
integer defines the number of
objects in the cache.

70 VisiBroker GateKeeper Guide

Exter ior server engine

Exterior server engine
The following table lists the properties used by the exterior server engine on
the client side or Internet side of GateKeeper. Most of the important
properties, however, are defined in each Server Connection Manager (SCM)
which are described in the following sections.

vbroker.gatekeeper.cache.t
imeout

900 <an integer value> Specifies the time in seconds for
keeping the information in the
cache. If the information is not used
by the end of the timeout interval,
garbage information is collected.

vbroker.gatekeeper.asynchr
onizedIO

false (default) - enabled
true - disabled

Enables or disables the
asynchronized IO feature in
GateKeeper. The asynchronized IO
feature is only useful in situations in
which calling methods on the
servers takes a long time and there
are a lot of new incoming clients. In
most situations, activating this
feature does not provide any
advantages. This feature exists
mainly due to historical reasons and
the use of it is discouraged.

Property Default/Options Description

Property Default/Options Description
vbroker.se.exterior.scms ex-iiop, ex-hiop (default) - ex-

iiop and ex-hiop Server
connection managers in use. It
can also be a list of ex-iiop, ex-
hiop, ex-ssl, and ex-hiops
separated by commas.

Defines the server connection
managers for the exterior server
engine.

vbroker.se.exterior.host null - the primary host is used;
that is the IP address of the
primary Network Interface Card
(NIC). <a host address>

The host address of the exterior
host. The primary NIC is the
exterior NIC. You can also set this
property using the VisiBroker
Console.

vbroker.se.exterior.proxyH
ost

<empty> - No proxy host. <a
fake host address>

Network Address Translation (NAT)
devices hide the actual IP address
and/or port number in the network
by changing the IP address and/or
in the IP packet. Set this value to
the value defined by the NAT. When
you have callback enabled and
GateKeeper sits behind a NAT, the
callback proxy host (vbroker.
gatekeeper.backcompat.callback
.proxyHost) should be set to equal
this property. This is used when
GateKeeper sits behind a NAT. You
can also set this property using the
VisiBroker Console.

vbroker.se.exterior.type gatekeeper This setting says that the exterior
server engine is in a “proxying”
role. It means packet/messages
forwarding function is enabled on
this server engine. The user should
not change this setting.

VisiBroker GateKeeper Guide 71

Exter ior server engine

ex-hiop server connection manager (SCM)

Java

The ex-hiop server connection manager is responsible for servicing HTTP
requests on the exterior server engine. Both the listener and dispatcher
properties are configured using the property with the
vbroker.se.exterior.scm.ex-hiop prefix.

The following vbroker.se.exterior.scm.ex-hiop properties specify the
behavior of the ex-hiop listener. The ex-hiop listener is an HIOP listener.
The default port is 8088. The threading policy is set to ThreadSession.

Note

All the properties related to an SCM are defined with the following prefix:
vbroker.se.<server engine name>.scm.<server connection
manager name>.

Some SCMs may define additional properties, but some properties,
especially the properties related to threads and connections, have the same
property names for all SCMs.

Property Default/Options Description
vbroker.se.exterior.scm.ex-
hiop.root

.
<Full path of a file
directory>

Sets to the root directory as its
default. The default directory is
where GateKeeper starts.

vbroker.se.exterior.scm.ex-
hiop.dispatcher.type

ThreadSession Specifies the dispatcher type for a
ex-hiop scm request. The type should
always be set to “Thread Session”.

vbroker.se.exterior.scm.ex-
hiop.listener.port

8088
<a port number>

Sets the default listener port for
GateKeeper's client side (exterior)
HIOP listener. Client applications or
applets use this port primarily for
HTTP tunneling support. This port
may also be used on a limited basis
for standard HTTP requests such as
fetching the GateKeeper IOR file.

vbroker.se.exterior.scm.ex-
hiop.listener.proxyPort

<empty>
<a fake port number>

The proxyPort property is often used
in conjunction with the server engine
proxyHost property to mask the
target port for this listener. If this
property is set, the GateKeeper IOR
file will contain the proxyPort value
in the endpoint information for this
listener. It is then the responsibility
of the external NAT device to map
the proxyPort to the listener's true
port. The default is <empty>
indicating the feature is disabled (the
listener port will not be masked).

vbroker.se.exterior.scm.ex-
hiop.listener.type

HIOP Specifies the listener type for the ex-
hiop SCM. HIOP indicates that this
listener supports the proprietary
HIOP protocol used for HTTP
tunneling as well as the HTTP
protocol. The listener type for pre-
configured server connection
managers such as ex-hiop should not
be changed.

vbroker.se.exterior.scm.ex-
hiop.manager.connectionMax

0 - incoming connections
are unlimited
<an integer value>

Defines the maximum number of
incoming connections allowed to the
GateKeeper exterior HIOP listener.

72 VisiBroker GateKeeper Guide

Exter ior server engine

ex-iiop server connection manager (SCM)
The ex-iiop server connection manager is responsible for servicing IIOP
requests on the exterior sever engine. The listener and dispatcher
properties can be configured using properties with the
vbroker.se.exterior.scm.ex-iiop prefix. The following
vbroker.se.exterior.scm.ex-iiop properties specify the behavior of
the ex-iiop listener. The ex-iiop listener is an IIOP listener.

vbroker.se.exterior.scm.ex-
hiop.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in seconds that an
inactive connection is idle before it
can be closed.

vbroker.se.exterior.scm.ex-
hiop.manager.type

Socket Specifies the type of Server
Connection Manager.

vbroker.se.exterior.scm.ex-
hiop.servletList

orb The servlet class type to be used.

vbroker.se.exterior.scm.ex-
hiop.servlet.orb.GET

true (default) - enabled
false - disabled

Enables or disables the servlet GET
operation. Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-
hiop.servlet.orb.PUT

true (default) - enabled
false - disabled

Enables or disables the servlet PUT
operation. Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-
hiop.servlet.orb.class

com.inprise.vbroker.HIOP.s
ervlets.ORB.Servlet

Specifies the java class to be loaded
for HIOP when GateKeeper is used as
a servlet. The customer should not
change this property to other values.

vbroker.se.exterior.scm.ex-
hiop.servlet.orb.load

false (default) - disabled
true - enabled

Enables or disables the servlet Load
operation. Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-hiop.
connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to enable
the TCP KeepAlive option.

Property Default/Options Description

Property Default/Options Description
vbroker.se.exterior.scm.ex-
iiop.dispatcher.threadMax

100
<an integer value>

Specifies the maximum
number of threads the
server connection manager
can create.

vbroker.se.exterior.scm.ex-
iiop.dispatcher.threadMaxIdle

300
<an integer value>

Specifies the time an idle
thread is idle before it is
destroyed. The default is
300.

vbroker.se.exterior.scm.ex-
iiop.dispatcher.threadMin

0
<an integer value>

Specifies the minimum
number of threads the
server connection manager
can create.

vbroker.se.exterior.scm.ex-
iiop.dispatcher.type

ThreadPool Specifies the dispatcher
type for the ex-iiop scm.

vbroker.se.exterior.scm.ex-
iiop.listener.giopVersion

1.2 Sets the GIOP version to
be used by the GIOP
messages. This property
can be used to overcome
interoperability problems
with older ORBs that
cannot handle unknown
minor GIOP versions
correctly.

VisiBroker GateKeeper Guide 73

Exter ior server engine

ex-hiops server connection manager (SCM)

Java

The ex-hiops server connection manager is responsible for servicing HTTPS
requests on the exterior server engine. Both the listener and dispatcher
properties are configured using the property with the
vbroker.se.exterior.scm.ex-hiops prefix.

The following vbroker.se.exterior.scm.ex-hiops properties specify
the behavior of the ex-hiops listener. The ex-hiops listener is an HIOPS

vbroker.se.exterior.scm.ex-
iiop.listener.port

683
<a port number>

Sets as a default listener
port for GateKeeper's
client-side IIOP listener.
Port 683 is the
recommended setting for a
deployed application since
it is an OMG standard for
IIOP and is registered with
IANA.
UNIX: On a UNIX
platform, the default
listener port number is in
the range of 0 to 1024
which is reserved for
privileged use. When
running as a non-privileged
user, the listener port can
be set to a value greater
than 1024 if desired.

vbroker.se.exterior.scm.ex-
iiop.listener.proxyPort

<empty> - The proxy
port feature is disabled.
This indicates the feature
is disabled (the listener
port will not be masked).
<a fake port number>

Specifies the proxy port
number used with the
proxy host name property.

vbroker.se.exterior.scm.ex-
iiop.listener.type

IIOP Specifies the listener type
for the ex-iiop scm.

vbroker.se.exterior.scm.ex-
iiop.manager.connectionMax

0 - incoming connections
are unlimited
<an integer value>

Defines the maximum
number of incoming
connections allowed to the
GateKeeper exterior IIOP
listener.

vbroker.se.exterior.scm.ex-
iiop.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in
seconds in which an
inactive connection is idle
before it can be closed.

vbroker.se.exterior.scm.ex-
iiop.manager.type

Socket Specifies the type of
Server Connection
Manager. Currently, only
“Socket” is available.

vbroker.se.exterior.scm.ex-
iiop.connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

Property Default/Options Description

74 VisiBroker GateKeeper Guide

Exter ior server engine

listener. The default port is 8089. The threading policy must always be
ThreadSession.

Property Default/Options Description
vbroker.se.exterior.scm.ex-hiops.root .

<Full path of a file
directory>

Sets to the root directory
as its default. The default
directory is where
GateKeeper starts.

vbroker.se.exterior.scm.ex-
hiops.dispatcher.type

ThreadSession Specifies the dispatcher
type for ex-hiops scm
request. The type should
always be set to
“ThreadSession”.

vbroker.se.exterior.scm.ex-
hiops.listener.port

8089
<a port number>

Sets the default listener
port for the GateKeeper's
client-side (exterior) HIOPS
listener. Client applications
or applets use this port
primarily for HTTPS
tunneling support. This port
may also be used on a
limited basis for standard
HTTPS requests such as
fetching the GateKeeper
IOR file.

vbroker.se.exterior.scm.ex-
hiops.listener.proxyPort

<empty>
<a fake port number>

The proxyPort property is
often used in conjunction
with the server engine
proxyHost property to
mask the target port for
this listener. If this
property is set, the
GateKeeper IOR file will
contain the proxyPort
value in the end point
information for this
listener. It is then the
responsibility of the
external NAT device to map
the proxyPort to the
listener's true port. The
default is <empty>
indicating the feature is
Disabled (the listener port
will not be masked).

vbroker.se.exterior.scm.ex-
hiops.listener.type

HIOPS Specifies the listener type
for the ex-hiops SCM.
HIOPS indicates that this
listener supports the
proprietary HIOPS protocol
used for HTTP tunneling as
well as the HTTPS protocol.
The listener type for pre
configured server
connection managers such
as ex-hiops should not be
changed.

vbroker.se.exterior.scm.ex-
hiops.manager.connectionMax

0 - the cached
connections are unlimited
<an integer value>

Defines the maximum
number of cached
connections available to
the GateKeeper exterior
HIOPS listener.

vbroker.se.exterior.scm.ex-
hiops.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in
seconds in which an
inactive connection is idle
before it can be closed.

VisiBroker GateKeeper Guide 75

Exter ior server engine

ex-ssl server connection manager (SCM)
The ex-ssl server connection manager is responsible for servicing SSL
requests on the exterior sever engine. The listener and dispatcher
properties can be configured using properties with the
vbroker.se.exterior.scm.ex-ssl prefix.

The following vbroker.se.exterior.scm.ex-ssl properties specify the
behavior of the ex-ssl listener. The ex-ssl listener is an ssl listener.

vbroker.se.exterior.scm.ex-
hiops.manager.type

Socket Specifies the type of Server
Connection Manager.

vbroker.se.exterior.scm.ex-
hiops.servletList

orb The servlet class type to be
used.

vbroker.se.exterior.scm.ex-
hiops.servlet.orb.GET

true (default) - enabled
false - disabled

Enables or disables the
servlet GET operation. Note
that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-
hiops.servlet.orb.PUT

true (default) - enabled
false - disabled

Enables or disables the
servlet PUT operation. Note
that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-
hiops.servlet.orb.class

com.inprise.vbroker.HIO
P.servlets.ORB.Servlet

Specifies the Java class to
be loaded for HIOPS when
GateKeeper is used as a
servlet. The customer
should not change this
property to other values.

vbroker.se.exterior.scm.ex-
hiops.servlet.orb.load

false (default) - disabled
true - enabled

Enables or disables the
servlet Load operation.
Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-
hiops.connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

Property Default/Options Description

Property Default/Options Description
vbroker.se.exterior.scm.ex-
ssl.dispatcher.threadMax

100
<an integer value>

Specifies the maximum
number of threads the server
connection manager can
create.

vbroker.se.exterior.scm.ex-
ssl.dispatcher.threadMaxIdle

300
<an integer value>

Specifies the time an idle
thread is idle before it is
destroyed. The default is
300.

vbroker.se.exterior.scm.ex-
ssl.dispatcher.threadMin

0
<an integer value>

Specifies the minimum
number of threads the server
connection manager can
create.

vbroker.se.exterior.scm.ex-
ssl.dispatcher.type

ThreadPool Specifies the dispatcher type
for the ex-ssl scm.

76 VisiBroker GateKeeper Guide

Inter ior server engine

Interior server engine
The following table lists the properties used by the interior server engine on
the server-side or Intranet side of GateKeeper.

You may need to set some of the properties in the interior server engine in
special cases, such as when GateKeeper runs on a dual-homed machine or

vbroker.se.exterior.scm.ex-
ssl.listener.port

684
<a port number>

Sets as a default listener port
for the GateKeeper's client-
side SSL listener. Port 684 is
the recommended setting for
deployed application since it
is an OMG standard for IIOP
and is registered with IANA.

