
Micro Focus
VisiBroker 8.5.4

VisiTime Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries. All
other marks are the property of their respective owners.

2016-12-21

VisiBroker Vis iTime Guide iii

Contents

Introduction to VisiBroker... 1
Accessing VisiBroker help topics.. 1

In the standalone Help Viewer .. 1
From within a GUI tool .. 1

Documentation conventions.. 1
Platform conventions... 2

Contacting Micro Focus .. 2
Further Information and Product Support ... 2
Information We Need .. 3
Contact information .. 3

Using the VisiTime Service .. 5
Time Service overview... 5

How the Time Service defines time.. 5
Time Service components .. 6

Universal Time Object ... 6
Time Interval Object ... 6

Time Service services.. 6
Timer Event Service.. 6
Secure Time Service ... 7

VisiTime Service ... 7
Starting the VisiTime Service.. 7
Starting Secure VisiTime Service... 8
Bootstrapping the VisiTime Service ... 8

Bootstrapping using ORBInitRef .. 9
Bootstrapping Using ORBDefaultInitRef.. 10
Bootstrapping Using the SmartAgent... 10

Running the Time Service in-process ... 11
NTP server support for Time Source .. 11

Specifying NTP server addresses and failover 11
Configuring the VisiTime Service... 12
Creating Time Service Objects with the TimeService interface....................... 13

Creating UTOs using the TimeService interface 14
Creating TIOs using the TimeService interface.................................... 15

Using the Timer Event Service .. 15
Creating TimerEventHandlers ... 16
Setting Alarms for TimerEventHandlers ... 18
Canceling a timer and unregistering a TimerEventHandler 19

Friendly Time Object ... 19

Index ...23

iv Vis iBroker Vis iTime Guide

VisiBroker Vis iTime Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enables you to build, deploy,
and manage distributed enterprise applications in your corporate
environment.

Accessing VisiBroker help topics

In the standalone Help Viewer
To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows

• Click Start > Programs > VisiBroker > Help Topics

or

• Open the Command Prompt and go to the product installation \bin
directory, then type:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then type:

help

Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

From within a GUI tool
To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for
italics Used for new terms and book titles.
computer Information that the user or application provides, sample

command lines and code.

2 VisiBroker Vis iTime Guide

Contact ing Micro Focus

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

bold computer In text, bold indicates information the user types in. In code
samples, bold highlights important statements.

[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

Convention Used for

http://www.microfocus.com

VisiBroker Vis iT ime Guide 3

Contact ing Micro Focus

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (VisiBroker trial software)

• http://supportline.microfocus.com/
xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/
websync/productupdatessearch.aspx (updated VisiBroker files and other
software)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

4 VisiBroker Vis iTime Guide

Contact ing Micro Focus

VisiBroker Vis iTime Guide 5

Using the VisiTime Service
This section describes the VisiTime Service, a complete implementation of
the OMG Time Service Specification, Version 1.1. The OMG Time Service
specification defines two types of service which are implemented in
VisiBroker:

• Basic Time Service: provides an interface to create objects representing
time (a time stamp, for example) and intervals of time.

• Timer Event Service: provides an interface to manage Timer Event
Handler objects. These objects are used to generate time based events
based on user defined time settings.

Time Service overview
According to the OMG Time Service Specification, the OMG Time Service
was created to allow a user to obtain the current time as well as an error
estimate associated with it. Additionally, the Time Service was to provide a
means of tracking events by ascertaining the order in which events occur,
generate time-based event triggers or “alarms”, and compute the interval
between two events.

How the Time Service defines time
The OMG Time Service Specification defines time using the Universal Time
Coordinated (UTC) representation. The UTC representation uses hundreds
of nanoseconds (10-7 seconds) as its basic unit of time, with its base time
set at 15 October 1582 00:00:00 GMT. A range of approximately 30,000
years A.D. is supported by the UTC representation.

Similarly, the UTC representation defines a intervals of time or “relative
time”. Like regular time, the basic unit of a relative time is 10-7 seconds.
Ranges can span approximately plus-or-minus 30,000 years.

The Time Service relies on the presence of an underlying time source that
provides the time and performs any necessary time synchronization. If the
underlying time source meets the security criteria set out in Appendix A of
the OMG Time Service Specification, then the Time Service is able to
provide secure time as well.

