
VisiBroker Visitransact Guide
V8.5.9

Table of Contents

14Introduction to VisiBroker

14Accessing VisiBroker online help topics in the standalone Help Viewer

15Accessing VisiBroker online help topics from within a VisiBroker GUI tool

15Platform conventions

16VisiTransact basics

16What is VisiTransact?

16VisiTransact architecture

17VisiTransact Transaction Service

17Database integration (Solaris only)

18VisiBroker Console

19VisiBroker ORB

19VisiTransact features

19VisiTransact CORBA compliance

19Monitoring tools

20Minimum overhead with a light footprint

20Flexible deployments

20Support for open transaction processing standards

21Full support for multithreading

21Extensions to the OMG specification

21VisiTransact and the CORBAservices specification

24Overview of transaction processing

24What are transactions in a distributed environment?

25What is CORBA?

25What is the CORBA Transaction Service?

26Model for a basic transaction

27Beginning the transaction

27Issuing requests to transactional objects

Table of Contents

- 2/262 -

28Completing a transaction

29A quick start with VisiTransact

29Overview of the example

30Files for the quick start example

31Prerequisites for running the example

31What you will do in this example

32Writing the quick start IDL

34Writing the transaction originator (transfer client program)

34Initializing the ORB

35Binding to the Bank object

36Beginning the transaction

37Obtaining references to transactional objects (source and destination accounts)

39Invoking methods (debit() and credit()) on the transactional (account) objects

39Committing or rolling back the transaction

40Handling exceptions

41Writing the bank_server program

44Writing the Bank object

44Understanding the BankImpl class hierarchy

44Implementing the Bank object and its get_account() method

47Writing the transactional object (Account)

47Understanding the AccountImpl class hierarchy

47Making the Account object a transactional object

48Implementing the Account object and its methods

51Building the example

51Selecting a Makefile

51Compiling the example with make

52Running the example

52Starting the Smart Agent (osagent)

52Starting the VisiTransact Transaction Service

53Starting the storage_server program

53Starting the bank_server program

Table of Contents

- 3/262 -

53Running the Transaction Originator (transfer Client Program)

54Results

55Viewing the complete example

55IDL for the quick start example

57Transfer client program

60bank_server program

62Bank and account (transactional) objects

68Creating a transactional object

68Inheriting transactional object interfaces

68Implementing transactional object interfaces

68Transactional POA policy interfaces

68OTSPolicy

69InvocationPolicy

69NonTxTargetPolicy

69Affected Server Behaviors

70Affected Client Behaviors

70Dealing with UNSHARED transactions

71Determining your approach to transactions

71Transaction management approaches

71Direct vs. indirect context management

72Implicit vs. explicit propagation

73Context management and propagation

74In-process vs. out-of-process VisiTransact transaction service

74Integrating existing applications and transactional systems

75Using a combination of approaches

75Implementing transactions for the web

75Building C++ VisiTransact applications

76Using stand-alone VisiTransact Transaction Service instances

76Embedding a VisiTransact Transaction Service instance in your application

77Binding to the embedded instance of the VisiTransact Transaction Service

Table of Contents

- 4/262 -

78Using header files supplied with VisiTransact

79Creating and propagating VisiTransact-managed transactions

79Introducing Current as used in VisiTransact-managed transactions

80How does Current work?

81Obtaining a Current object reference

82Working with the Current interface and its methods

84Multiple threads participating in the same transaction

85Using multiple transactions within a context or thread

86Discovering an instance of the VisiTransact Transaction service

88Propagating VisiTransact-managed transactions

88Ensuring a transaction is in progress

90Marking a transaction for rollback

90Obtaining transaction information

91Extensions to the Current interface

93Other methods of creating and propagating transactions

93Introduction

94Creating transactions with the TransactionFactory

96Gaining control of a transaction with the control object

97Explicitly propagating transactions from the originator

99Changing from explicit propagation to implicit

99Getting the explicit context from Current

99Committing or rolling back transactions with Terminator

101Marking a transaction for rollback

102Obtaining transaction information

103Transaction completion

103Transaction completion

103How does the VisiTransact Transaction Service ensure completion?