UNIX: On a UNIX platform,
the default listener port
number is in the range 0 to
1024 which is reserved for
privileged use. When running
as a non-privileged user, the
listener port can be set to a
value greater than 1024 if
desired.

vbroker.se.exterior.scm.ex-
ssl.listener.proxyPort

<empty> - The proxy
port feature is disabled.
This indicates the
features is disabled (the
listener port will not be
masked).
<a fake port number>

Specifies the proxy port
number used with the proxy
host name property.

vbroker.se.exterior.scm.ex-
ssl.listener.type

SSL Specifies the listener type for
the ex-ssl scm.

vbroker.se.exterior.scm.ex-
ssl.manager.connectionMax

0 - cached connections
are unlimited.
<an integer value>

Defines the maximum
number of cached
connections available to the
GateKeeper exterior SSL
listener.

vbroker.se.exterior.scm.ex-
ssl.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in seconds
in which an inactive
connection is idle before it
can be closed.

vbroker.se.exterior.scm.ex-
ssl.manager.type

Socket Specifies the type of Server
Connection Manager.
Currently, only “Socket” is
available.

vbroker.se.exterior.scm.ex-
ssl.connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

Property Default/Options Description

VisiBroker GateKeeper Guide 77

Inter ior server engine

if there is a Network Address Translation (NAT) between GateKeeper and
the server.

in-iiop server connection manager (SCM)
The in-iiop server manager is responsible for servicing IIOP requests on the
interior server engine. The listener and dispatcher can be configured using
properties with the vbroker.se.interior.scm.in-iiop prefix.

The following vbroker.se.interior.scm.in-iiop properties specify the
behavior of the in-iiop server connection manager.

Property Default/Options Description
vbroker.se.interior.s
cms

in-iiop (default), in-hiop,
in-ssl, in-hiops
<Combination of the
above separated by
commas.>

This defines the server
connection managers for
the server engine. The
default is IIOP scm.
However, you may
choose to use other types
of protocols, such as SSL
by specifying its
respective scms.

vbroker.se.interior.h
ost

Null - the primary host is
used; that is the IP
address of the primary
Network Interface Card
(NIC).
<a host address>

The interior server engine
host address. You can
also set this property
using the VisiBroker
Console.

vbroker.se.interior.p
roxyHost

<empty> - The proxy
port feature is disabled.
<a fake host address>

This property can be used
if you have a NAT running
between GateKeeper and
the server to hide the
server host's address.
You can also set this
property using the
VisiBroker Console.

Property Default/Options Description
vbroker.se.interior.scm.in-
iiop.dispatcher.threadMax

100
<an integer value>

Specifies the maximum
number of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-
iiop.dispatcher.threadMaxIdle

300
<an integer value>

Specifies the time an idle
thread is idle before it is
destroyed. The default is
300.

vbroker.se.interior.scm.in-
iiop.dispatcher.threadMin

0
<an integer value>

Specifies the minimum
number of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-
iiop.dispatcher.type

ThreadPool Specifies the dispatcher type
for the in-iiop scm. The type
should always be set to
“ThreadPool”.

vbroker.se.interior.scm.in-
iiop.listener.giopVersion

1.2 The protocol version number
to be used for GIOP
messages.

vbroker.se.interior.scm.in-
iiop.listener.port

0 - pick a random
number
<a port number>

Specifies the port number
used with the host name
property.

vbroker.se.interior.scm.in-
iiop.listener.proxyPort

<empty> - The proxy
port feature is disabled.
<a fake port number>

Specifies the proxy port
number used with the proxy
host name property.

78 VisiBroker GateKeeper Guide

Inter ior server engine

in-ssl server connection manager (SCM)
The in-ssl server manager is responsible for servicing SSL requests on the
interior server engine. The listener and dispatcher can be configured using
properties with the vbroker.se.interior.scm.in-ssl prefix.

The vbroker.se.interior.scm.in-ssl properties listed below specify
the behavior of the in-ssl server connection manager.

vbroker.se.interior.scm.in-
iiop.listener.type

IIOP Specifies the listener type for
the in-iiop scm.

vbroker.se.interior.scm.in-
iiop.manager.connectionMax

0 - cached connections
are unlimited.
<an integer value>

Defines the maximum
number of cached
connections available to the
GateKeeper IIOP listener.

vbroker.se.interior.scm.in-
iiop.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in seconds
in which an inactive
connection is idle before it
can be closed.

vbroker.se.interior.scm.in-
iiop.manager.type

Socket Specifies the type of Server
Connection Manager.
Currently, only Socket is
available.

vbroker.se.interior.scm.in-
iiop.connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

Property Default/Options Description

Property Default/Options Description
vbroker.se.interior.scm.in-
ssl.dispatcher.threadMax

100
<an integer value>

Specifies the maximum
number of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-
ssl.dispatcher.threadMaxIdle

300
<an integer value>

Specifies the time an idle
thread is idle before it is
destroyed. The default is
300.

vbroker.se.interior.scm.in-
ssl.dispatcher.threadMin

0
<an integer value>

Specifies the minimum
number of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-
ssl.dispatcher.type

ThreadPool Specifies the dispatcher type
for the in-ssl scm. The type
should always be set to
ThreadPool.

vbroker.se.interior.scm.in-
ssl.listener.port

0 - pick a random
number
<a port number>

Specifies the port number
used with the host name
property.

vbroker.se.interior.scm.in-
ssl.listener.proxyPort

<empty> - The proxy
port feature is disabled.
<a fake port number>

Specifies the proxy port
number used with the proxy
host name property.

vbroker.se.interior.scm.in-
ssl.listener.type

SSL Specifies the listener type for
the in-ssl scm.

vbroker.se.interior.scm.in-
ssl.manager.connectionMax

0 - incoming connections
are unlimited.
<an integer value>

Defines the maximum
number of incoming
connections allowed to the
GateKeeper interior SSL
listener.

VisiBroker GateKeeper Guide 79

Administrat ion

Administration
Java: The following table lists the administration properties. Note that the
default listener port number is 9091.

vbroker.se.interior.scm.in-
ssl.manager.connectionMaxIdle

0
<an integer value>

Specifies the time in seconds
in which an inactive
connection is idle before it
can be closed.

vbroker.se.interior.scm.in-
ssl.manager.type

Socket Specifies the type of Server
Connection Manager.
Currently, only Socket is
available.

vbroker.se.interior.scm.in-
ssl.connection.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

Property Default/Options Description

Property Default/Options Description
vbroker.se.iiop_tp.host null - use host address

from the system.
<Host address>

Specifies the host address that
can be used by this server
engine.

vbroker.se.iiop_tp.ProxyHost <empty> - use host
address from the system.
<Proxy host address>

Specifies the proxy host
address that can be used by
this server engine.

vbroker.se.iiop_tp.scms iiop_tp, hiop_ts Specifies the list of Server
Connection Managers
name(s).

vbroker.se.iiop_tp.scm.iiop_tp.list
ener-port

<empty>
<a port number>

Specifies the IIOP
administrative listener port.

vbroker.se.iiop_tp.scm.iiop_tp.list
ener.proxyPort

<empty>
<a port number>

Specifies the proxy port for
IIOP administrative listener
port.

vbroker.se.iiop_tp.scm.hiop_ts.list
ener.port

9091
<a port number>

Specifies the GateKeeper
administrative listener port.

vbroker.se.iiop_tp.scm.hiop_ts.list
ener.proxyPort

<empty> - The proxy port
feature is disabled
<a fake port number>

Specifies the proxy port
number for HIOP
administrative listener port.

vbroker.se.iiop_tp.type normal This is applicable to the
Administrative Server Engine.

vbroker.se.iiop_tp.scm.hiop_ts.serv
letList

orb A virtual name given to the
servlet class. It is used for
specifying other properties like
PUT, GET, LOAD and etc.

vbroker.se.iiop_tp.scm.hiop_ts.serv
let.orb.GET

true (default) - enabled
false - disabled

Enables or disables the servlet
GET operation.

vbroker.se.iiop_tp.scm.hiop_ts.serv
let.orb.PUT

true (default) - enabled
false - disabled

Enables or disables the servlet
PUT operation.

vbroker.se.iiop_tp.scm.hiop_ts.serv
let.orb.class

com.inprise.vbroker.HIO
P.servlets.ORBServlet

The name of the servlet class.

vbroker.se.iiop_tp.scm.hiop_ts.serv
let.orb.load

false (default) - disabled
true - enabled

Enables or disables the servlet
Load operation.

vbroker.se.iiop_tp.scm.iiop_tp.connect
ion.keepAlive

false (default) - disabled
true - enabled

Set this property to true to
enable the TCP KeepAlive
option.

80 VisiBroker GateKeeper Guide

Access control

Access control
The following table lists the properties used to set security control in
GateKeeper.

Property Default/Options Description
vbroker.gatekeeper.se
curity.accessControll
ers

default Specifies the list of names of access controllers.

vbroker.gatekeeper.se
curity.acl.<controlle
rName>.default

null (default) - no
default action

deny - refused entry

grant - permission
granted

Specifies the default action for the control list.
<controllerName> is specified above.

vbroker.gatekeeper.se
curity.acl.<controlle
rName>.<xx>

where <xx> is the name
of the given rule.

null - no actions
specified. See
description for
additional options.

Defines the action for the specific properties for
the given rule. The definition is as follows
(variables in bold are user-definable):

<deny | grant>
 [operation=”<operation name>”
 [signer by=”<signer's
company name>”]
 [server host=”<hostname>”]
 [client host=”<hostname>”]
 [server ip=aa.bb.cc.dd |
<sub-mask>]
 [client ip=aa.bb.cc.dd |
<sub-mask>]
 [object type=”<object
type>”]]

<deny | grant> defines the action related to the
individual rule.

operation=”<operation name>” defines the related
operation name based on the IDL.

signer by=”<signer's company name>” defines the
signer's company name.

server host=”<hostname>” specifies the server
hostname.

client host=”<hostname>” specifies the client
hostname.

server ip=”<aa.bb.cc.dd>” specifies the IP address
of the machine that the server resides on.

client ip=”<aa.bb.cc.dd>” defines the IP address
of the machine that the client resides on.

object type=”<object type>” defines the object
type.

VisiBroker GateKeeper Guide 81

VisiBroker 3.x style cal lback

VisiBroker 3.x style callback
The following table lists the properties that can be set in VisiBroker 5.x and
later to use the VisiBroker 3.x style callback.

Examples:

vbroker.gatekeeper.security.accessControllers=defaul
t

vbroker.gatekeeper.security.acl.default.rules=rule1,
rule2,rule3

vbroker.gatekeeper.security.acl.default.rule1=grant
 [operation=\”*”\
 [server host=\”borland”\]]

vbroker.gatekeeper.security.acl.default.rule2=deny
 [operation=\”*”\
 [client ip=192.168.100.40 | 255.255.255.0]]

vbroker.gatekeeper.security.acl.default.rule3=deny
 [operation=\”*”\
 [server host=\”inprise”\]
 [client ip=192.168.100.88 | 255.255.255.0]]

vbroker.gatekeeper.se
curity.acl.<controlle
rName>.type

com.inprise.vbroker.
gatekeeper.security.
ACImpl

Specifies the implementation class to be loaded by
GateKeeper for Access Control. Note: User should
not change this value.

vbroker.gatekeeper.se
curity.acl.<controlle
rName>.rules

null - no rules specified.
See description.

Specifies the names for the set of rules. Example:

vbroker.gatekeeper.security.acces
sControllers=
default
vbroker.gatekeeper.security.acl.d
efault.rules=
rule1,rule2,rule3

where rule1, rule2, rule3 are names
defined by the user.

Property Default/Options Description

Property Default/Options Description
vbroker.gatekeeper.callback.enabled false (default) - disabled

true - enabled
Enables or disables the
callback mechanism through
GateKeeper. The default is
disabled.

vbroker.gatekeeper.backcompat.callb
ack

false (default) - disabled
true - enabled

Enables or disables the
VisiBroker 3.x style callbacks.
If you wish to use the old
style callbacks, set both the
above and this property to
true.

vbroker.gatekeeper.backcompat.callb
ack.listeners

iiop (default
ssl

Specifies a comma-separated
list of listeners.

vbroker.gatekeeper.backcompat.callb
ack.listener.iiop.type

IIOPCallback Specifies the type of IIOP
callback listeners.

82 VisiBroker GateKeeper Guide

VisiBroker 3.x sty le cal lback

vbroker.gatekeeper.backcompat.callb
ack.host

<empty> - the value is set
to the primary host IP
address and that is the IP
address of the primary NIC.
<a host address>

Defines the host IP address
to bind for the callback
listener.

vbroker.gatekeeper.backcompat.callb
ack.proxyHost

<empty> - no proxy host is
used.
<a fake host address>

This property is often used in
conjunction with the server
engine proxyPort property
to mask the target port for
this listener. If this property
is set, the callback IOR will
contain the proxyHost value
in the end point information
for this listener. It is then the
responsibility of the Network
Address Translation (NAT)
device to map the proxyHost
to the listener's true port.
The default is <empty>
indicating that the feature is
disabled (the listener port will
not be masked in the callback
IOR).

vbroker.gatekeeper.backcompat.callb
ack.listener.ssl.type

SSLCallback Specifies the type of SSL
callback listener.

vbroker.gatekeeper.backcompat.callb
ack.listener.ssl.port

0-a port picked at random
<port number>

Defines the port on which the
callback listener uses to
listen for SSL.

vbroker.gatekeeper.backcompat.callb
ack.listener.ssl.proxyPort

<empty> - no proxy port is
used>

<fake port number>

Use this property when a NAT
sits between the client and
GateKeeper in which the NAT
hides the actual GateKeeper
host address.

vbroker.gatekeeper.backcompat.callb
ack.listener.iiop.port

0 - a port number is picked at
random.
<a port number>

Specifies the port in which
the callback listeners listen
for the IIOP.

vbroker.gatekeeper.backcompat.callb
ack.listener.iiop.proxyPort

<empty> - no proxy port is
used.
<a fake port number>

The proxyPort property is
often used in conjunction
with the server engine
proxyHost property to mask
the target port for this
listener. If this property is
set, the callback IOR will
contain the proxyPort value
in the end point information
for this listener. It is then the
responsibility of the Network
Address Translation (NAT)
device to map the proxyPort
to the listener's true port.
The default is <empty>
indicating that the feature is
disabled (the listener port will
not be masked in the callback
IOR).