6 VisiBroker Vis iTime Guide

Time Service overview

Time Service components
The Time Service defines two types of CORBA objects that can be used by
applications. These objects are the Universal Time Object (UTO), and the
Time Interval Object (TIO). Using these two objects, a CORBA Time Service
must provide for the ability to:

• Get the current time with associated inaccuracy in a UTO object via the
universal_time operation.

• Get the current time and associated inaccuracy in a UTO object if the
criteria for a secure time source can be met via the
secure_universal_time operation.

• Create a UTO object to represent arbitrary time called a
new_universal_time object.

• Create a UTO object from UtcT structure, via the uto_from_utc
operation.

• Create a TIO from the new_interval operation.

Universal Time Object
The UTO interface corresponds to an object that contains UTC time and provides
means to manipulate time in that object. UTO is an immutable object; it does not allow
modifying the value of time contained in it. A UTO also provides for operations to be
performed on basic time, such as comparing UTOs, comparing a UTO to a TIO
interval, and getting the constituent parts of the UTO object.

Time Interval Object
Like a UTO, a TIO is an immutable object that represents a time interval and provides
operations on time intervals. Methods are provided to get the interval value stored in
the TIO object, determine overlapping between a TIO and one or more UTOs, and
convert a TIO into a UTO.

Time Service services
In addition to providing time objects that can be manipulated and used by
applications, the Time Service specifies a Timer Event Service and a Secure
Time Service. The Timer Event Service provides a means for timer alarms to
trigger events, which can be responded to using callback objects. The
Secure Time Service allows only specified users of the system to set the
time and/or specify the source of time.

Timer Event Service
The Timer Event Service provides a mechanism by which you can receive notifications
when an event gets triggered. In other words, Timer Event Service provides a kind of
alarm service. Your programs can register a CosEventComm::PushConsumer
callback object with the Timer Event Service and obtain a special event handler object
that provides operations to set and cancel alarms. When an alarm goes off, the Timer
Event Service sends a notification to the callback object.

A Timer Event Handler object holds information about an event that is to be
triggered at a specific time and the action to be taken when the event is
triggered. The action taken is basically a call on the push method on the
CosEventComm::PushConsumer object registered as the event handler.
This method takes a CORBA::Any which contains the data to be pushed (the
data is also specified when the event handler is registered with the event
service).

VisiBroker Vis iT ime Guide 7

VisiTime Service

The following operations are provided by the Timer Event Handler interface:

• Querying whether an event has been triggered with the time_set
method.

• Querying the status of the Timer Event Handler with the status method.

• Setting the time for an event to trigger an alarm with the set_timer
method.

• Canceling a trigger that has yet to go off with the cancel_timer method.

• Setting the data to be pushed when the event is triggered with the
set_data method.

Alarms can be set using absolute or relative time definitions. They can also
be set to occur periodically. The Timer Event Service interface provides
operations for the complete lifecycle for the Timer Event Handler. The
following operations are provided by the Timer Event Service interface:

• Registering an event handler and specify the callback object and the
event data with the register method.

• Un-registering a previously registered event handler with the
unregister method.

• Getting the time at which an event was triggered with the event_time
method.

Secure Time Service
Only administrators authorized by the system security policy may set the time and
specify the source of time. Once this is guaranteed the administrator can configure the
Time Service to return secured time. With this in place it can be safely assumed that
the underlying time source is secured and calling a secure_universal_time
operation on the Time Service interface will return a secured time. If the underlying
time source is not secured, a CosTime::TimeUnavailable exception will be
raised upon invocation of the secure_universal_time operation on the Time
Service interface.

VisiTime Service
The VisiTime Service is a factory for creating Universal Time Objects and
Time Interval Objects.

Starting the VisiTime Service
The VisiTime Service can be started by using the timeserv launcher
located in the bin directory of your VisiBroker installation. Running this
command starts both the VisiTime Service and “Timer Event Service” on
page 6. The command syntax is:

Unix
timeserv [driver_options] [timeserv_options] &

Windows
timeserv [driver_options] [timeserv_options]

You can also start the Time Service using the VBJ launcher:

vbj [driver_options]
com.borland.vbroker.CosTime.TimeServer

8 VisiBroker Vis iTime Guide

VisiTime Service

The following driver options are available:

The general driver options are also available for both UNIX and Windows.
See the VisiBroker for C++ Developer’s Guide or VisiBroker for Java
Developer’s Guide for more information.