105How does the VisiTransact Transaction Service ensure checked behavior?

107Heuristic completion

108Enabling heuristic reporting to your application

Table of Contents

- 5/262 -

110OTS exceptions

111Coordinating transaction completion with Resource objects

111Understanding transaction completion

112Participating in transaction completion

113Resource object is registered for the transaction

113Transaction originator initiates transaction completion

113Terminator tells Resource objects to prepare

114Resource objects return a vote to the terminator

115Terminator decides whether to commit or roll back

115Resource objects vote to commit the transaction

116Summary of steps for two-phase commit

116Summary of steps for single-phase commit

116Summary of steps for a rollback

117Participating in transaction recovery after failure

118Managing heuristic decisions

118What is a heuristic decision?

118What is the heuristic.log file?

120Interpreting the heuristic log

122What to do once the problem has been isolated

123Implementing Synchronization objects

123What are Synchronization objects?

123Using Synchronization objects before the commit protocol

124Using Synchronization objects after rollback or commit

124Registering Synchronization objects

125How failures affect Synchronization objects

126The role of Synchronization objects in transaction objects

127Backward compatibility and migration.

127Backward compatibility

127OTS1.1 Clients vs OTS1.4 Servers

Table of Contents

- 6/262 -

127OTS1.1 Servers vs OTS1.4 Clients

127Migration

129Session Manager overview

129How are databases integrated into a VisiTransact application?

130What is the Session Manager?

131Opening a connection to a database

131Connection profiles

132Configuring connections

132Associating a connection with a transaction

132Registering Resources

132Releasing Connections

133Pooling connections

133Managing thread requirements

134Global transactions using XA protocol

135What is the XA Resource Director?

135Distributed transaction recovery

136DirectConnect Session Managers

138Registering Resources

138Deployment issues

138Restrictions on DirectConnect access transactions

139Coexistence: DirectConnect and XA access transactions

140Integrating VisiTransact with databases using the Session Manager

141Evaluating the impact of integrating VisiTransact with databases using XA

141Using XA adds overhead

142Requiring high availability

142Locked or unavailable data

142Yielding some control

143Evaluating the impact of integrating VisiTransact with databases using DirectConnect

143Preparing databases

143Connection profile sets

144Modifying connection profiles used by Session Manager clients

Table of Contents

- 7/262 -

144Modifying connection profiles used by XA Resource Directors

145Using the XA Resource Director

145Deploying an XA Resource Director

145Starting an XA Resource Director

146How the XA Resource Director uses connection profiles

146Deploying client-side libraries

147Shutting down an XA Resource Director remotely

147Registering the XA Resource Director with the OAD

148Starting Session Manager-based application processes

149Checking for the default path to persistent store files

149Forcing heuristics

149Performance tuning

150For XA

150Session Manager Configuration Server

150Directory structure for persistent store files

152Deploying persistent store files

153Starting the Session Manager Configuration Server manually

154Shutting down the Configuration Server

154Security

155Data access using the Session Manager

155Preparing for integration

156Using the Session Manager: Summary of steps

157Obtaining a ConnectionPool object reference

157Using ConnectionPool object references

157Obtaining a Connection object from the Connection Pool

158Using explicit transaction contexts

159Optimizing connection pooling

159Getting a native connection handle

160Using the native connection handle

160Threading requirements

160Releasing a connection

Table of Contents

- 8/262 -

162De-allocating the instance of Connection

162Viewing exceptions

164Viewing attributes

165Obtaining Session Manager information

166Using hold() and resume()

166Using hold()

167Using resume()

168Example of a simple integration

170XA implementation issues

170Completing or recovering a transaction

171DirectConnect implementation issues

171Completing or recovering a transaction

172Changing from DirectConnect to XA

173Pluggable Database Resource Module for VisiTransact

173Concepts

173What is the pluggable database resource module?