Property Default/Options Description

VisiBroker GateKeeper Guide 83

Performance and load balancing

Performance and load balancing
The following table lists the performance and load balancing properties to
distribute and monitor the load between client and server.

Property Default/Options Description
vbroker.gatekeeper.load.di
stributor

com.inprise.vbroker.
gatekeeper.ext.
RoundRobinDistributor

Specifies the Distributor class to be
used by the Load Balance Manager.
Users should not change this property
unless they understand the distributor
interface and implement their own
distributor. The following
implementation class is used as a
default distributor: (Round
Robin):com.inprise.vbroker.gatek
eeper.
ext.RoundRobinDistributor.

vbroker.ce.iiop.ccm.connec
tionMax

0 - will not try to close any of
the old active or cached
connections.
<an integer value>

Specifies the maximum number of
total connections within a client. This
value is equal to the number of active
connections plus those that are
cached.

vbroker.orb.gcTimeout 300 (default)
<an integer value>

Specifies the time in seconds that
must pass before important resources
that are not used are cleared.

vbroker.orb.fragmentSize 0 Specifies the GIOP fragment size. It
must be a multiple of GIOP stream
chunk size.

vbroker.orb.streamChunkSiz
e

4096
<a number which is the power
of 2>

Specifies the GIOP message chunk
size. It must be the power of 2.

vbroker.orb.bufferCacheTim
eout

6000
<an integer value>

Specifies (in milliseconds) the time in
which a message chunk has been
cached before it is discarded.

vbroker.gatekeeper.load.sl
aves

<empty> - no slaves
GateKeeper
<a list of slaves> - see
description.

Specifies the list of Slave GateKeepers
to be clustered together for the
purpose of Load Balancing by this
Master GateKeeper. The list of names
is separated by commas. For each
name in the list, a property such as
“vbroker.gatekeeper.load.slave.<slave
_name>” is added to the property file.
There is no default value for this
property. Note that this property is
used in the Master GateKeeper
property only. For example:
vbroker.gatekeeper.load.slaves=a
bc,xyz.

Note: If you set this property, you
must load the appropriate library. See
the description of
vbroker.orb.dynamicLibs in
Miscellaneous ORB properties.

84 VisiBroker GateKeeper Guide

Support for b id i rect ional communicat ions

Support for bidirectional communications
The following table lists the properties that support bidirectional
communications. These properties are evaluated only once, when the SCMs
are created. In all cases, the exportBiDir and importBiDir properties on
the SCMs are given priority over the enableBiDir property. In other
words, if both properties are set to conflicting values, the SCM-specific

vbroker.gatekeeper.load.sl
ave.<slave_name>

<empty>
<Specific Slave IOR> - see
description.

Specifies the IOR or a URL pointing to
specific Slave GateKeeper to be
clustered for the purpose of Load
Balancing by this Master GateKeeper.
Note that this property is used in
Master GateKeeper property only. For
example:
vbroker.gatekeeper.load.slave.ab
c=http://host1:9091/
GateKeeper.ior
vbroker.gatekeeper.load.slave.xy
z=http://host2:9091/
GateKeeper.ior.
Note: If you set this property, you
must load the appropriate library. See
the description of
vbroker.orb.dynamicLibs in
Miscellaneous ORB properties.

vbroker.gatekeeper.load.ba
lancer

<empty>
<master>

Specifies that the master GateKeeper's
sole purpose is to do load balancing
and it will never take a turn in serving
clients. In the default mode, the
master itself is also a slave, in the
sense that it is included in the list of
available GateKeepers and will take
turn among the slaves. When a
particular GateKeeper is unavailable,
the client will come back to the master
to obtain the next slave GateKeeper in
turn (this can be one of the slaves or
the master itself).
Note: If you set this property, you
must load the appropriate library. See
the description of vbroker.orb.
dynamicLibs in Miscellaneous ORB
properties.

Property Default/Options Description

VisiBroker GateKeeper Guide 85

Support for pass-through connect ions

properties will take effect. This allows you to set the enableBiDir property
globally, and more importantly, turn off bidirectionality in individual SCMs.

Support for pass-through connections
Note

The vbroker.gatekeeper.enablePassthru property is the only property
that supports pass-through connections.

Property Default/Options Description
vbroker.orb.enableB
iDir

none (default)
both
server
client

See “Callback with
GateKeeper's bidirectional
support”.

You can selectively make bidirectional connections. If
the client defines vbroker.orb.enableBiDir=client,
and the server defines
vbroker.orb.enableBiDir=server, the value of
vbroker.orb.enableBiDir in GateKeeper determines
the state of the connection.

Note: Just as you can selectively enable bidirectional
communication on a per-SCM basis, you can also
selectively enable bidirectional communication on
GateKeeper. For example, if you set the
vbroker.se.exterior.scm.ex--
iiop.manager.importBiDir property to true,
GateKeeper will accept bidirectional connections from
the client. Setting the
vbroker.se.exterior.scm.ex--iiop.manager.
exportBiDir property to true causes GateKeeper to
request bidirectional connections with the server.

Property Default/Options Description
vbroker.gatekeeper.enablePassthru false (default) - disabled

true - enabled
Specifies enabled or disabled
Passthru mode in GateKeeper.

vbroker.gatekeeper.passthru.block
Size

16384
<an integer value>

Specifies the buffer size that
the channel uses for each read
and write operation. A high
value handles large messages
with a single read and write,
but increases the resources
used by a single channel. A
low value will optimize
resource utilization, while
degrading performance due to
multiple reads and writes.

vbroker.gatekeeper.passthru.conne
ctionTimeout

300000 milliseconds (5
minutes)
<an integer value>

Specifies the amount of time in
milliseconds a given channel
will wait before it stops waiting
for connections and shuts
down the channel.

vbroker.gatekeeper.passthru.inPor
tMin

1024
<a port number>

Used together with
vbroker.gatekeeper.
passthru.inPortMax. It
specifies the start of a range of
interior port for pass-through
incoming connections.

vbroker.gatekeeper.passthru.inPor
tMax

65535
<a port number>

Used together with
vbroker.gatekeeper.
passthru.inPortMin. It
specifies the end of a range of
ports for pass-through in-
coming connections.

vbroker.gatekeeper.passthru.logLe
vel

0 - no logging
<an integer value>

Enables the level of logging for
the pass-through component.

86 VisiBroker GateKeeper Guide

Secur i ty services (SSL)

Security services (SSL)
The following table lists the properties used in the Security Services.

Note

If you set this property then you load the appropriate library. See the
description of vbroker.orb.dynamicLibs in Miscellaneous ORB properties.

Location services (Smart Agent)
The following table lists the Smart Agent (OSAgent) properties used in the
Location Service to locate server objects.

See Using the Smart Agent in either the VisiBroker for Java Developer's Guide or
the VisiBroker for C++ Developer's Guide for more details of these properties.

vbroker.gatekeeper.passthru.outPo
rtMin

0
<a port number>

Used together with
vbroker.gatekeeper.
passthru.outPortMax. It
specifies the start of a range of
exterior port for pass-through
outgoing connections.

vbroker.gatekeeper.passthru.outPo
rtMax

65535
<a port number>

Used together with
vbroker.gatekeeper.
passthru.outPortMin. It
specifies the end of a range of
exterior port for pass-through
outgoing connections.

vbroker.gatekeeper.passthru.strea
mTimeout

2000
<an integer value>

Specifies the amount of time in
milliseconds an established
channel will wait for messages
before it shuts down.

Property Default/Options Description

Property Default/Options Description
vbroker.orb.alwaysSecure false (default) - disabled

true - enabled
Whether GateKeeper will make secure
connections to the server.

vbroker.security.peerAuthent
icationMode

See description. Refer to the VisiBroker Security Guide for
more details.

vbroker.security.trustpoints
Repository

See description. Refer to the VisiBroker Security Guide for
more details.

vbroker.security.wallet.iden
tity

See description. Refer to the VisiBroker Security Guide for
more details.

vbroker.security.wallet.pass
word

See description. Refer to the VisiBroker Security Guide for
more details.

Property Default/Options Description
vbroker.agent.addr null - see description. Specifies the IP address or host name of the host

running the Smart Agent (OSAgent). The default value,
null, installs VisiBroker applications to use the value
from the OSAGENT_ADDR environment variable. If the
OSAGENT_ADDR variable is not set, it is assumed that
the Smart Agent is running on the local host or will be
located by a broadcast message.

vbroker.agent.port null Specifies the port number that defines a domain within
your network. VisiBroker applications and Smart Agent
(OSAgent) work together when they have the same
port number. This is the same property as the
OSAGENT_PORT environment variable.

VisiBroker GateKeeper Guide 87

Backward compat ib i l i ty wi th Vis iBroker 4.x and below

Backward compatibility with VisiBroker 4.x and
below

From VisiBroker version 5.x onwards, GateKeeper by default is not
compatible with programs developed with VisiBroker 4.x and below. To
make GateKeeper run properly with programs developed with VisiBroker 4.x
and below, set the following property to true.

Note

Earlier versions of GateKeeper are by default compatible with older
programs developed with Visibroker 4.x and below. From GateKeeper 5.x,
however, you must explicitly set this property.

vbroker.agent.addrF
ile

null Specifies a file that stores information on where the IP
address(es) or host names of the Smart Agent may be
found.

vbroker.agent.failO
ver

true (default)
false

When set to true, allows a VisiBroker application to
failover to another Smart Agent.

vbroker.agent.enabl
eCache

true (default)
false

When set to true, allows VisiBroker applications to
cache object references. Setting this property to true
improves performance when locating servers, but
disables Smart Agent round-robin activity.

Property Default/Options Description

Property Default/Options Description
vbroker.orb.enableVB4bac
kcompat

true (default)
false

Specifies whether GateKeeper is compatible with older
VisiBroker versions. Setting the property to false makes
GateKeeper compatible with programs developed with
VisiBroker 4.5.x onwards. Setting this property to true
makes GateKeeper compatible with versions earlier than
VisiBroker 4.5.x as well. (See “Appendix GateKeeper
deployment scenarios” for more information.)

Note: This value is set to true by default in GateKeeper.
This value, however, is false by default on the client and
server.

88 VisiBroker GateKeeper Guide

Server 's propert ies for f i rewal l speci f icat ions

Server's properties for firewall specifications
These properties should only be set in the property file for the server. If you
set any of these properties then you load the appropriate library. See the
description of vbroker.orb.dynamicLibs (for Java) and
vbroker.orb.enableFirewall (for C++) in Miscellaneous ORB properties.

The following properties specify the communication paths from the client to
the server. See “Specifying communication paths to the server” for examples of
its usage.

Property Default/Options Description
vbroker.se.iiop_tp.firewallP
aths

<empty>
<List of paths>

Specifies a list of communication paths
from the clients to the servers. <List of
paths> is a set of user defined names for
the paths separated with commas. An
example of the <List of paths> is:
vbroker.se.iiop_tp.firewallPaths=x,
y

vbroker.firewall-
path.<pathname>

<empty>
<List of components>

Specifies the list of components in the
firewall path <pathname>. For example,
vbroker.
firewall-path.x=a,b
vbroker.firewall-path.y=c

vbroker.firewall.<component>
.type

<empty>
PROXY TCP

Specifies the type of the components. For
example: vbroker.firewall.a.type =
PROXY vbroker.firewall.b.type = TCP

vbroker.firewall.<component>
.ior

<empty>
<Filename of ior file>
<URL of the ior file>
IOR:<GateKeeper's
stringified ior>

Specifies the ior of the component. This is
specified together with
vbroker.firewall.<component>.type=
PROXY.

Examples of the values are:

1 file:C:/GateKeeper/
gatekeeper.ior

2 http://www.inprise.com/GK
gatekeeper.ior

3 IOR:2398402841729073423497234
234234

vbroker.firewall.<component>
.host

<empty>
<fake host name>

Specifying fake host of the server. This is
specified together with
vbroker.firewall.<component>.types=
TCP and the component is a TCP Firewall
with NAT.

vbroker.firewall.<component>
.iiop_port

<empty>
<fake IIOP Port>

Specifies a fake IIOP port for the server.
This is specified together with
vbroker.firewall.<component>.type=T
CP and the component is a TCP Firewall
with NAT.

vbroker.firewall.<component>
.ssl_port

<empty>
<fake SSL Port>

Specifies a fake SSL port for the server.
This is specified together with
vbroker.firewall.<component>.type=T
CP and the component is a TCP Firewall
with NAT.

vbroker.firewall.<component>
.hiop_port

<empty>
<fake HIOP Port>

Specifies a fake HIOP port for the server.
This is specified together with
vbroker.firewall.<component>.type=T
CP and the component is a TCP Firewall
with NAT.

VisiBroker GateKeeper Guide 89

Miscel laneous ORB propert ies

Miscellaneous ORB properties
These properties are common ORB objects and are directly and indirectly
related to GateKeeper. They are not necessarily set in the GateKeeper
property file, so please read each description carefully.

Property Default/Options Description
vbroker.orb.gateke
eper.ior

<empty>
<ior filename>

Specifies the URL of the GateKeeper IOR file. This
property must be set in the HTML files with applets
because of the change in the behavior of the Applet
Viewer.

vbroker.orb.always
Proxy

false (default) - disable
true - enabled

Specifies whether the client must always connect to
the server via GateKeeper. This property can be set in
the client or GateKeeper. If set to true in the client,
the client will always connect to the server via
GateKeeper. If set to true in GateKeeper, it will
connect to the server via another GateKeeper.

vbroker.locator.io
r

<empty>
<ior filename>

Specifies the URL of the GateKeeper IOR file. This
property is usually set in the client applet, but can
also be set in an application.

Note: GateKeeper provides limited location services.
It cannot forward location requests to another
GateKeeper. This is in contrast to the Smart Agent
which is able to forward requests to another available
Smart Agent.

vbroker.orb.always
Tunnel

false (default) - disabled
true - enabled

Specifies whether the client must always make HTTP
tunnel (IIOP wrapper) connections to the server.
When set to true, specifies that the client always
make connections to the server using HTTP tunnel
(IIOP wrapper). This property can be set in the client
or GateKeeper.

vbroker.orb.dynami
cLibs

<empty>
<a list of libraries>

See description

Specifies a list of libraries. Only libraries related to
GateKeeper are described here.