The following VisiTime Service options are available:

Starting Secure VisiTime Service
When the underlying time source is secure and follows the guidelines given
in Appendix A of the OMG Time Service specification, then the VisiTime
Service can be started as a secure Time Service. Calls to
TimeService::secure_universal_time would succeed in this case. Note
that here security only refers to the security of the underlying time source.
To start a secured VisiTime Service:

Unix
timeserv -J-Dvbroker.time.source.secured=true &

Windows
start timeserv -J-Dvbroker.time.source.secured=true

Bootstrapping the VisiTime Service
There are three ways to start a client application to get the initial reference
to the VisiTime Service. These are:

• Using the ORBInitRef command-line option.

• Using the ORBDefaultInitRef command-line option.

• Using the Smart Agent.

When using either of the command-line options, client applications can
make use of the ORB's resolve_initial_references method to obtain
the Time Service or the Timer Event Service. For example:

Option Description
-install <service-name> (Windows only) Install as a Windows service using the name provided.

This option cannot be used when starting the Time Service using vbj.
-remove <service-name> (Windows only) Uninstall this service. This option cannot be used when

starting the VisiTime Service using vbj.

Option Description
-?, -h, -help, -usage Print usage information.
-props <properties-file> Use the supplied properties file as the configuration file when starting

up the VisiTime Service. Note that a property defined in this file will
get overridden if the same property is also passed on the command
line.

VisiBroker Vis iT ime Guide 9

VisiTime Service

C++
...
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get reference to Time Service
CORBA::Object_var obj_t = orb-
>resolve_initial_references("CosTimeService");
CosTime::TimeService_var time_svc =
CosTime::TimeService::_narrow (obj_t.in());

// Get reference to Timer Event Service
CORBA::Object_var obj_te = orb-
>resolve_initial_references("CosTimerEventService");
CosTimerEvent::TimerEventService_var timer_svc =

CosTimerEvent::TimerEventService::_narrow (obj_te.in());
...

Java
// Get reference to Time Service
org.omg.CosTime.TimeService timeSvc =
org.omg.CosTime.TimeServiceHelper.narrow(

orb.resolve_initial_references("CosTimeService"));

// Get reference to Timer Event Service
org.omg.CosTimerEvent.TimerEventService timerSvc =
org.omg.CosTimerEvent.TimerEventServiceHelper.narrow(

orb.resolve_initial_references("CosTimerEventService"));
...

Bootstrapping using ORBInitRef
The most common usage scenario for ORBInitRef is to use a corbaloc URL
to specify the initial reference. Other URL schemes are also possible. For
example, using the IOR string or the file URL (Java only) to specify the
name of the file containing Time Service IOR. The following commands
bootstrap the Time Service and Timer Event Service running on port 5566
to the client application:

C++
<client_application> -ORBInitRef
CosTimeService=corbaloc::<host>:5566/CosTimeService

<client_application> -ORBInitRef
CosTimerEventService=corbaloc::<host>:5566/
CosTimerEventService

Java
vbj <client_application> -ORBInitRef
CosTimeService=corbaloc::<host>:5566/CosTimeService

vbj <client_application> -ORBInitRef
CosTimerEventService=corbaloc::<host>:5566/
CosTimerEventService

10 VisiBroker Vis iTime Guide

VisiTime Service

Bootstrapping Using ORBDefaultInitRef
Like ORBInitRef, ORBDefaultInitRef commonly uses corbaloc URLs to
specify initial references. Other URL schemes are valid as well, depending
on your implementation. The following command bootstraps both the Time
Service and the Timer Event Service to the client application, using
ORBDefaultInitRef:

C++
<client_application> -ORBDefaultInitRef corbaloc::<host>:5566

Java
vbj <client_application> -ORBDefaultInitRef corbaloc::<host>:5566

You can also specify the ORBDefaultInitRef as a property with the vbj
command starting the client application. The following command also
bootstraps the Time Service, but specifies ORBDefaultInitRef as a
property:

vbj -DORBDefaultInitRef=corbaloc::<host>:5566 <client_application>

Bootstrapping Using the SmartAgent
Client applications can also make use of the VisiBroker bind method to get
the initial reference to the Time Service and the Timer Event Service from
the SmartAgent. In Java the TimeServiceHelper and
TimerEventServiceHelper classes are used to perform the bind. When
executing the method, you specify the name of the Time Service and Timer
Event Service to which you're connecting (and in Java, the ORB hosting
them). For example:

C++
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get reference to Time Service
CosTime::TimeService_var time_svc =
CosTime::TimeService::_bind("VBTimeService");

// Get reference to Timer Event Service
CosTimerEvent::TimerEventService_var timer_svc =