174Structural descriptions

175Connection Management

179Writing a Pluggable Module

179The connection profiles

181The Interface Definition

181The Single Function

182The ITSDataConnection class

184Building and Running

185Programming restrictions

185Known limitations

186Using the VisiBroker Console

186Overview of the VisiBroker Console

186Transaction Services section

Table of Contents

- 9/262 -

187Session Manager Profile Sets section

187Starting the VisiBroker Console

187Starting a VisiTransact Transaction Service

188Starting the Session Manager Configuration Server

188Launching the VisiBroker Console

188Using the Transaction Services section

189Locating an instance of the Transaction Service

189Monitoring transactions

190Refreshing the transaction list

190Displaying details for specific transactions

191Controlling specific transactions

192Filtering the transaction list

192Viewing heuristic transactions

192Viewing heuristic details

193Viewing the message log

194Filtering the message logs

194Trimming the message log

194Using the Session Manager Profile Sets section

195What are connection profiles?

195Gaining access to the Session Manager Configuration Server

195Creating and configuring a new connection profile

196Editing an existing connection profile

197Filtering the connection profiles

197Deleting a connection profile

197Refreshing the list of connection profiles

198Server Application Model

198Server Application transaction and database management

198Requirements before reading this section

199Concepts and terminology

201Scenarios of global transaction and PMT

201Client-initiated global 2PC and 1PC transactions

Table of Contents

- 10/262 -

201Transparent server-initiated transactions with PMT

203PMT overview

203PMT transaction attribute values

206A simple example

207PMT::Current and connection name

209XA resources configuration

209xa-resource-descriptor

210xa-resource

211xa-connection

212xa-resource-alias

213An example of XA resource descriptor

214VisiTransact properties

214vbroker.its.its6xmode=|

215vbroker.its.verbose=|

215vbroker.its.xadesc=<xa-resource> xml file name>

215RM recovery utility

217XA Session Manager for Oracle OCI, version 9i Client

217Who should read this chapter

218Oracle9i software requirements

218Client requirements

219Server requirements

219Oracle9i installation and configuration issues

219Installation requirements

219Database configuration

220DBA_PENDING_TRANSACTIONS view

221Required environment variables

221Session Manager connection profile attributes

222Using the Session Manager with the OCI 9i API

223Programming restrictions

224Troubleshooting

224VisiTransact message log

Table of Contents

- 11/262 -

224Using the xa_trc files

225Distributed update problems

225Data access failures

226Oracle error messages

227Forcing heuristic completion

228DirectConnect Session Manager for Oracle OCI, version 9i Client

228Who should read this section

229Oracle9i software requirements

229Client requirements

229Server requirements

230Oracle9i installation and configuration issues

230Installation requirements

230Database configuration

231Required environment variables

231Session Manager connection profile attributes

231Using the Session Manager with the OCI 9i API

232Programming restrictions

233Troubleshooting

233VisiBroker VisiTransact message log

233Oracle error messages

235Commands, utilities, arguments, and environment variables

235Overview of VisiTransact commands

236vbconsole

237ots

238smconfig_server

239vshutdown

241xa_resdir

242VisiTransact utilities

242smconfigsetup

244Command-line arguments for applications

244Passing command-line arguments to ORB_init() using argc and argv

Table of Contents

- 12/262 -

245

246Arguments for applications with an embedded VisiTransact Transaction Service instance

248Arguments for applications that use the Session Manager

249Environment variables

250Error codes

250VisiTransact common error codes

251VisiTransact Transaction Service error codes

258VisiTransact transaction log error codes

259Problem determination

259General approaches

259Dealing with problems in transactions

260Notices

260Copyright

260Trademarks

260Examples

260License agreement

261Corporate information

261Contacting Technical Support

261Country and Toll-free telephone number

Table of Contents

- 13/262 -

Introduction to VisiBroker

VisiBroker is a set of services and tools that enable you to build, deploy, and manage distributed
enterprise applications in your corporate environment. These applications provide dynamic content by
using JSP, servlets, and Enterprise Java Bean (EJB) technologies.

IBM and CICS are registered trademarks of International Business Machines Corporation, registered
in many jurisdictions worldwide.