If the firewall component is specified, you must set
this property in the properties of the Java client and
Java server to:

com.inprise.vbroker.firewall.Init

If the load balancing component is specified,
you must set this property in GateKeeper's
property file to:

com.inprise.vbroker.gatekeeper.ext.I
nit

vbroker.orb.enableF
irewall

false (default) - disabled
true - enabled

Setting this property to true at the C++ client and
C++ server loads the required firewall library to
enable the firewall feature with Gatekeeper.

vbroker.orb.firewal
l.init

false (default) - disabled
true - enabled

If this property is set to true, and if the IOR has both
IIOP and TCP type firewall components, then if any
one of the end points fails, fail-over can occur.

Setting vbroker.orb.alwaysProxy=true or a
programmatically configured firewall proxy takes
precedence.

90 VisiBroker GateKeeper Guide

Miscel laneous ORB propert ies

VisiBroker GateKeeper Guide 91

Appendix
GateKeeper deployment
scenarios
This appendix shows some common deployment scenarios in a multi-
network environment with and without using GateKeeper.

TCP firewall (without GateKeeper)

Scenario 1.1: Smart Agent behind firewall

This scenario shows how to configure a client object to access a Smart
Agent located behind a firewall.

Client's environment setting (using environment variables or Windows
Registry):

OSAGENT_PORT

Client's properties:

vbroker.agent.addr=<osagent_host>
vbroker.agent.port=<OSAGENT_PORT>

Firewall settings:

Allow UDP packets for both directions between the client host and the Smart
Agent host on port <OSAGENT_PORT>.

Allow TCP and UDP packets for both directions between the client host and
the Smart Agent host on port <OSAGENT_CLIENT_HANDLER_PORT>.

92 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Scenario 1.2: Using IIOP communication

Client's properties: none required

Server's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Firewall setting:

Allow TCP packet from client host to server host on port 683.

Scenario 1.3: Using IIOP/SSL communication

Secured client's properties:

Enabling Security Service
vbroker.security.disable=false

Enforcing secure transport at client side
vbroker.security.alwaysSecure=true

Setting peerAuthenticationMode
vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
vbroker.security.trustpointsRepository=Directory:./
trustpoints

Secured server's properties:

Enabling Security Service
vbroker.security.disable=false

Setting SSL Layer Attributes
vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
vbroker.security.trustpointsRepository=Directory:./
trustpoints

Set the ssl listener port at 443
vbroker.se.iiop_tp.scms=iiop_tp,ssl
vbroker.se.iiop_tp.scm.ssl.listener.port=443
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

VisiBroker GateKeeper Guide 93

TCP f i rewal l (wi thout GateKeeper)

The sample properties assume that valid certificate information has already
been loaded into both the secured client and the secured server as in the
<install_dir>/examples/vbroker/security/bank_ssl example.

Firewall setting:

Allow SSL packet from client host to server host on port 443.

Scenario 1.4: Firewall performs address translation only

Firewall setting:

Address translation: 199.10.9.6 to 101.10.2.6

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.proxyHost=199.10.9.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Method 2: Using firewall component

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=fw
vbroker.firewall.fw.type=TCP
vbroker.firewall.fw.host=199.10.9.6
vbroker.firewall.fw.iiop_port=683
vbroker.firewall.fw.hiop_port=0

Note

Specify a real port (for example, iiop_port=683) when there is no port
translation, and 0 (for example, hiop_port=0) if the listener port is
disabled.

94 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Scenario 1.5: Firewall performs port translation only

Firewall setting:

Port translation: 1683 to 683

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=1683

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw
 vbroker.firewall.fw.type=TCP
 vbroker.firewall.fw.host=101.10.2.6
 vbroker.firewall.fw.iiop_port=1683
 vbroker.firewall.fw.hiop_port=0

Note

Specify real host when there is no address translation.

When method 2 is used, add the following to the client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init

Scenario 1.6: Firewall performs both address and port translations

Combine the settings in Scenarios 1.4 and 1.5 when the firewall performs
both address and port translation.

VisiBroker GateKeeper Guide 95

TCP f i rewal l (wi thout GateKeeper)

Note

For firewall component method, specify the firewall once combining both
the fake host and fake port into the same firewall entry like the following:

vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=fw
vbroker.firewall.fw.type=TCP
vbroker.firewall.fw.host=199.10.9.6
vbroker.firewall.fw.iiop_port=1683
vbroker.firewall.fw.hiop_port=0

Note

For secure connection with NAT (Network Address Translation), use the
security properties settings in Scenario 1.3.

Scenario 1.7: Callback without NAT

Refer to Scenario 1.2 for forward communication settings.

Client's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16001

Firewall setting:

Allow TCP packet from server host to client host on port 16001.

Scenario 1.8: Callback with NAT

Refer to Scenario 1.2 for forward communication settings.

Firewall setting:

96 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Address translation: 130.129.129.10 to 99.29.29.10 for packets from
server network to client network. Port translation: 16100 to 16001 for
packets from server network to client network.

Client's properties:

vbroker.se.iiop_tp.host=99.29.29.10
vbroker.se.iiop_tp.proxyHost=130.129.129.10
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16001
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=16100

Scenario 1.9: Bi-directional communication

Use the settings in Scenario 1.2, 1.3, 1.4, 1.5, or 1.6 with the following
additional settings to enable bi-directional communication.

In the figure above, the same connections are used for both forward and
reverse communications paths.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

Scenario 1.10: Multiple firewalls in front of server

This scenario shows two firewalls in front of the server host. It can be
extended similarly to more than two firewalls.

Both firewalls do not perform NAT

When both firewalls do not perform NAT, configure both the firewalls to
allow TCP packets (for IIOP communication) on port Ps.

Only Firewall 1 performs NAT

Firewall1 performs the following NAT:

• Address translation: H1 to HsPort translation: P1 to Ps

VisiBroker GateKeeper Guide 97

TCP f i rewal l (wi thout GateKeeper)

• Firewall 2 must be configured to allow TCP packets on port Ps.

• Clients will send IIOP packets to host H1 on port P1.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H1>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P1>

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw1
 vbroker.firewall.fw1.type=TCP
 vbroker.firewall.fw1.host=<H1>
 vbroker.firewall.fw1.iiop_port=<P1>
 vbroker.firewall.fw1.hiop_port=0

Only firewall2 performs NAT

Firewall2 performs the following NAT:

• Address translation: H2 to HsPort translation: P2 to Ps

• Firewall1 must be configured to allow TCP packets on port P2.

• Clients will send IIOP packets to host H2 on port P2.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H2>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P2>

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw2
 vbroker.firewall.fw2.type=TCP

98 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

 vbroker.firewall.fw2.host=<H2>
 vbroker.firewall.fw2.iiop_port=<P2>
 vbroker.firewall.fw2.hiop_port=0

Both firewalls perform NAT

Firewall1 performs the following NAT:

• Address translation: H1 to H2Port translation: P1 to P2

• Firewall2 performs the following NAT:

• Address translation: H2 to HsPort translation: P2 to Ps

• Clients will send IIOP packets to host H1 on port P1.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H1>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P1>

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw1
 vbroker.firewall.fw1.type=TCP
 vbroker.firewall.fw1.host=<H1>
 vbroker.firewall.fw1.iiop_port=<P1>
 vbroker.firewall.fw1.hiop_port=0

Note

The NAT information of Firewall2 does not need to be configured. The
proxyHost and proxyPort specify only the first NAT fake host and fake
port. For the firewall component and the firewall path, only specify the first
NAT device.

VisiBroker GateKeeper Guide 99

GateKeeper deployment

GateKeeper deployment

Scenario 2.1: GateKeeper as Web Server

GateKeeper can act as a Web Server to serve HTML pages, client applet and
IOR files.

Set the GateKeeper HTTP listener using the following GateKeeper's
properties:

vbroker.se.exterior.scms=ex-iiop,ex-hiop
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

From the web browser of the client host,

• Use the following to load an HTML file or client applet:

 http://gatekeeper:8088/ClientApplet.html

• Use the following to load GateKeeper's IOR:

 http://gatekeeper:8088/gatekeeper.ior

Configure the client applet (ClientApplet.html) using the following example:

<applet archive=vbjorb.jar code=”ClientApplet.class”
width=”200” height=”80”>
<param name=”org.omg.CORBA.ORBClass”
value=”com.inprise.vbroker.orb.ORB”>
<param name=”vbroker.orb.alwaysTunnel” value=”true”>
<param name=”vbroker.orb.gatekeeper.ior” value=”http://
gatekeeper:8088/gatekeeper.ior”>
</applet>

Any additional client properties needed can be set similarly using param
name and value.

100 VisiBroker GateKeeper Guide

GateKeeper deployment

Scenario 2.2: GateKeeper as IIOP Proxy

Client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysProxy=true

GateKeeper's properties:

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/
gatekeeper.ior

If the client is an applet that wants to use IIOP instead of HTTP Tunneling,
use the following configuration, do not specify the property <param
name=”vbroker.orb.alwaysTunnel” value=”true”>:

<applet archive=vbjorb.jar code=”ClientApplet.class”
width=”200” height=”80”>
<param name=”org.omg.CORBA.ORBClass”
value=”com.inprise.vbroker.orb.ORB”>
<param name=”vbroker.orb.alwaysProxy” value=”true”>
<param name=”vbroker.orb.gatekeeper.ior” value=”http://
gatekeeper:8088/gatekeeper.ior”>
</applet>

Scenario 2.3: HTTP Tunneling Connection

Client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,
com.inprise.vbroker.HIOP.Init

VisiBroker GateKeeper Guide 101

GateKeeper deployment

vbroker.orb.alwaysTunnel=true
vbroker.orb.alwaysProxy=true
vbroker.orb.gatekeeper.ior=http://gatekeeper:8088/
gatekeeper.ior

GateKeeper's properties:

vbroker.se.exterior.scm.ex-hiop.listener.port=8088
vbroker.se.exterior.scm.ex-iiop.listener.port=683

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/
gatekeeper.ior
vbroker.orb.exportFirewallPath=true

If the client is an applet that wants to use HTTP Tunneling, use the following
configuration:

<applet archive=vbjorb.jar code=”ClientApplet.class”
width=”200” height=”80”>
<param name=”org.omg.CORBA.ORBClass”
value=”com.inprise.vbroker.orb.ORB”>
<param name=”vbroker.orb.alwaysTunnel” value=”true”>
<param name=”vbroker.orb.gatekeeper.ior” value=”http://
gatekeeper:8088/gatekeeper.ior”>
</applet>

Scenario 2.4: Secure connection (SSL)

Client's properties:

Firewall related properties
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysProxy=true

Set SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= paul
vbroker.security.wallet.password= Paul$$$$
vbroker.security.trustpointsRepository=Directory:./
trustpoints

GateKeeper's properties:

vbroker.se.exterior.scms=ex-iiop,ex-ssl
vbroker.se.exterior.scms.ex-iiop.listener.type=Disabled-
IIOP
vbroker.se.exterior.scms.ex-hiop.listener.port=8088

102 VisiBroker GateKeeper Guide

GateKeeper deployment

vbroker.se.exterior.scms.ex-ssl.listener.port=443

Set SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= kevin
vbroker.security.wallet.password= Kevin$$$$
vbroker.security.trustpointsRepository=Directory:./
trustpoints
vbroker.se.iiop_tp.scm.ssl.listener.port=<server SSL:
listener port>

Server's properties:

Firewall related properties
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/
gatekeeper.ior

SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= kevin
vbroker.security.wallet.password= Kevin$$$
vbroker.security.trustpointsRepository=Directory:./
trustpoints

vbroker.se.iiop_tp.scms=iiop_tp,ssl
vbroker.se.iiop_tp.scm.ssl.listener.port=<server SSL
listener port>
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

Scenario 2.5: Secure HTTP Tunneling

Use the client and server settings in Scenario 2.4 and add the following to
the client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,
 com.inprise.vbroker.HIOP.Init
 com.inprise.security.Init,
 com.inprise.security.hiops.Init
vbroker.orb.alwaysTunnel=true

GateKeeper's properties:

vbroker.orb.dynamicLibs=com.inprise.security.Init,
com.inprise.vbroker.gatekeeper.ssl.Init,
 com.inprise.security.hiops.Init
vbroker.se.exterior.scms=ex-IIOP,ex-hiop,ex-hiops
vbroker.se.exterior.scm.ex-iiop.listener.type=Disabled-
IIOP
vbroker.se.exterior.scm.ex-hiops.listener.port=443
vbroker.se.exterior.scm.ex-hiop.listener.port=8088
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=Kevin
vbroker.security.wallet.password=Kevin$$$
vbroker.security.secureTransport=true
vbroker.security.trustpointsRepository=Directory:./
trustpoints
vbroker.security.peerAuthenticationMode=none

VisiBroker GateKeeper Guide 103

GateKeeper deployment

Scenario 2.6: Callback connection (for VisiBroker 3.x style)

Refer to Scenario 2.2 for forward communication settings.

Set the following client's property:

vbroker.se.iiop_tp.scm.iiop_tp.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop_tp.listener.gatekeeper=http://
gk_host:8088/gatekeeper.ior

Enable GateKeeper callback (VisiBroker 3.x style) using the following
GateKeeper's properties:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=
<exterior callback port>
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=
IIOPCallback

The interior port in-iiop is automatically enabled when callback is
enabled. Only for secured callback, you need to add the SCM for in-ssl,
ex-ssl and ex-hiops as required.

Scenario 2.7: Bi-directional communication

Use the settings in Scenario 2.2, 2.3, 2.4, or 2.5 with the following
additional settings to enable bi-directional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 2.8: Pass-through connection

Use the settings in Scenario 2.2 or 2.4 with the following additional settings
to enable pass-through connection.