CosTimerEvent::TimerEventService::_bind
("VBTimerEventService");

Java
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

// Get reference to Time Service
org.omg.CosTime.TimeService timeSvc =

org.omg.CosTime.TimeServiceHelper.bind(orb,

"VBTimeService");

// Get reference to Timer Event Service
org.omg.CosTimerEvent.TimerEventService timerSvc =

org.omg.CosTimerEvent.TimerEventServiceHelper.bind(orb,
"VBTimerEventService");

VisiBroker Vis iTime Guide 11

VisiTime Service

Running the Time Service in-process
The VisiTime service has the ability to run in-process or co-located with
Java applications. You need not make any application code changes when
switching from out-of-process to in-process mode. Enabling the in-process
Time Service is controlled through the VisiBroker property
vbroker.time.enableInProc.

Regardless of whether the Time Service is using in-process or out-of-
process execution mode, user applications will use
orb.resolve_initial_references("CosTimeService") and
orb.resolve_initial_references("CosTimerEventService") to
obtain initial references to the Time Service and Timer Event Service
respectively. There would be a difference in the bootstrapping mechanism
for in-process and remote Time Service respectively. User applications
should not specify the ORBInitRef property with in-process Time Service.
Instead, they must enable the VisiBroker property
vbroker.time.enableInProc=true. If ORBInitRef is used together with
vbroker.time.enableInProc=true, only ORBInitRef will take effect.

NTP server support for Time Source
By default, the VisiTime Service implementation uses the System Time as
the Time Source. Alternatively it can be configured to use a NTP Server as a
Time Source. This is controlled through the VisiBroker property
vbroker.time.ntp.addr.

Specifying NTP server addresses and failover
The value for the vbroker.time.ntp.addr can be one or a sequence of
comma-separated strings representing the NTP Server addresses. Both
IPv4 and IPv6 format addresses can be specified as well. For example,
consider three NTP server addresses given here:

vbroker.time.ntp.addr=foo.com,[fe220::103:baaa:fbbb:fedf]:
123,101.121.145.100:124

The first address, foo.com, relies on the internal DNS lookup. Since no port
is specified, the default NTP port 123 is used. The second entry,
[fe220::103:baaa:fbbb:fedf]:123, is an IPv6 format address enclosed
in square brackets. Here, the port is defined specifically as 123. The final
entry, 101.121.145.100:124 is the familiar IPv4 format, with the port
number 124 specified as well.

The VisiTime Service will first try to contact the first NTP Server in the
sequence. If the address is valid and the server is available, the time of the
NTP Server will be returned to the caller. Assuming that the first server in
the list was not available, the implementation will transparently fail over to
the second in the list and so on until it retrieves the required time value
from one of the Server in the list. If all of the Servers are unreachable,
VisiTime Service will throw an exception to the caller. Depending on the
method called, the exception can be either CosTime::TimeUnavailable or
a CORBA system exception such as COMM_FAILURE.

12 VisiBroker Vis iTime Guide

VisiTime Service

Configuring the VisiTime Service
The VisiTime Service can be configured using the VisiBroker Console, using
properties specified on the command line, or using properties specified in a
properties file. The following properties are provided for the VisiTime
Service.

Property Default Description
vbroker.time.name (none) Specifies a name for this Time Service. This name

is used to identify a particular Time Service in the
Console or through Server Manager.

vbroker.time.listener.port 0 The listener port for the Time Service. The default
value of 0 means any random port will be picked.
This property does not take effect if the listener
port is set through the Server Manager's
vbroker.se.iiop_tp.scm.iiop_tp.listener.po
rt property.

vbroker.time.timeRefFile (none) Specifies the name of file where Time Service IOR
is written. Not effective when the Time Service is
run in in-process execution mode.

vbroker.time.timerEventRefFile (none) Specifies the name of file where the Timer Event
Service IOR is written. This property is not
effective for in-process Time Service.

vbroker.time.enableInProc false Java only. Run the Time Service as in-process. It
should be specified on the Time Service client and
not the Time Service itself.

vbroker.time.leapSeconds 0 Adds leap seconds to the time returned by the
Time Source. A leap second is a second added to
Coordinated Universal Time (UTC) to make it
agree with astronomical time to within 0.9 second.
Leap seconds have been added to UTC since 1972.
The current value is 25 seconds (as of 30 June
2012). Use this property in cases when the time
source attached to Time Service is not corrected
for leap seconds.