Accessing VisiBroker online help topics in the standalone
Help Viewer

To access the online help through the standalone Help Viewer on a machine where the product is
installed, use one of the following methods:

Windows

Click Start > Programs > VisiBroker > Help Topics

or:

Open a command prompt and go to the product installation \bin directory, then enter the
following command:

help

UNIX

Open a command shell and go to the product installation /bin directory, then enter the
command:

help

During installation on UNIX systems, the default is to not include an entry for bin in your PATH . If
you did not choose the custom install option but modify the default for PATH entry, and you do not
have an entry for current directory in your PATH , use ./help to start the help viewer.

Note

• •

• •

Tip

Introduction to VisiBroker

- 14/262 -

Accessing VisiBroker online help topics from within a
VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, click Help > Help Topics.

The Help menu also contains shortcuts to specific documents within the online help. When you select
one of these shortcuts, the Help Topics viewer is launched and the item selected from the Help menu is
displayed.

Platform conventions
The VisiBroker documentation uses the following symbols to indicate platform-specific information:

Symbol Indicates

Windows All supported Windows platforms

UNIX UNIX platforms

Solaris Solaris only

Linux Linux only

Accessing VisiBroker online help topics from within a VisiBroker GUI tool

- 15/262 -

VisiTransact basics

This section introduces VisiBroker VisiTransact, a complete transaction management solution for
transactions with CORBA applications over the Internet or intranets. This chapter describes the
VisiTransact features and architectural components.

What is VisiTransact?
VisiTransact provides a complete solution for distributed transactional CORBA applications.
Implemented on top of the VisiBroker ORB, VisiTransact simplifies the complexity of distributed
transactions by providing an essential set of services: a transaction service, recovery and logging,
integration with databases and legacy systems (Solaris platform only), and administration facilities.

It provides OMG OTS 1.4 compliant transaction service functionality, the VisiTransact Transaction
Service. On the Solaris platform VisiTransact supplies an Integrated Transaction Service (ITS) which
includes the XA Resource Director, Session Manager Configuration Server, Session Manager for Oracle9i,
and a Pluggable Resource Interface for enabling Session Manager to work with the database of your
choice.

VisiTransact does not support any of the Rocket Software proprietary extensions. It is only compliant
with OMG specification.

VisiTransact architecture
VisiTransact supplies the following components to provide a complete solution for the management of
distributed transactions:

VisiTransact Transaction Service

Database integration (Solaris only)

VisiBroker Console

As shown in the following figure, VisiTransact provides components to be used for distributed
transactional CORBA applications and is implemented on top of the VisiBroker ORB.

Note

• •

• •

• •

VisiTransact basics

- 16/262 -

VisiTransact Transaction Service
The VisiTransact Transaction Service—conforming to the final OMG Transaction Service specification
version 1.4 document—manages transaction completion.

VisiTransact is provided as a shared library and an executable. This flexible architecture allows you to
deploy the VisiTransact Transaction Service instance as a standalone process or embed the instance in
your application. You can load balance transactions by using multiple instances of the VisiTransact
Transaction Service on your network.

VisiTransact relies on the osagent (SmartAgent) to start up and to ensure there is only one instance of
the Transaction Service. The vshutdown utility also relies on the osagent to find the Transaction Service
and shut it down.

Database integration (Solaris only)
The database integration components help you integrate transactional applications on Solaris
platforms with databases and other Resource Managers. The following components are included for
database integration:

Session Manager, XA Implementation (Oracle9i only). The Session Manager XA implementation
allows an application to obtain a VisiTransact-enabled connection to an Oracle9i database. The
Session Manager handles all XA calls, and enables the VisiTransact Transaction Service to
coordinate transactions across Resources. The Session Manager also provides database
connection pooling. Additionally, the Session Manager Configuration Server enables you to create
connection profiles using the VisiBroker Console.

Session Manager, DirectConnect Implementation (Oracle9i only). The DirectConnect
implementation of the Session Manager provides non-XA access to Resources. It consists of a
single application server process that contains a Session Manager with embedded single-phase
Resources. This architecture provides improved performance because it performs a single-phase
commit.