Client's Properties:

vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true

104 VisiBroker GateKeeper Guide

GateKeeper deployment

Scenario 2.9: GateKeeper in dual-homed host configuration

Use the following GateKeeper's properties to configure:

• exterior host and interior host address

 vbroker.se.exterior.host=199.10.9.5
 vbroker.se.interior.host=101.10.2.6

• exterior listener ports

 vbroker.se.exterior.scm.ex-
iiop.listener.port=<exterior IIOP port>
 vbroker.se.exterior.scm.ex-
hiop.listener.port=<exterior HIOP port>

• interior listener ports (used for VisiBroker 3.x style callback)

 vbroker.se.interior.scm.in-
iiop.listener.port=<interior IIOP port>

VisiBroker GateKeeper Guide 105

GateKeeper wi th server-s ide f i rewal l

GateKeeper with server-side firewall
Note

Routers can also perform the function of a firewall.

Firewall in front of GateKeeper

Scenario 3.1: Firewall performs packet-filtering without NAT

GateKeeper's properties:

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

Firewall setting:

Allow routing of TCP packets on port 683 and HTTP packets on port 8088
from the external network to the internal network.

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://101.10.2.10:8088/
gatekeeper.ior

106 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Scenario 3.2: Firewall performs NAT

Firewall NAT setting:

Address translation: 199.10.9.10 to 101.10.2.10 Port translations: 10683
to 683 and 8000 to 8088

There are two methods for specifying a NAT on a firewall in front of
GateKeeper (use only one of the following two methods):

• Using GateKeeper's proxyHost and proxyPort configuration

GateKeeper's properties:

 vbroker.se.exterior.host=101.10.2.10
 vbroker.se.exterior.proxyHost=199.10.9.10
 vbroker.se.exterior.scm.ex-iiop.listener.port=683
 vbroker.se.exterior.scm.ex-
iiop.listener.proxyPort=10683
 vbroker.se.exterior.scm.ex-hiop.listener.port=8088
 vbroker.se.exterior.scm.ex-
hiop.listener.proxyPort=8000

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Ini
t
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=gk
 vbroker.firewall.gk.type=PROXY
 vbroker.firewall.gk.ior=http://101.10.2.10:8088/
gatekeeper.ior

• Using the server's firewall component

GateKeeper's properties:

 vbroker.se.exterior.host=101.10.2.10
 vbroker.se.exterior.scm.ex-iiop.listener.port=683
 vbroker.se.exterior.scm.ex-hiop.listener.port=8088

VisiBroker GateKeeper Guide 107

GateKeeper wi th server-s ide f i rewal l

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Ini
t
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw,gk
 vbroker.firewall.fw.type=TCP
 vbroker.firewall.fw.host=199.10.9.10
 vbroker.firewall.fw.iiop_port=10683
 vbroker.firewall.fw.hiop_port=8000
 vbroker.firewall.gk.type=PROXY
 vbroker.firewall.gk.ior=http://101.10.2.10:8088/
gatekeeper.ior

Scenario 3.3: Callback connection (for VisiBroker 3.x style)

Refer to Scenario 3.1 or 3.2 for forward communication settings.

Set the following client's property:

vbroker.se.iiop_tp.scm.iiop_tp.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop.listener.gatekeeper=http://
gk_host:8088/gatekeeper.ior

Enable GateKeeper callback (VisiBroker 3.x style) and specify the callback
port using the following properties:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.host=101.10.2.10
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=
2683
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=
IIOPCallback

The firewall must allow the client to establish a callback connection (TCP
protocol) to GateKeeper using port 2683.

Configure the interior ports using the following GateKeeper's properties:

108 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

vbroker.se.interior.scm.in-iiop.listener.port=16000

If the firewall performs NAT on the GateKeeper's host and callback port
(address translation:199.10.9.10 to 101.10.2.10 and port translation:
12683 to 2683), add the following into GateKeeper's properties:

vbroker.gatekeeper.backcompat.callback.proxyHost=199.10.9.
10
vbroker.gatekeeper.backcompat.callback.listener.iiop.proxy
Port=12683

Scenario 3.4: Bi-directional communication

Use the settings in Scenario 3.1 or 3.2 with the following additional settings
to enable bi-directional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 3.5: Pass-through connection

Use the settings in Scenario 3.1 or 3.2 with the following additional settings
to enable pass-through connection.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>

Firewall setting:

Caution

Allow routing of TCP packets on port range <in_min_port> to
<in_max_port> from the client host to the GateKeeper. The firewall must
not perform port translation on this range of ports.

Firewall in front and behind of GateKeeper
GateKeeper is deployed in the Demilitarized Zone (DMZ) while the servers
are deployed in the internal network.

Note

Refer to the previous section for a configuration related to a firewall in front
of GateKeeper. This section concentrates on the configuration related to the
firewall between the GateKeeper and servers.

VisiBroker GateKeeper Guide 109

GateKeeper wi th server-s ide f i rewal l

Scenario 4.1: Configuring firewall behind GateKeeper

Use the settings in Scenario 3.1 or 3.2 to configure the communication
between clients and GateKeeper. The settings described here should be
used in conjunction to the settings in Scenario 3.1 or 3.2.

Specify the server IIOP listener port using the following server's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Configure Firewall2 to allow IIOP packet (TCP protocol) from GateKeeper to
the server host on port 683.

Scenario 4.2: Firewall behind GateKeeper performs NAT

Use the settings in Scenario 3.1 or 3.2 to configure the communication
between clients and GateKeeper. The settings described here should be
used in conjunction to the settings in Scenario 3.1 or 3.2.

Firewall2 NAT setting:

Address translation: 199.10.9.10 to 101.10.2.10
Ports translation: 1683 to 683

There are two methods for specifying NAT on Firewall2. Use only one of the
following two methods.

110 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Server's properties:

Method 1: Using IIOP profile

vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.proxyHost=199.10.9.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=1683

Method 2: Using firewall component

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk,fw2
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/
gatekeeper.ior
vbroker.firewall.fw2.type=TCP
vbroker.firewall.fw2.host=199.10.9.6
vbroker.firewall.fw2.iiop_port=1683
vbroker.firewall.fw2.hiop_port=0

Scenario 4.3: Callback connection (for VisiBroker 3.x style)

Use the settings in Scenario 3.3 callback connection between client and
GateKeeper.

Configure the interior ports using the following GateKeeper's properties:

vbroker.se.interior.scm.in-iiop.listener.port=16000

Firewall2 must allow the server to communicate with GateKeeper on port
16000 using TCP protocol.

If Firewall2 performs the following NAT for packets routed from the server
to GateKeeper:

Address Translation: 121.100.2.19 to 101.10.2.10Port Translation: 161000
to 16000

Then add the following properties to the GateKeeper's properties:

vbroker.se.interior.host=101.10.2.10
vbroker.se.interior.proxyHost=121.100.2.19
vbroker.se.interior.scm.in-iiop.listener.port=16000
vbroker.se.interior.scm.in-iiop.listener.proxyPort=16100

VisiBroker GateKeeper Guide 111

GateKeeper wi th server-s ide f i rewal l

Scenario 4.4: Bi-directional communication

Use the settings in Scenario 4.1 or 4.2 with the following additional settings
to enable bi-directional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 4.5: Pass-through connection

Use the settings in Scenario 4.1 or 4.2 with the following additional settings
to enable pass-through connection.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>
vbroker.gatekeeper.passthru.outPortMin=<out_min_port>
vbroker.gatekeeper.passthru.outPortMax=<out_max_port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<server IIOP
port>

Caution

The value of <server IIOP port> must fall in the range of
<out_min_port> and <out_max_port>.

Configure Firewall1 to allow routing of TCP packets in port range
<in_min_port> to <in_max_port> from the client host to the GateKeeper.
Configure Firewall2 to allow routing of TCP packets in port range
<out_min_port> to <out_max_port> from the GateKeeper to the server
host. The firewalls must not perform port translation on these ports.

Scenario 4.6: Smart Agent in internal network

Use the settings in Scenario 1.1 assuming GateKeeper is the client.

112 VisiBroker GateKeeper Guide

GateKeeper wi th c l ient-s ide f i rewal l

GateKeeper with client-side firewall

Scenario 5.1: Firewall allows IIOP

The client-side firewall allows clients from the internal network to send IIOP
messages (TCP protocol) to the external network.

Refer to Scenarios 3.x replacing the server-side firewall in front of
GateKeeper with a client-side firewall. As GateKeeper is outside the client
domain, the client-side administrator who control the firewall, usually does
not have the authority to modify the GateKeeper's configuration. The
administrator has to collect the GateKeeper's listener ports information to
configure the client-side firewall accordingly.

Scenario 5.2: Firewall allows HTTP only

The client-side firewall allows clients from the internal network to send
HTTP messages only to the external network. IIOP message will be blocked
by the firewall. Therefore, clients have to use HTTP tunneling to
communicate with a GateKeeper outside the client-side firewall.

Set the following client's property to force the client to always use HTTP
tunneling.

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysTunnel=true

Note

HTTP tunneling does not support the VisiBroker 3.x style callback. If
callback is required, use a bi-directional connection. Pass-through
connection is also not available with HTTP tunneling.

VisiBroker GateKeeper Guide 113

GateKeeper load balancing and faul t - to lerance

GateKeeper load balancing and fault-tolerance

Scenario 6.1: Using multiple GateKeepers for fault-tolerance

Instead of relying on a single GateKeeper, you can deploy multiple
GateKeepers for fault-tolerance. Assign more than one GateKeeper to a
server to create redundancy.

The server's properties in this example are as follows:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p1,p2
vbroker.firewall-path.p1=gk1
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/
gatekeeper.ior
vbroker.firewall-path.p2=gk2
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/
gatekeeper.ior

The following property is required for both GK1 and GK2:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext
.Init

Clients can use either GK1 or GK2 to communicate with the server. When
one GateKeeper is down, the client can use the other one to communicate
with the server.

114 VisiBroker GateKeeper Guide

GateKeeper load balancing and faul t - to lerance

Scenario 6.2: Master/Slave configuration for load balancing

The figure above shows a master/slave GateKeeper configuration with GK1
as the master GateKeeper while GK2 and GK3 are the slave GateKeepers

GateKeeper GK1 properties (master):

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext
.Init
vbroker.gatekeeper.load.slaves=gk2,gk3
vbroker.gatekeeper.load.slave.gk2=http://gk2_host:8088/
gatekeeper.ior
vbroker.gatekeeper.load.slave.gk3=http://gk3_host:8088/
gatekeeper.ior

No additional properties are required for slave GateKeepers GK1 and GK2:

Server's Properties (specify only the master GateKeeper):

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk1
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/
gatekeeper.ior

If the client is not able to obtain the server's IOR directly, then the client
can specify a GateKeeper to contact using the following property:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://gk1_host:8088/
gatekeeper.ior

This configuration also provides fault-tolerance. For each connecting client,
the master GateKeeper assigns the next slave GateKeeper in turn to serve
the client, but if that slave GateKeeper is down, the client will come back to
the master GateKeeper to get assigned to the next available slave
GateKeeper, and so on, until the client obtains a usable GateKeeper.

The master GateKeeper actually keeps a list of available GateKeepers,
which it can assign to a connecting client. The list contains all slave
GateKeepers as well as the master GateKeeper itself. Therefore, when its
turn comes around, the master GateKeeper will assign itself to a client.

VisiBroker GateKeeper Guide 115

GateKeeper load balancing and faul t - to lerance

When the following property is set on the master GateKeeper, the master
GateKeeper is not included in the list.

vbroker.gatekeeper.load.balancer=master

In the case that all slave GateKeepers are down, in order to prevent clients
from coming back to the master GateKeeper for obtaining a usable
GateKeeper again and again infinitely, the following property should be set
on the client side:

vbroker.orb.rebindForward=N

where N must be less than the number of slave GateKeepers.

When the master GateKeeper itself is down, the rebind mechanism on the
client ORB will make all clients connect through the first available slave
GateKeeper, there will be no load balancing in this situation as the load
balance functionality is in the master GateKeeper and the master is down.
However, fault tolerance is preserved because clients still can get through
and connect to the servers.

Scenario 6.3: Multiple instances of same server for load balancing

You can deploy multiple instances of the same server to provide load
balancing and fault-tolerance for the server. For load balancing, the
GateKeeper will direct the request to the multiple servers using a round-
robin mechanism. For fault-tolerance, if one server is down, another server
can continue to provide the same service.

Add the following property to the GateKeeper:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext
.Init

Server1 and Server2 properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gk_host:8088/gatekeeper.ior

116 VisiBroker GateKeeper Guide

GateKeeper chaining

GateKeeper chaining

Scenario 7.1: Server-side chaining

Use the following server's properties to specify the server-side GateKeeper
chaining:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk1,gk2
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/
gatekeeper.ior
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/
gatekeeper.ior

When the client obtains the server's IOR, it will be able to use the
GateKeeper chaining to communicate with the server.

Scenario 7.2: Client-side chaining

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://GK1:8088/gatekeeper.ior

GK1's Properties:

vbroker.orb.gatekeeper.ior=http://GK2:8088/gatekeeper.ior

Note

In order for the client to communicate with the server using the chained
GateKeepers, the last GateKeeper on the chain (GK2) must be able to
obtain the server's IOR.

VisiBroker GateKeeper Guide 117

GateKeeper chaining

Scenario 7.3: Both server-side and client-side chaining

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://gk_host:8088/
gatekeeper.ior

Server's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk2
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/
gatekeeper.ior

If GK1 always connect to GK2, you can chain GK1 to GK2 statically using
the following GK1 property:

vbroker.orb.gatekeeper.ior=http://gk2_host:8088/
gatekeeper.ior

Otherwise, GK1 must be able to obtain the IOR of the server or GK2 using a
Smart Agent or Naming Services.

Scenario 7.4: Callback communication (VisiBroker 3.x style)

Set the following properties to allow VisiBroker 3.x style callback
communication.