Property Default Description
vbroker.time.source.secured false Tells the Time Service that the Time Source is a

secured one. When this property is true, a call to
secure_universal_time will always succeed.
Otherwise, it throws the TimeUnavailable
exception.

Property Default Description
vbroker.time.threadMax 0 Sets the maximum number of threads in the Timer

Event Service thread pool.
vbroker.time.threadMin 5 Sets the minimum number of threads in the Timer

Event Service thread pool.
vbroker.time.threadMaxIdle 100 Sets the time in seconds after which an idle thread

will be removed from the pool. However, the
number of threads in the pool will be kept to the
value of threadMin.

VisiBroker Vis iTime Guide 13

VisiTime Service

Creating Time Service Objects with the
TimeService interface
The VisiTime Service interface TimeService provides methods for creating
UTOs and TIOs, but doesn't provide any methods to deactivate/destroy
these Objects. VisiBroker's TimeService implementation uses the default
servant-based dispatch mechanism limiting the number of these objects,

Property Default Description
vbroker.time.logLevel C++: 0

Java: emerg
Specifies the logging level of message that will be
logged. When set to the default value the system
logs messages when the system is unusable, or in
a panic condition. Acceptable values are:

• emerg (0): indicates some panic condition.

• alert (1): a condition that requires user
attention--for example, if security has been
disabled.

• crit (2): critical conditions, such as a device
error.

• err (3): error conditions.

• warning (4): warning conditions--these may
accompany some troubleshooting advice.

• notice (5): conditions that are not errors but
may require some attention, such as upon the
opening of a connection.

• info (6): informational, such as binding in
progress.

• debug (7): debug conditions understood by
developers.

vbroker.time.logger.output stdout The name of the file where the logger output is
written. Default is to print to screen.

vbroker.time.logger.appName TimeService The name of the application to appear in the log
output.

Property Default Description
vbroker.time.ntp.addr (none) Specifies the NTP server's address and port. The

value for this property is specified as follows:

addr<:port>[, addr<:port>]

Where addr is the host name such as
myhost.com or an IP address. Both IPv4
and IPv6 addresses are supported. IPv6
addresses must be enclosed in square
brackets. The port is optional. If not
specified, the default Time Service port 123
is used. When multiple addresses are
specified, then NTP server failover happens
if communication with one of the servers
fails. The Time Service will try all the
servers before throwing a
TimeUnavailable exception.

vbroker.time.ntp.timeout 5000 The time in milliseconds to wait for a reply from
the NTP server. If multiple NTP servers are
specified then failover to next server happens
after the timeout expires.

14 VisiBroker Vis iTime Guide

VisiTime Service

meaning that for any number of these references the real servant
processing the request is only one. You will not, therefore, need to be
concerned with a large number of Time Service objects--UTOs and TIOs--
being created. You use the TimeService interface to create UTOs and
TIOs. Before creating these objects, you must resolve to the Time Service
and narrow it (using the TimeServiceHelper in Java). The following code
samples explain how to do this:

C++
//Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the TimeService interface
CORBA::Object_var obj_t = orb-
>resolve_initial_references("CosTimeService");

//Narrow the TimeService interface
CosTime::TimeService_var time_svc =
CosTime::TimeService::_narrow (obj_t.in());

Java
import org.omg.CORBA.ORB;
import org.omg.CosTime.*;
...
//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the TimeService interface
org.omg.CORBA.Object obj =
orb.resolve_initial_references("CosTimeService");

//Narrow it properly using the Helper
TimeService timeService = TimeServiceHelper.narrow(obj);

Once you have resolved to and narrowed the TimeService interface, you
can use it to create UTOs and TIOs.

Creating UTOs using the TimeService interface
Use the TimeService method universal_time() to create a Universal
Time Object containing the current time. For example,

C++
CosTime::UTO_var uto = time_svc-> universal_time();

Java
UTO uto = timeService.universal_time();

creates a Universal Time Object uto whose time value is the current time at
the execution of the method.

You can also create a UTO containing a relative time of your choosing (not
obtained using a Time Source) using the new_universal_time method.
You provide three arguments to this method:

• the 64-bit time value. This is the number of hundreds of nanoseconds
that have elapsed since base time and is a C++ CORBA::ULongLong or
Java long data type.

• the time inaccuracy value.

VisiBroker Vis iTime Guide 15

VisiTime Service

• the time displacement factor value (in the form of minutes of
displacement from the Greenwich Meridian), a C++ CORBA::Short or
Java short data type.