Session Manager Configuration Server. The Session Manager Configuration Server enables you
to create Session Manager connection profiles using the VisiBroker Console. For more information
about the Session Manager Configuration Server, see Session Manager Configuration Server.

• •

• •

• •

VisiTransact Transaction Service

- 17/262 -

Pluggable Resource Interface. The Pluggable Resource Interface gives you the capability to
enable Session Manager to work with the database of your choice. It is a component that
implements a set of predefined interfaces to allow transactional applications to use databases
other than Oracle9i as their persistent storage in transactions managed by VisiTransact. For more
information about the Pluggable Resource Interface, see Pluggable Database Resource Module
for VisiTransact.

XA Resource Director. The XA Resource Director manages all interactions with a particular
Resource Manager that is participating in one or more transactions. It handles all transactions
with a specific Resource Manager (for example an Oracle9i database) on the network. The XA
Resource Director bridges the VisiTransact and X/Open transaction environments, which allows for
interoperability between the VisiTransact Resource model and the X/Open Distributed Transaction
Protocol (DTP) Resource Manager model. For more information about the VisiTransact Resource
model, see What is the XA Resource Director?.

VisiBroker Console
The VisiBroker Console is a graphical tool used in managing distributed transactions over the network
and configuring connection profiles for use with specific databases. It can be used to monitor and
control the status and completion of transactions. Using the Console you can create Session Manager
connection profiles with the Session Manager Configuration Server. For more information about the
VisiTransact section of the VisiBroker Console, see Using the VisiBroker Console.

VisiBroker Console is no longer automatically installed. It is available as an optional component. To
install, please download and extract the <PRODUCT_VERSION>_opt_GUI_<PLATFORM>.tar.gz archive or
<PRODUCT_VERSION>_opt_GUI_<PLATFORM>.zip archive onto your product installation.

The GUI components archive can be downloaded from the Rocket Customer Community.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

• •

• •

Note

VisiBroker Console

- 18/262 -

https://docs.rocketsoftware.com/

VisiBroker ORB
The VisiBroker ORB provides the functionality and benefits of its implementation to applications using
VisiTransact for distributed transaction management. The ORB provides many features to VisiTransact
applications, including: thread-pooling, multiplexed and recycled connections, load balancing, and fault
tolerance. Many of these features are typically part of a transaction processing monitor.

VisiTransact uses OMG portable interceptors, a powerful feature of the VisiBroker ORB, to implement its
functionality. VisiTransact users can also take advantage of interceptors to customize transactional
applications.

VisiTransact features
VisiTransact manages the completion of flat transactions using a one-phase or two-phase commit
protocol, as appropriate. If there is only one Resource involved with a transaction, the one-phase
commit protocol will be used.

In addition to the distributed transaction management features described in CORBA's Transaction
Service specification, VisiTransact provides extensions to the specification. These extensions and other
features are described in the following sections.

VisiTransact CORBA compliance
VisiTransact is fully compliant with the CORBA 3.0 specification from the Object Management Group
(OMG). For more details, refer to the CORBA specification located at http://www.omg.org.

VisiTransact is also compliant with the CORBAservices specification for the transaction service version
1.4 from the OMG. VisiTransact and the CORBAservices specification lists decisions made by VisiTransact
for several options accorded by the specification.

Monitoring tools
Using the Console you can monitor and control the status and completion of transactions, as well as
manage the size and location of log files.

VisiBroker ORB

- 19/262 -

http://www.omg.org

Minimum overhead with a light footprint
Depending on your system requirements, you can have as many VisiTransact Transaction Service
instances as you need on your network. The VisiTransact Transaction Service does not have to reside on
every host machine in your environment.

The Session Manager (available on Solaris only) also saves system resources by pooling database
connections, and reusing connections across requests.

Flexible deployments
VisiTransact optimizes deployment by providing you with three choices:

Linking your application/business objects in directly with the VisiTransact Transaction Service.

Deploying your application/business objects on the same machine with the VisiTransact
Transaction Service.

Deploying your application/business objects on any machine regardless of the location of the
VisiTransact Transaction Service.

For scalability and fault tolerance, you can deploy multiple instances of business objects and multiple
instances of the VisiTransact Transaction Service on multiple machines.