Client's Properties:

vbroker.orb.alwaysProxy=true
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop_tp.listener.gatekeeper=http://
gk1_host:8088/gatekeeper.ior

118 VisiBroker GateKeeper Guide

GateKeeper chaining

GK1 and GK2 properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext
.Init
vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=
IIOPCallback
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=
<exterior callback port>
vbroker.gatekeeper.backcompat.callback.host=<GK exterior
IP address>
vbroker.se.interior.scm.in-iiop.listener.port=<interior
port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<IIOP
listener port>
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.intranet=gk1,gk2
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/
gatekeeper.ior
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/
gatekeeper.ior

Scenario 7.5: Bi-directional connection

Refer to Scenario 7.1, 7.2, or 7.3.

Add the following additional settings to enable bi-directional
communication.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.enableBiDir=server

GK1 and GK2 Properties:

vbroker.orb.enableBiDir=both

Scenario 7.6: Pass-through connection

Refer to the diagrams in Scenario 7.1, 7.2, or 7.3.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GK1 and GK2 Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>

VisiBroker GateKeeper Guide 119

Using VisiBroker in a mult ip le f i rewal l /subnet environment

vbroker.gatekeeper.passthru.outPortMin=<out_min_port>
vbroker.gatekeeper.passthru.outPortMax=<out_max_port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<server IIOP
port>

Note

The value of <server IIOP port> must fall in the range of
<out_min_port> and <out_max_port> of GK2. The range of
<in_min_port> and <in_max_port> of GK2 must fall in the range of
<out_min_port> and <out_max_port> of GK1.

If there is a firewall between any of the hosts, refer to the following table for
the ports to be opened.

Caution

The firewalls must not perform any port translation on the pass-through
ports.

Using VisiBroker in a multiple firewall/subnet
environment

VisiBroker can be used in multiple firewall scenarios. In general, VisiBroker
provides two different approaches to cross firewalls.

First, the Network Address Translation (also called TCP firewalls) can be
configured using the following properties:

 vbroker.se.iiop_tp.host=www.realdomain.com
 vbroker.se.iiop_tp.proxyHost=www.fakedomain.com
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=25000
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=32000

In the above-mentioned configuration, the real host / port information is
lost in the IOR, which means only the fake host /port is available in the IOR.
Another commonly deployed TCP firewall configuration is a server-side
configuration. Since this configuration is an ORB built-in mechanism, it also
applies to all types of services (for example GateKeeper, Naming Service,
and so forth).

 vbroker.orb.exportFirewallPath=true
 vbroker.se.iiop_tp.firewallPaths =Queen
 vbroker.firewall-path.Queen=Atlantic
 vbroker.firewall-path.Atlantic.type=TCP
 vbroker.firewall-path.Atlantic.host=www.fakedomain.com
 vbroker.firewall-path.Atlantic.iiop_port=32000
 vbroker.firewall-path.Atlantic.hiop_port=32003
 vbroker.firewall-path.Atlantic.ssl_port=32004

Firewall location Range of open ports
Between Client and GK1 GK1 exterior IIOP and HIOP listener port, and GK1

<in_min_port> and <in_max_port>
Between GK1 and GK2 GK2 exterior IIOP and HIOP listener port, and GK2

<in_min_port> and <in_max_port>
Between GK2 and
Server

GK2 <out_min_port> and <out_max_port>

120 VisiBroker GateKeeper Guide

Using Vis iBroker in a mult ip le f i rewal l /subnet environment

The advantage of the technique above is that the configuration information
is not lost. The internal client can connect to the servers directly using the
real IP host / port information. The risk involved with this configuration,
however, is that both the IP host /port (real and fake) are exposed in the
generated IOR file.

Second, GateKeeper can be run on the firewall server to act as a GIOP
proxy server. Various mechanisms are available in GateKeeper that are
designed for different purposes. For example:

• Normal mode: Used when the firewalls can allow at least one port for
the GIOP Proxy Server (such as GateKeeper). It is an automatic mode
which can switch to HTTP tunneling if required.

• Pass through mode: Used when the firewalls can allow a range of ports
and packets exchanged between the client and server that is not to be
interpreted by GateKeeper. In such a scenario, GateKeeper will act as a
resource manager only. GateKeeper acts as a resource manager because
it allocates IP ports to be used by the clients.

• HTTP tunneling: Used when the firewalls allow only HTTP traffic. In such
a scenario, the GIOP Proxy Server cannot be run in the firewall. Instead,
an HTTP proxy server sits before GateKeeper. The client ORB has a built
in mechanism to convert GIOP messages into HTTP messages which will
be sent to the HTTP proxy server or the firewall. Then, the HTTP proxy
server (or the applicable firewall) forwards the HTTP messages to
GateKeeper. Additionally, GateKeeper converts the HTTP messages into
GIOP messages and forwards it to the required target (such as server or
another GateKeeper). This configuration is also useful in a client-side
configuration when outgoing HTTP traffic is allowed by the firewall, but
other types of TCP connections are not allowed.

Note

Multiple firewalls may need a combination of the above configuration
techniques. Basically, the use of multiple firewalls is a deployment issue
and, therefore, all possible combinations cannot be covered in this
document. Some general guidelines are.

• The Smart Agent should be avoided because it is designed to work in a
single domain only.

• CORBA Naming Service should be used to store and lookup CORBA object
IOR.

• Domain Name Service (DNS) lookups should be avoided.

• Network Address Translation (NAT) or TCP Firewall configuration should
be used only on the outermost firewall in the firewall enclaves. In such
scenarios, even the internal clients are expected to behave as if they are
outside the firewall.

• GateKeeper can be used wherever it is possible to run it in a firewall
environment. HTTP Tunneling feature can be used if TCP connections are
not allowed by the firewall.

• GateKeeper chaining can be used when multiple firewalls are involved.
With GateKeeper chaining, multiple hops can be configured.

• Multiple GateKeepers should be used for load balancing and distribution.

VisiBroker GateKeeper Guide 121

Firewal l and Smart Agent

Firewall and Smart Agent
Within a firewall architecture, the Smart Agent is not expected to run on the
firewall host. Instead, the Smart Agent can be run within the internal
network. Usually, the Smart Agent should not be exposed to the external
network because of security reasons. The Smart Agent uses an IPv4 UDP
broadcast message to advertise itself. Since the firewall / routers can block
broadcast messages from being forwarded to the next hop in the network,
the Smart Agent is usually visible only in the local network. If the Smart
Agent needs to be accessible from an external network, you must open a
specific port on the firewall.

The following environment variables are used by the Smart Agent:

• OSAGENT_PORT

• OSAGENT_CLIENT_HANDLER_PORT

The VisiBroker-ORB requires the OSAGENT_PORT environment variable to be
set to register and query CORBA objects using the Smart Agent. The default
value of OSAGENT_PORT is 14000. By setting OSAGENT_PORT to an
appropriate TCP/IP port, you can define a virtual domain. One can run any
number of Smart Agents in a given subnet. Setting different OSAGENT_PORT
values will create different domains, which means CORBA objects registered
in one Smart Agent domain will not be visible to CORBA client querying from
a different domain.

Set the following TCP/IP address or port to be used by CORBA application to
reach the Smart Agent:

• vbroker.agent.addr=143.186.142.21

• vbroker.agent.port=25873

If the client, server, or GateKeeper does not require the use of the Smart
Agent, set the following property in the respective property files to disable
it:

vbroker.agent.enableLocator=false

GateKeeper is run on a multi-homed (or firewall) host. The Smart Agent can
be run either on the multi-homed host on in the internal network.
GateKeeper can be configured to use a designated Smart Agent using the
following properties (for example):

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873

The server in the internal network should register itself to the same Smart
Agent as the GateKeeper if your client program expects GateKeeper to
query the server objects to get the IOR using the following properties (for
example).

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873

GateKeeper can use only one Smart Agent domain at a time. The Smart
Agent domain is determined by setting the OSAGENT_PORT value or the
vbroker.agent.port property. All servers accessible through GateKeeper
should register to the same Smart Agent domain or to the Naming Service.
It is recommended to run the Smart Agent on the same subnet as
GateKeeper in the internal network.

The following ports are required by the Smart Agent:

1 OSAGENT_PORT (UDP type)

2 OSAGENT_CLIENT_HANDLER_PORT (UDP type)

122 VisiBroker GateKeeper Guide

Using the Smart Agent wi th a f i rewal l

3 OSAGENT_CLIENT_HANDLER_PORT (TCP type)

The OSAGENT_PORT used by the ORB applications is a UDP port. The only
TCP type of port (also known as the OSAGENT_CLIENT_HANDLER_PORT)
used by the Smart Agent is assigned to the Location Service. The
OSAGENT_CLIENT_HANDLER_PORT of the UDP type is used by the Smart
Agent itself. Please note that OSAGENT_CLIENT_HANDLER_PORT should be
set only on those hosts where the Smart Agent is running.

Using the Smart Agent with a firewall
The Smart Agent has some built-in fail-over and load-balancing capabilities.
The domain of the Smart Agent is defined by the OSAGENT_PORT in use. If
an ORB application (such as a server) is registered to one of the Smart
Agents in a given domain (the Smart Agent domain), other ORB
applications (such as a client program) can query the server objects in that
domain from any of Smart Agents in the same domain. Thus, Smart Agents
can query within a domain to locate a server object without making the
client application aware of the process. Therefore, if one Smart Agent fails,
the ORB application can find another Smart Agent in the same domain,
register itself again, and proceed.

By design, the load-balancing capability of Smart Agents is not extended to
firewalls because each firewall has unique behavior. For example, a NAT
(Network Address Translation) device is a type of firewall which changes the
IP address/port. The Smart Agent is not designed to handle NAT scenarios.
Also, some firewalls may allow only specific types of packets, others may
require security and encryption, and some may not allow DNS lookups.
Therefore, the Smart Agent should not be used in any kind of firewall or
NAT configuration.

Although the Smart Agent is not designed to be used in a firewall scenario,
there are a few steps to follow if an application must access a Smart Agent
sitting behind the firewall. The following steps, however, apply to inter-
departmental firewalls only:

1 Open the OSAGENT_PORT and OSAGENT_CLIENT_HANDLER_PORT on the
firewall. Certain firewalls may require that you set static forwarding
routes so that the packets can reach the Smart Agent. All the
intermediate firewalls between the applications should open these ports
as well. Since firewalls may be on a multi-homed host, edit the localaddr
(located, for example, in the <instal_dir>var/defaults/adm/
properties/services/osagentfile folder) and set
OSAGENT_LOCAL_ADDR_FILE to specify all the interfaces Smart Agent
should bind to listen for request packets.

2 Set the Smart Agent IP address in the agentaddr file to allow the Smart
Agent on one network to contact a Smart Agent on another network.

3 Set OSAGENT_PORT and OSAGENT_CLIENT_HANDLER_PORT on all hosts
from where ORB applications may be launched. Please note that these
ports should be the same as those opened on the firewalls.

Note

Even though it is possible to use the Smart Agent with the above settings,
such usage is not recommend because this type of configuration may work
with some firewalls, but will not work with all types of firewalls.

VisiBroker GateKeeper Guide 123

Cl ient behavior for using the Smart Agent

If Smart Agent fails
If the Smart Agent fails, the ORB application is expected to switch to
another Smart Agent in the same subnet. Because the Smart Agent
OSAGENT_PORT is already fixed, the ORB application sends a UDP broadcast
to locate another Smart Agent. If there is a firewall, the ORB application
should have access to reach another host where the Smart Agent is
running. The ORB application may not have the knowledge of the location of
an alternative Smart Agent, so it can't do much. If the Smart Agent starts
up again on the same host, the client may be able to contact it. Basically, it
is important to understand that the Smart Agent uses a UDP broadcast-
based technology. Some firewalls and routers may not forward UDP
broadcasts and this is one of the reasons why the Smart Agent cannot be
used across firewalls. Another Smart Agent, however, can be used if a
Smart Agent in the same subnet fails.

Client behavior for using the Smart Agent
A client ORB application can be configured to use a specific range of ports to
bind to the Smart Agent by setting the following properties:

 vbroker.agent.clientPort
 vbroker.agent.clientPortRange

The port range ensures that the client ORB uses the local ports in a given
range only. The client port range is required because Windows/NT delays
actual closure of ports resulting in limited use of the port range.

Using GateKeeper with other CORBA services
From a client's perspective, GateKeeper is transparent to all other CORBA
Services. There is no distinction made between a usual server object and
other CORBA services such as the Naming Service, Transaction Service,
Notification Service, Event Service, and so forth.

In a server-side configuration, the server can be configured to specify the
firewall component in its IOR which is identified by the client ORB and is
used only when required. In such cases, the client fails over to bind to the
server using GateKeeper only if a direct connection could not be
established. Assuming that iiop_tp is the default server-engine used by
the server, the following example shows a typical set of properties for a
firewall configuration:

 vbroker.orb.exportFirewallPath=true
 vbroker.se.iiop_tp.firewallPaths =Queen,King
 vbroker.firewall-path.Queen=Atlantic,Pacific
 vbroker.firewall-path.King=Indian
 vbroker.firewall-path.Atlantic.type=TCP
 vbroker.firewall-path.Atlantic.host=www.borland.com
 vbroker.firewall-path.Atlantic.iiop_port=25000
 vbroker.firewall-path.Atlantic.hiop_port=25003
 vbroker.firewall-path.Atlantic.ssl_port=25004
 vbroker.firewall-path.Pacific.type=PROXY
 vbroker.firewall-path.Pacific.ior=http://
www.mygk1domain.com/gatekeeper.ior
 vbroker.firewall-path.Indian.type=PROXY
 vbroker.firewall-path.Indian.ior=http://
www.mygk1domain.com/gatekeeper.ior

124 VisiBroker GateKeeper Guide

Conf igur ing GateKeeper wi th an HTTP proxy server

In a client-side configuration, the GateKeeper IOR can be provided to the
Client ORB. In such a scenario, the client makes all its operations using
GateKeeper. In this case, the following properties are useful:

vbroker.orb.alwaysProxy=true
vbroker.orb.gatekeeper.ior=http://www.mydomain.com/
gatekeeper.ior

In some cases, when the Smart Agent is not accessible by the client,
GateKeeper is used to locate server objects. In such a scenario, it is
recommended that you use the Location Service available through
GateKeeper. In this case, the following property is used for GateKeeper:

vbroker.gatekeeper.locationService=true

Additionally, the following property is used on the client-side to locate
objects:

vbroker.locator.ior=http://www.mydomain.com/gatekeeper.ior

Configuring GateKeeper with an HTTP proxy server
When an HTTP proxy server is running between the client and GateKeeper,
GateKeeper needs to publish the HTTP proxy server's IP host/port address
in its IOR. The technique described below can be used to achieve this goal.
The following GateKeeper properties can be set which resemble a Network
Address Translation configuration. In this case, the HTTP Proxy Server is
acting as a NAT.

vbroker.se.exterior.proxyHost=142.186.142.21
vbroker.se.exterior.scm.ex-hiop.listener.proxyPort=32001

Note

Setting both of the above properties is not mandatory. In this scenario,
GateKeeper appears to be behind a NAT device and, as such, all clients
trying to communicate with GateKeeper using HTTP tunneling will always
pass their requests through the HTTP Proxy Server.