For example:

C++
CosTime::UTO_var uto = time_svc-> new_universal_time

((CORBA::ULongLong)10000000,0,(CORBA::Short)0);

Java
UTO uto = timeService.new_universal_time

(10000000L,0,(short)0);

Creating TIOs using the TimeService interface
You can create TIOs using the TimeService interface. The new_interval
method takes two arguments of type CORBA::ULongLong (C++) or long
(Java), which are the bounds of the time interval expressed as hundreds of
nanoseconds since base time. For example:

C++
//Create a TIO that represents a specific interval
CosTime::TIO_var tio =

time_svc->new_interval((CORBA::ULongLong)10000000,
(CORBA::ULongLong)20000000);

Java
//Create a TIO that represents a interval TIO tio

= _timeService.new_interval(10000000L, 20000000L);

Using the Timer Event Service
This section explains how to resolve to a Timer Event Service, obtain
TimerEventHandlers, set alarms using the TimerEventHandlers, cancel
an alarm that was previously set, and unregister a TimerEventHandler.

Before creating and utilizing TimerEventHandlers, you must resolve to
the Timer Event Service itself, as well as the ORB's standard Event Service
providing the PushConsumer object. For example:

C++
//Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the TimerEventService
CORBA::Object_var obj_t = orb-
>resolve_initial_references("CosTimerEventService");
CosTime::TimerEventService_var time_evsvc =
CosTime:: TimerEventService::_narrow (obj_t.in());

//Resolve to the EventService
CORBA::Object_var obj_ev = orb-
>resolve_initial_references("EventService");
CosEventChannelAdmin::EventChannel_var channel =
CosEventChannelAdmin::EventChannel::_narrow(obj_ev.in());

16 VisiBroker Vis iTime Guide

VisiTime Service

Java
import org.omg.CORBA.*;
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.CosTime.*;
import org.omg.CosTimerEvent.*;
import org.omg.TimeBase.*;
...

//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the TimerEventService
TimerEventService
timerEventService=TimerEventServiceHelper.narrow(
_orb.resolve_initial_references("CosTimerEventService"));

//Resolve to the EventService
EventChannel channel =
EventChannelHelper.narrow(_orb.resolve_initial_references(
"EventService"));

Creating TimerEventHandlers
The Timer Event Service provides an operation to register a
CosEventComm::PushConsumer together with a CORBA::Any that provides
event data. Internally, an instance of TimerEventHandler is created, with
which the event data and PushConsumer are associated. You can at any
point change the event data, but the PushConsumer is immutably
associated with the TimerEventHandler and cannot be changed.

Once you have resolved the Timer Event Service and Event Service, and
you have obtained a channel from the latter, you can create the Event
Handler implementation. To do so, you must follow these six steps:

1 Create a ProxyPushSupplier object to push the event data to the
consumer.

2 Create a PushConsumer object to receive the event data.

3 Associate the ProxyPushSupplier with its PushConsumer.

4 Obtain a ProxyPushConsumer object from the event channel. This is the
object that will be registered with the Timer Event Service.

5 Create the event data with a new CORBA::Any.

6 Create the event handler by executing the Timer Event Service's
register method, using the ProxyPushConsumer and the CORBA::Any
objects as arguments.

VisiBroker Vis iTime Guide 17

VisiTime Service

The following tables show source code used to execute each of the steps
above:

C++

Java

Step Code
1 //Create a ProxyPushSupplier

CosEventChannelAdmin::ConsumerAdmin_var cns_adm =
channel->for_consumers();

CosEventChannelAdmin::ProxyPushSupplier_var pushSupplier =
cns_adm->obtain_push_supplier();

2 //Create the PushConsumer, PushView here is the implementation of
// PushConsumer
PushView* view = new PushView();

3 //Connect the PushConsumer
pushSupplier->connect_push_consumer(view->_this());

4 //Get a ProxyPushConsumer from the Event Channel
CosEventChannelAdmin::SupplierAdmin_var sup_adm =

channel->for_suppliers();
CosEventChannelAdmin::ProxyPushConsumer_var proxy =

sup_adm->obtain_push_consumer();
5 //Create the data that we want to receive when the event is

// triggered
CORBA::Any any ;
any <<="my data";

6 //Register the PushConsumer and the event data to obtain a
// TimerEventHandler
CosTimerEvent:: TimerEventHandler_var eventHandler =

time_evsvc->register(proxy,any);

Step Code
1 //Create a ProxyPushSupplier

ProxyPushSupplier pushSupplier =
channel.for_consumers().obtain_push_supplier();

2 //Create the PushConsumer, PushView here is the implementation of
// PushConsumer
PushView view = new PushView();

3 //Connect the PushConsumer
pushSupplier.connect_push_consumer(view._this(orb));

4 //Get a ProxyPushConsumer from the Event Channel
ProxyPushConsumer proxy =

channel.for_suppliers().obtain_push_consumer();
5 //Create the data that we want to receive when event is triggered

Any any = orb.create_any();
Any.insert_string("my data");

6 //Register the PushConsumer and the event data to obtain a
// TimerEventHandler
TimerEventHandler eventHandler =

timerEventService.register(proxy,any);

18 VisiBroker Vis iTime Guide

VisiTime Service

Setting Alarms for TimerEventHandlers
In order to use your newly-created TimerEventHandler, you set alarms
using the EventTimer interface. The set_timer method is used to set an
alarm. It takes two arguments: the type of alarm and a UTO object. Three
types of alarms are available:

• TTAbsolute: the alarm is triggered at an absolute time specified by the
UTO.

• TTRelative: the alarm is triggered at the UTO relative to the current
time (the UTO represents time from the current absolute time, not the
time base).

• TTPeriodic: the alarm occurs periodically, repeating at each relative
time specified by the UTO.

To set an alarm, you must:

1 Create a TimerEventHandlers object (see “Creating TimerEventHandlers”).

2 Create a new UTO that will be used to trigger the alarm.

3 Use the Event Handler's set_timer method to set the alarm.

For example, the following code sets an alarm for a TimerEventHandler
object called eventHandler:

C++
//Create an UTO that represents relative time
CosTime::UTO_var uto = time_svc->new_universal_time

((CORBA::ULongLong)10000000,0,(CORBA::Short)0);

//set a periodic timer on the TimerEventHandler, this
// alarm would trigger after every 1 second
// (10000000/10000) second has elapsed and the event data
// will be pushed to the PushConsumer that was previously
// registered
eventHandler->set_timer(CosTimerEvent::TTPeriodic,uto);

Java
//Create an UTO that represents a relative time
UTO uto = timeService.new_universal_time

(10000000L,0,(short)0);

//set a periodic timer on the TimerEventHandler, this
// alarm would trigger after every 1 second
// (10000000/10000) second has elapsed and the event data
// will be pushed to the PushConsumer that was previously
// registered
eventHandler.set_timer(TimeType.TTPeriodic,uto);

Note

The Timer Event Service minimum relative interval for which an alarm can
be set is 1 millisecond. Any value less than 1 millisecond will be
transparently converted to 1 ms.

VisiBroker Vis iTime Guide 19

VisiTime Service

Canceling a timer and unregistering a
TimerEventHandler
To cancel an event handler's timer, simply execute the handler's
cancel_timer method:

C++
eventHandler->cancel_timer();

Java
eventHandler.cancel_timer();

To unregister an event handler entirely, call the event service's unregister
method:

C++
eventService->unregister(eventHandler);

Java
eventService.unregister(eventHandler);

Friendly Time Object
This is an object with a friendly interface to convert the 64-bit time
representation to human readable components like year, month, day etc
and vice versa: the TimeI object. The TimeI object can be viewed as a
representation conversion object. The general technique for using it is to
create one using the operation FriendlyTime::TimeService::time().
This creates a TimeI object with time set to zero in it. Then the _set
operations can be used to set the values of the various attributes. Finally,
the attribute time can be used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get
the year, month, and so forth. from the appropriate attributes.

The IDL for the friendly time object is as follows:

module FriendlyTime {
 interface TimeI {
 attribute YearT year;
 attribute MonthT month;
 attribute DayT day;
 attribute HourT hour;
 attribute MinuteT minute;
 attribute SecondT second;
 attribute MicrosecondT microsecond;
 attribute TimeBase::TimeT time;
 void reset(); // set all attributes to zero
};

20 VisiBroker Vis iTime Guide

The following code sample illustrates the usage of the friendly time object:

C++
//Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the FriendlyTimeService
CORBA::Object_var obj_t = orb->resolve_initial_references

("CosTimeService");
FriendlyTime::TimeService_var time_svc =
FriendlyTime::TimeService::_narrow (obj_t.in());

//Get a TimeI object from the FriendlyTime
FriendlyTime::TimeI_var timeI = time_svc->time();