Additional server engines in GateKeeper
There are three in-built server engines available in GateKeeper:

• iiop_tp

• exterior

• interior

The iiop_tp server engine is used for administrative purposes only. The
exterior and interior server engines are used for external and internal
networks, respectively. When using TCP/IP networks, each server engine
may be associated with a network IP host address, for example:

vbroker.se.exterior.host=142.186.142.21
vbroker.se.interior.host=142.186.182.30
vbroker.se.iiop_tp.host=192.73.8.25

This version of GateKeeper does not allow adding new server engines using
the properties file.

VisiBroker GateKeeper Guide 125

Addit ional l is teners or server connect ion managers in GateKeeper

Additional listeners or server connection managers
in GateKeeper

GateKeeper can have more than one server connection manager (SCM) or
listener for a given type of service. Usually, an SCM provides a specific type
of service, such as IIOP, SSL, HIOP, HIOPS, and so forth. Each SCM is
bound to a server engine, such as exterior or interior. To configure an SCM,
you must assign a logical name (for example, myscm), and append this
name to the following property:

vbroker.se.exterior.scms=ex-iiop,ex-hiop,myscm

Furthermore, the following properties must be added for each SCM (see
Appendix A for more details):

vbroker.se.exterior.scm.myscm.manager.type=Socket
vbroker.se.exterior.scm.myscm.manager.connectionMax=0
vbroker.se.exterior.scm.myscm.manager.connectionMaxIdle=0
vbroker.se.exterior.scm.myscm.listener.type=IIOP
vbroker.se.exterior.scm.myscm.listener.port=683
vbroker.se.exterior.scm.myscm.listener.proxyPort=0
vbroker.se.exterior.scm.myscm.listener.giopVersion=1.2
vbroker.se.exterior.scm.myscm.dispatcher.type=ThreadPool
vbroker.se.exterior.scm.myscm.dispatcher.threadMax=100
vbroker.se.exterior.scm.myscm.dispatcher.threadMin=0
vbroker.se.exterior.scm.myscm.dispatcher.threadMaxIdle=300

GateKeeper stress/load metrics
Because GateKeeper is a Java based ORB service implementation, many
Java tools can be used to obtain performance characteristics.

The VisiBroker Console provides certain real time performance
characteristics about any ORB service (including GateKeeper). It can display
information related to allocated memory, numbers of threads, connections,
fragmentation, and so forth.

Deploying GateKeeper as a servlet
This section describes an example of deploying GateKeeper as a servlet into
a Tomcat 5.0 web server. For earlier or later versions of Tomcat, some
small modifications may be required.

This example makes use of the bank_agent example along with the supplied
Client.properties, which among other things will force the client to connect
to a server only via the gatekeeper servlet embedded in the web server.
The bank_agent example is located in the following directory:

<install_dir>/examples/vbroker/basic/bank_agent

The additional files you will need to run the example in this scenario are:

• web.xml - the deployment descriptor for gatekeeper to be deployed as a
servlet.

• Client.properties - the properties needed to set the bank_agent client to
connect to the bank server via the GateKeeper embedded inside a web
server as a servlet.

126 VisiBroker GateKeeper Guide

Deploying GateKeeper as a servlet

At the end of this section there are screen dumps of web.xml and
Client.properties (see web.xml and Client.properties) which you can copy,
paste, and save to designated files in specified directories.

VisiBroker GateKeeper Guide 127

Deploying GateKeeper as a servlet

Building the example
1 Download a free copy of Tomcat web server from http://

jakarta.apache.org/tomcat/, and follow the instructions to install it. A
properly functioning installation can be verified by launching a web
browser for http://localhost:8080.

2 Copy, paste, and save web.xml to <Tomcat root install>/webapps/
gatekeeper_servlet/WEB-INF/web.xml. Create sub-directories as needed.

3 Open and edit the file

<Tomcat root install>/webapps/gatekeeper_servlet/WEB-
INF/web.xml

and change the following portion to correctly refer to your osagent
Tomcat ports:

<init-param>
 <param-name>vbroker.agent.port</param-name>
 <param-value>YOUR OSAGENT PORT</param-value>
</init-param>
 ...
<init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.port
 </param-name>
 <param-value>
 TOMCAT HTTP PORT. OUT OF TOMCAT BOX, THIS MUST
BE 8080
 </param-value>
</init-param>

4 Copy the following jars from

<install_dir>/lib/

to

<Tomcat install root dir>/shared/lib

Putting the jars into the Tomcat shared/lib/ directory will make them
available to all web applications deployed in the container. If this is not
desired, consult the Tomcat documentation for the other lib directories.

lm.jar

sanctuary.jar

vbjorb.jar

sanct6.jar

vbjclientorb.jar

vbsec.jar

5 Copy, paste, and save Client.properties (see Client.properties) to

<install_dir>/examples/vbroker/basic/bank_agent

and open and edit the following settings.

vbroker.orb.gatekeeper.ior=http://<host>:<port>/
gatekeeper_servlet/gatekeeper.ior

where <host> is the IP of machine on which Tomcat is running and
<port> is the HTTP port to which Tomcat is listening. This must be the
same number as the port in the web.xml above. For out-of the box
Tomcat installations this must be set to 8080.

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/

128 VisiBroker GateKeeper Guide

Deploying GateKeeper as a servlet

Running this example
1 Set the proper environment for the existing VisiBroker (that is, execute

${VBROKERDIR}/bin/vbroker.sh on UNIX platform).

2 Build the basic/bank_agent example if necessary.

3 Make sure osagent is running.

4 Make sure that ${JAVA_HOME} and ${PATH} consistently refer to the
desired JDK.

5 Start Tomcat by executing the following command:

Windows:

<Tomcat root install>/bin/startup.bat

UNIX:

<Tomcat root install>/bin/startup.sh

6 Navigate to the example basic bank agent directory:

<install_dir>/examples/vbroker/basic/bank_agent

7 Start the bank server by executing the following command:

vbj Server

8 Start the client by executing the following command:

vbj -DORBpropStorage=Client.properties Client

VisiBroker GateKeeper Guide 129

web.xml
<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE web-app PUBLIC ”-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN” ”http://java.sun.com/dtd/web-
app_2_3.dtd”>
<web-app>

 <display-name>GateKeeper Servlet</display-name>

 <description>GateKeeper as a servlet example</
description>

 <servlet>

 <servlet-name>GateKeeperServlet</servlet-name>

 <servlet-class>
 com.inprise.vbroker.gatekeeper.servlet.Servlet
 </servlet-class>

 <load-on-startup />

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.path
 </param-name>
 <param-value>
 /gatekeeper_servlet/servlet
 </param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.agent.port</param-name>
 <param-value>PUT YOUR OSAGENT PORT</param-value>
 </init-param>

<!-- Some setups may not allow UDP broadcast to locate
osagent
 In that case, uncomment and set the following
correctly
 <init-param>
 <param-name>vbroker.agent.address</param-name>
 <param-value>
 PUT IP OF THE MACHINE, ON WHICH OSAGENT IS RUNNING
 </param-value>
 </init-param>
-->

 <init-param>
 <param-name>vbroker.gatekeeper.referenceStore</
param-name>
 <param-value>
 webapps/gatekeeper_servlet/gatekeeper.ior
 </param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.se.exterior.scms</param-name>

130 VisiBroker GateKeeper Guide

 <param-value>ex-iiop,ex-hiop</param-value>
 </init-param>

<!-- If you want Visibroker log messages, uncomment this.
Log messages will

go to the specified file below, relative to Tomcat root
install dir

 <init-param>
 <param-name>vbroker.orb.debug</param-name>
 <param-value>true</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.logLevel</param-name>
 <param-value>7</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.warn</param-name>
 <param-value>2</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.logger.output</param-name>
 <param-value>webapps/gatekeeper_servlet/log.txt</
param-value>
 </init-param>
-->

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-iiop.listener.type
 </param-name>
 <param-value>Disabled-IIOP</param-value>
 </init-param>

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.port
 </param-name>
 <param-value>8080</param-value>
 </init-param>

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-iiop.listener.port
 </param-name>
 <param-value>0</param-value>
 </init-param>

 </servlet>

 <servlet-mapping>
 <servlet-name>GateKeeperServlet</servlet-name>
 <url-pattern>/servlet</url-pattern>
 </servlet-mapping>

</web-app>

VisiBroker GateKeeper Guide 131

Client.properties
The following line is only one (single) line
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,
com.inprise.vbroker.HIOP.Init

vbroker.orb.alwaysTunnel=true
vbroker.orb.alwaysProxy=true

The following line is only one (single) line
vbroker.orb.gatekeeper.ior=http://host:8080/
gatekeeper_servlet/gatekeeper.ior

Uncomment the following lines for debug messages
vbroker.orb.debug=true
vbroker.orb.warn=2
vbroker.orb.logLevel=7

132 VisiBroker GateKeeper Guide

VisiBroker GateKeeper Guide 133

Symbols
... ellipsis 1
symbols

square brackets 1
| vertical bar 1

A
access control

in GateKeeper 44
access control properties

in GateKeeper 80
access rules

in GateKeeper 44
adjacent networks

with GateKeeper 10
administration properties

in GateKeeper 79
administrative service

in GateKeeper 23
alwaysProxy 32
alwaysSecure 33
alwaysTunnel 32
asynchronized invocation

in GateKeeper 50

B
backward compatibility

GateKeeper properties 87
bid order

of clients in GateKeeper 34
bidding mechanism

of GateKeeper 48
bi-directional communication

scenario 99, 105
bidirectional communication 42

GateKeeper properties 84
bi-directional communication scenario

in GateKeeper 91, 99, 108, 116
bidirectional communication, in
GateKeeper 41

brackets 1

C
cache

managing, in GateKeeper 49
call types

in GateKeeper 51
callback

listener port 34
scenario 99, 105
VisiBroker 3.x style 34

callback scenario
in GateKeeper 91, 99, 108, 116

callback types
in GateKeeper 51

callbacks
and bidirectional communication, in
GateKeeper 41

in GateKeeper 23
VisiBroker 3.x properties 81
VisiBroker 3.x style 23
with GateKeeper 40

chaining
dynamic in GateKeeper 39
of GateKeeper 39
static chaining of GateKeeper 39

client properties
configuring in GateKeeper 31

client-side firewall 5
in GateKeeper 112

client-side server engine properties
in GateKeeper 70

clustering
of GateKeepers 46, 47, 83

command line options
for GateKeeper 7

commands
conventions 1

communication paths
in GateKeeper 34, 35

compatibility
with VisiBroker 4.x and below 87

connection managers
in GateKeeper 125

connections
in GateKeeper 50
passthrough, in GateKeeper 33
secure, in GateKeeper 33

connections, managing, in GateKeeper 49
CORBA 5
CORBA Services

with GateKeeper 123

D
debugging

GateKeeper. See troubleshooting 59
debugging mode

starting GateKeeper in 61
Demilitarized Zone

in GateKeeper 108
distributor

GateKeeper properties 83
DMZ

in GateKeeper 108
documentation

.pdf format 3
accessing Help Topics 1
platform conventions used in 2
type conventions used in 1
updates on the web 3

dual homed host scenario
in GateKeeper 99

dual-homed host
with GateKeeper 10

dynamic chaining
of GateKeeper 39

dynamicLibs

Index

 134 VisiBroker GateKeeper Guide

GateKeeper properties 83, 89
in GateKeeper 86

E
environment variables

in GateKeeper 62
errors and FAQs

for GateKeeper 67
ex-hiop

in GateKeeper 24
ex-hiop properties

in GateKeeper 71
ex-hiops properties

in GateKeeper 73
ex-iiop

in GateKeeper 24
ex-iiop properties

in GateKeeper 72
ex-ssl properties

in GateKeeper 75
exterior server engine

in GateKeeper 24, 124
exterior server engine properties

in GateKeeper 70

F
fake port

in GateKeeper 35
fault_tolerance

with GateKeeper 47
fault-tolerance

in GateKeeper 113
firewall

client-side 5, 112
server-side 5, 105
troubleshooting in GateKeeper 66

firewall configurations 35
firewall package

loading in GateKeeper 31
firewalls

GateKeeper properties 88
in GateKeeper 21
multiple with GateKeeper 119

G
GateKeeper

access control 44
access control properties 80
administration properties 79
administrative service 23
and multiple networks 14
and SSL 51
as IIOP proxy 99
as Web Server 99
asynchronized invocation 50
backward compatibility property 87
bidding mechanism 48
bidirectional callbacks 41
bidirectional communication 41, 42
bidirectional communication
properties 84

cache management 49
call types 51
callbacks 23, 40
chaining 39, 116
client-side server engine properties 70
clustering 46, 47
compatibility

with VisiBroker 4.x and below 87
configuring 22
connections 49, 50
custom-designed load balancing 47
debugging. See troubleshooting 59
definition of 5
deploy as servlet 125
dynamic chaining 39
errors and FAQs 67
ex-hiop properties 71
ex-hiops properties 73
ex-iiop properties 72
ex-ssl properties 75
exterior server engine properties 70
fault_tolerance 47
firewall configuration 21
firewall properties 88
general properties 69
HTTP proxy server 124
HTTP tunneling 124
in adjacent networks 10
in dual-homed host 10, 99
in-iiop properties 77
in-ssl properties 78
installation 6
interior server engine properties 76
internetworking devices 14
licensing 53
listener ports 22
listeners 125
load balancing 46
load metrics 125
location service 24
location service properties 86
Management Console 8
managing 8
master 46
message marshalling 49
multi-homed host 19
multiple firewalls 119
naming service 57
OAD 24
Object Activation Demon 24
ORB properties 89
passthrough connections 23
pass-through connections properties 85
passthrough mode 51
performance guidelines 48
proxy servers 67
removing an NT service 8
security 53
security considerations 43
security properties 80
security services 25
server connection managers 125