//Get the current time in a UTO
CosTime::UTO_var uto = time_svc-> universal_time();

//Set the current time in the TimeI object
timeI->time(uto->time());

//Get the various attributes from TimeI Object in a human
//readable format and print to the standard output
cout << " Year is :" << timeI->year() << endl;
cout << " Month is :" << timeI->month() << endl;
cout << " Day is :" << timeI->day() << endl;
cout << " Hour is :" << timeI->hour() << endl;
cout << " Minute is :" << timeI->minute() << endl;
cout << " Second is :" << timeI->second() << endl;
cout << " MicroSecond is :" << timeI->microsecond() <<
endl;

Java
import org.omg.CORBA.ORB;
import org.omg.CosTime.*;
...
//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the FriendlyTimeService
org.omg.FriendlyTime.TimeService friendlyTs =
 org.omg.FriendlyTime.TimeServiceHelper.narrow(

_orb.resolve_initial_references("CosTimeService"));

//Get a TimeI object from the FriendlyTime
org.omg.FriendlyTime.TimeI timeI = friendlyTs.time();

//Get the current time in a UTO
UTO uto = friendlyTs.universal_time();

//Set the current time in the TimeI Object
timeI.time(uto.time());

//Get the various attributes from TimeI Object in a human
//readable format and print to //the standard output
System.out.println("Year is :"+ timeI.year());
System.out.println("Month is :"+ timeI.month());

VisiBroker Vis iTime Guide 21

System.out.println("Day is :"+ timeI.day());
System.out.println("Hour is :"+ timeI.hour());
System.out.println("Minute is :"+ timeI.minute());
System.out.println("Second is :"+ timeI.second());
System.out.println("MicroSecond is :"+
timeI.microsecond());

22 VisiBroker Vis iTime Guide

VisiBroker Vis iTime Guide 23

Symbols
... ellipsis 1
symbols

square brackets 1
| vertical bar 1

A
alarms, setting 18

B
bootstrapping using ORBDefaultInitRef 10
bootstrapping using ORBInitRef 9
bootstrapping using SmartAgent 10
bootstrapping VisiTime 8
brackets 1

C
cancelling timers 19
commands

conventions 1
components, time service 6

D
documentation

.pdf format 3
platform conventions used in 2
type conventions used in 1
updates on the web 3

F
failover

NTP 11
friendly time object 19

H
Help Topics

accessing 1

I
in-process time service 11
interface TimeService 13

N
NTP failover 11
NTP server addresses 11
NTP support 11

O
ORBDefaultInitRef, bootstrapping 10
ORBInitRef, bootstrapping 9
osagent, bootstrapping 10
overview 5

P
PDF documentation 3
properties 12

R
running in-process 11

S
secure time services 7
server addresses, NTP 11
setting alarms 18
SmartAgent, bootstrapping 10
square brackets 1
starting secure service 8
starting service 7
symbols

ellipsis ... 1
vertical bar | 1

T
time definition 5
time interval object 6
time service configuration 12
time service services 6
time service, components 6
time source, NTP 11
timer event handler, unregistering 19
timer event handlers, creating 16
timer event service 6
timer event service, using 15
TimeService interface 13
TIO 6
TIO creation 15

U
universal time object 6
unregistering timer event handler 19
UTC 6
UTO 6
UTO creation 14

V
VisiTime 5
VisiTime service 7

Index

 24 VisiBroker VisiTime Guide

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker help topics
	In the standalone Help Viewer
	From within a GUI tool

	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Using the VisiTime Service
	Time Service overview
	How the Time Service defines time
	Time Service components
	Universal Time Object
	Time Interval Object

	Time Service services
	Timer Event Service
	Secure Time Service

	VisiTime Service
	Starting the VisiTime Service
	Starting Secure VisiTime Service
	Bootstrapping the VisiTime Service
	Bootstrapping using ORBInitRef
	Bootstrapping Using ORBDefaultInitRef
	Bootstrapping Using the SmartAgent

	Running the Time Service in-process
	NTP server support for Time Source
	Specifying NTP server addresses and failover

	Configuring the VisiTime Service
	Creating Time Service Objects with the TimeService interface
	Creating UTOs using the TimeService interface
	Creating TIOs using the TimeService interface

	Using the Timer Event Service
	Creating TimerEventHandlers
	Setting Alarms for TimerEventHandlers
	Canceling a timer and unregistering a TimerEventHandler

	Friendly Time Object

	Index