VisiBroker GateKeeper Guide 135

server engines 124
server side interior engine
properties 76

slave 46
Smart Agent properties 86
SSL 25, 99
SSL bidirectional communication 52
SSL connections to 52
starting as a servlet 8
starting as an NT service 8
starting from the command line 7
starting in debugging mode 61
static chaining 39
stress metrics 125
subnet environment 119
thread management 49
ThreadPool 50
ThreadSession 50
troubleshooting 59
using the Smart Agent 24
vbroker properties 89
VisiBroker 3.x callback properties 81
where to deploy 9
with CORBA Services 123

GateKeeper chaining
client-side 116
server-side 116
server-side and client-side 116

GateKeeper performance 8
general properties

of GateKeeper 69
GIOP

GateKeeper properties 83
GIOP Proxy Server 5

H
Help Topics

accessing 1
HIOP

and GateKeeper 8
HIOP properties

in GateKeeper 71
hiop_ts

in GateKeeper 24
HIOPS properties

in GateKeeper 73
HTTP proxy server

in GateKeeper 124
HTTP Tunneling 99

in GateKeeper 9
HTTP tunneling

in GateKeeper 32, 124
HTTP Tunneling scenario

in GateKeeper 99

I
IIOP

in GateKeeper 91, 112
IIOP listener port 34

disabling 35
IIOP properties

in GateKeeper 72, 77
IIOP proxy

in GateKeeper 9
IIOP proxy scenario

in GateKeeper 99
iiop_tp

in GateKeeper 24
iiop_tp server engine

in GateKeeper 124
IIOP/SSL

in GateKeeper 91
in GateKeeper

performance properties 50
in-hiop

in GateKeeper 24
in-iiop properties

in GateKeeper 77
in-SSL

in GateKeeper 24
in-ssl properties

in GateKeeper 78
installing

GateKeeper 6
interior server engine

in GateKeeper 24, 124
interior server engine properties

in GateKeeper 76
internetworking devices

with GateKeeper 14
IOR files

troubleshooting GateKeeper 66
IP forwarding

in GateKeeper 19

J
java policy

troubleshooting GateKeeper 66
Java sandbox security

in GateKeeper 9

L
listener port

in GateKeeper 22
listener ports

IIOP 35
random 34
VisiBroker 3.x callbacks 34

listeners
in GateKeeper 125

load balancing
custom-designed in GateKeeper 47
GateKeeper properties 83
in GateKeeper 113
with GateKeeper 46

load metrics
in GateKeeper 125

location service
GateKeeper properties 86
in GateKeeper 24

log enable
in GateKeeper 59

 136 VisiBroker GateKeeper Guide

log level
in GateKeeper 59

M
Management Console

in GateKeeper 8
managing GateKeeper 8
marshalling

of messages, in GateKeeper 49
master GateKeeper 46
master slave

in GateKeeper 113
message marshalling

in GateKeeper 49
multi-homed host

in GateKeeper 19
multiple firewalls

in GateKeeper 91
multiple networks

with GateKeeper 14

N
naming service

in GateKeeper 57
NAT

in GateKeeper 22
NAT (Network Address Translation) 35
NATs

scenario 91
NATs scenario

in GateKeeper 105
netstat

with GateKeeper 63
Network Address Translation

in GateKeeper 22
Network Address Translation (NAT) 35
network configuration

with GateKeeper 63
network interface card

with GateKeeper 19
NIC

with GateKeeper 19
nslookup

with GateKeeper 63

O
OAD

in GateKeeper 24
Object Activation Demon

in GateKeeper 24
online Help Topics

accessing 1
ORB

GateKeeper properties 89
osfind

with GateKeeper 63

P
passthrough

scenario 99
pass-through connections

GateKeeper properties 85
troubleshooting GateKeeper 66

passthrough connections
in GateKeeper 23, 33

passthrough mode
in GateKeeper 51

passthrough scenario
in GateKeeper 99, 105, 108, 116

PDF documentation 3
performance

GateKeeper properties 83
of GateKeeper 48
properties in GateKeeper 50

ping
with GateKeeper 63

POAs
configuring globally in GateKeeper 30
programming individually in
GateKeeper 29

port translation
in GateKeeper 35

printior
with GateKeeper 63

properties file
troubleshooting GateKeeper 65

Proxy 5
proxy servers

with GateKeeper 67
proxyPassthru 33

R
removing GateKeeper

as NT service 8
response time

of GateKeeper 48
round robin

GateKeeper properties 83
round-robin algorithm

in GateKeeper load distribution 47
route

with GateKeeper 63
routing table

in GateKeeper 19
troubleshooting GateKeeper 65

S
sandbox security

in GateKeeper 9
scalability

of GateKeeper 48
Scenario

address and port translations 91
address translation 91
bi-directional communication 91, 99,

105, 108, 116
callback 91, 99, 105, 108, 116
client-side chaining 116
client-side firewall 112
dual homed host configuration 99
fault-tolerance 113
firewall behind GateKeeper 108

VisiBroker GateKeeper Guide 137

firewall behind GateKeeper with
NAT 108

HTTP Tunneling 99
IIOP 91
IIOP proxy 99
IIOP/SSL 91
load balancing 113
master slave configuration 113
multiple firewalls 91
passthrough 99, 105, 108, 116
port translation 91
secure HTTP Tunneling 99
server-side and client-side chaining 116
server-side chaining 116
server-side firewall 105
server-side firewall with NAT 105
Smart Agent 91, 108
SSL 99
Web Server 99

SCM
ex-hiop 24
ex-hiop properties 71
ex-hiops properties 73
ex-iiop 24
ex-iiop properties 72
ex-ssl properties 75
GateKeeper properties 70, 79
hiop_ts 24
iiop_tp 24
in GateKeeper 24
in-hiop 24
in-iiop properties 77
in-SSL 24
in-ssl properties 78

secure connections
in GateKeeper 33

secure HTTP Tunneling 99
secure HTTP tunneling Scenario

in GateKeeper 99
security

access control properties 80
enabling in GateKeeper 53
in GateKeeper 43

security service
in GateKeeper 53

security services
GateKeeper properties 86
in GateKeeper 25

server connection manager
ex-hiop properties 71
ex-hiops properties 73
ex-iiop properties 72
ex-ssl properties 75
GateKeeper properties 70, 79
in-iiop properties 77
in-ssl properties 78

server connection manager (See SCM) 24
server connection managers

in GateKeeper 125
server engine

GateKeeper properties 70, 71, 76, 79
server engines

in GateKeeper 24, 124
server side interior engine properties

in GateKeeper 76
server-side firewall 5

in GateKeeper 105
servlet

running GateKeeper as 8
slave GateKeepers 46
Smart Agent 91

and client behavior 123
GateKeeper properties 86
in GateKeeper 24, 108
port configuration 123
troubleshooting GateKeeper 65

square brackets 1
SSL

and GateKeeper 51
bidirectional communication in
GateKeeper 52

GateKeeper properties 86
in GateKeeper 25
troubleshooting GateKeeper 66

SSL connections
in GateKeeper 33
to GateKeeper 52

SSL properties
in GateKeeper 75, 78

SSL scenario
in GateKeeper 99

starting GateKeeper
as an NT service 8
command line options 7
from the command line 7

startup option
-h 7
-J-D 7
-props 7
-quiet 7

static chaining
of GateKeeper 39

stress metrics
in GateKeeper 125

subnet environment
with GateKeeper 119

symbols
ellipsis ... 1
vertical bar | 1

T
TCP firewall 36
ThreadPool

in GateKeeper 50
threads

managing, in GateKeeper 49
ThreadSession

in GateKeeper 50
traceroute

with GateKeeper 63
tracert

with GateKeeper 63
troubleshooting

 138 VisiBroker GateKeeper Guide

common errors and FAQs for
GateKeeper 67

enable log in GateKeeper 59
environment variables 62
firewall in GateKeeper 66
GateKeeper 59
IOR files in GateKeeper 66
java policy in GateKeeper 66
log level in GateKeeper 59
network configuration 63
pass-through connections in
GateKeeper 66

properties file in GateKeeper 65
routing table in GateKeeper 65
Smart Agent in GateKeeper 65
SSL in GateKeeper 66

troubleshooting command options
client 61
GateKeeper 61
server 61

troubleshooting tools
for GateKeeper 63

tunneling
HTTP in GateKeeper 32

V
vbroker

GateKeeper properties 89
VisiBroker 3.x callbacks 34

W
Web Server

with GateKeeper 8
Web Server scenario

in GateKeeper 99

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Introduction to GateKeeper
	What is GateKeeper?
	GateKeeper as a Gateway or Proxy
	Additional capabilities of GateKeeper
	Primary Use of GateKeeper

	Installing GateKeeper
	Starting GateKeeper
	Starting GateKeeper from the command line
	Command line options

	Running GateKeeper as an NT service
	Removing GateKeeper as an NT service

	Running GateKeeper as a servlet in a Web Server

	Managing GateKeeper

	Configuring GateKeeper and internetworking devices
	Where to deploy GateKeeper
	Client and server on the same network
	Client and server on adjacent networks
	Multiple networks between client and server

	Configuring a multi-homed host
	Enable IP-forwarding
	Routing table

	Configuring the firewall
	Using Network Address Translation (NAT)
	Configuring GateKeeper
	Listener ports
	Administrative service
	Enabling callbacks (VisiBroker 3.x style)
	Enabling pass-through connections
	Enabling the location service
	Specifying the Smart Agent (osagent)
	Specifying the Object Activation Daemon (OAD)
	Configuring GateKeeper server engines
	Security services
	SSL transport identity and trustpoint
	Installing SSL identity using wallet properties
	Installing SSL identity on GateKeeper using certificate login
	Setting peerAuthenticationMode

	Applet and Java webstart
	VisiBroker settings on a typical applet client
	VisiBroker application deployed as a Java webstart

	Configuring user programs
	Using objects behind firewalls
	Programming a single POA
	Configuring the firewall policy for all POAs associated with a server
	Loading a firewall package at runtime

	Configuring client properties
	Specify always proxy on a client
	Specify HTTP tunneling on a client
	Specify secure connections on a client
	Specify pass-through connections on a client
	Specifying the client bid order
	Specifying a client callback listener port (for VisiBroker 3.x style)

	Configuring server properties
	Specifying the listener port of the server
	Random listener port
	Specific listener port
	Port translation (NAT)
	Disabling the IIOP port

	Specifying communication paths to the server
	Specify the component of a proxy server
	Specify the component of a TCP firewall with NAT

	Advanced features
	Chaining of GateKeepers
	Static chaining of GateKeepers
	Dynamic chaining of GateKeepers

	Callbacks
	Callbacks without GateKeeper
	Callbacks without GateKeeper using bidirectional GIOP
	Callback with GateKeeper's bidirectional support
	Bidirectional connection example
	Security considerations

	Access control
	Custom-designed access control in GateKeeper

	Load balancing and fault tolerance
	Load balancing
	Custom-designed load balancing in GateKeeper
	Fault tolerance

	Scalability and performance guidelines
	GateKeeper performance tuning
	Bidding mechanism
	Cache management
	Message marshaling
	Thread management
	Connection management

	Impact of asynchronized invocation of GateKeeper

	GateKeeper performance properties
	Connection settings
	Thread related settings
	GateKeeper modes
	Call types

	GateKeeper and SSL
	SSL connections to GateKeeper
	SSL for forward and bidirectional calls

	Enabling the Security Service in GateKeeper
	Enabling access to the Naming Service through GateKeeper

	Troubleshooting GateKeeper
	Preparation for troubleshooting
	Getting debugging information
	Starting GateKeeper in debugging mode
	Environment settings
	Tools for troubleshooting
	Getting information about the computer network

	Essential checks
	Check the Smart Agent
	Check the property files
	Check the routing table
	Check pass-through connections
	Check the Java policy
	Check SSL
	Check the IOR files
	Check firewall settings

	Common errors and FAQs
	Proxy servers and GateKeeper

	Appendix GateKeeper properties
	General properties
	Exterior server engine
	ex-hiop server connection manager (SCM)
	ex-iiop server connection manager (SCM)
	ex-hiops server connection manager (SCM)
	ex-ssl server connection manager (SCM)

	Interior server engine
	in-iiop server connection manager (SCM)
	in-ssl server connection manager (SCM)

	Administration
	Access control
	VisiBroker 3.x style callback
	Performance and load balancing
	Support for bidirectional communications
	Support for pass-through connections
	Security services (SSL)
	Location services (Smart Agent)
	Backward compatibility with VisiBroker 4.x and below
	Server's properties for firewall specifications
	Miscellaneous ORB properties

	Appendix GateKeeper deployment scenarios
	TCP firewall (without GateKeeper)
	GateKeeper deployment
	GateKeeper with server-side firewall
	Firewall in front of GateKeeper
	Firewall in front and behind of GateKeeper

	GateKeeper with client-side firewall
	GateKeeper load balancing and fault-tolerance
	GateKeeper chaining
	Using VisiBroker in a multiple firewall/subnet environment
	Firewall and Smart Agent
	Using the Smart Agent with a firewall
	If Smart Agent fails

	Client behavior for using the Smart Agent
	Using GateKeeper with other CORBA services
	Configuring GateKeeper with an HTTP proxy server
	Additional server engines in GateKeeper
	Additional listeners or server connection managers in GateKeeper
	GateKeeper stress/load metrics
	Deploying GateKeeper as a servlet
	Building the example
	Running this example
	web.xml
	Client.properties

	Index