On Solaris platforms, if you have a single Oracle9i database, you can achieve an even greater
performance gain by linking the following into a single process:

Application code

VisiTransact Transaction Service

Session Manager (for Oracle9i databases on Solaris platforms only)

Support for open transaction processing standards
Currently, VisiTransact supports the OMG's CORBAservices Transaction Service and the XA protocol
open transaction processing standards.

• •

• •

• •

• •

• •

• •

Minimum overhead with a light footprint

- 20/262 -

Full support for multithreading
Because VisiTransact supports multithreading, your business object can be multithreaded and,
therefore, it can handle multiple requests simultaneously.

Extensions to the OMG specification
VisiTransact provides several extensions to the OMG CORBAservices specification to simplify
development. For example, VisiTransact extends the current interface to provide the begin_with_name()
method that allows you to assign a user-defined name to a transaction. These supplemental methods

are designated in Transaction Service interfaces and classes with the icon.

VisiTransact and the CORBAservices specification
See the table below for information about how VisiTransact implements certain options of the
CORBAservices specification.

Option VisiTransact Decision

An implementation of the Transaction Service is
not required to support synchronization.

VisiTransact fully supports
Synchronization objects (the
Synchronization interface).

The Unavailable exception is raised if the
Transaction Service implementation chooses to
restrict the availability of the transaction context.

VisiTransact will not raise the Unavailable
exception because it does not restrict the
availability of the transaction context.

An implementation of the Transaction Service is
not required to initialize the transaction context
of every request handler.

VisiTransact default behavior is only to
initialize the transaction context if the
interface supported by the target object is
derived from the
TransactionalObject interface.

VisiTransact can be configured to initialize
the transaction context of all requests. See
Creating and propagating VisiTransact-
managed transactions.

Full support for multithreading

- 21/262 -

Option VisiTransact Decision

An implementation of the Transaction Service
may restrict the ability for some or all of these
(Coordinator, Terminator and Control) objects to
be transmitted to or used in other execution
environments, to enable it to guarantee
transaction integrity.

VisiTransact does not impose any
restrictions on the ability of the
Coordinator, Terminator or Control objects
to be transmitted to or used in other
execution environments. See How does
the VisiTransact Transaction Service
ensure completion? for discussion of how
to obtain checked behavior.

It is implementation-specific whether the
Transaction Service itself monitors the
participants in a transaction for failures or
inactivity. Some implementations of the
Transaction Service impose constraints on the
use of the Transaction Service interfaces in order
to guarantee integrity equivalent to that
provided by the interfaces which support the
X.Open DTP transaction model. This is called
checked behavior.

VisiTransact does not impose constraints,
but supports checked behavior in
VisiTransact-managed transactions as
described in How does the VisiTransact
Transaction Service ensure checked
behavior?.

Some implementations of the Transaction Service
may allow transactions to be terminated by
Transaction Service clients other than the one
which created the transaction.

VisiTransact allows termination of a
transaction by any object that uses the T
erminator interface for the transaction

(for example, non VisiTransact-managed
transactions). However, VisiTransact
restricts termination of a transaction
when using the Current interface to the
client thread that created the transaction.

A TransactionFactory is located using the
FactoryFinder interface of the life cycle service
and not by the resolve_initial_
references() operation on the ORB.

Locate a VisiTransact TransactionFactory
using the VisiBroker ORB discovery
facilities, such as the bind() method.

A Transaction Service implementation may
optionally use the Event Service to report
heuristic decisions.

VisiTransact does not use the Event
Service to report heuristic decisions.

VisiTransact and the CORBAservices specification

- 22/262 -

Option VisiTransact Decision

An implementation of the Transaction Service is
not required to support nested transactions.

No major databases support nested
transactions at this time. Therefore,
VisiTransact does not support nested
transactions.

VisiTransact and the CORBAservices specification

- 23/262 -

Overview of transaction processing

This section provides an overview of transactions and how they are processed. It explains transactions,
CORBA, the components of the CORBA Transaction Service, and the process for a basic transaction.

What are transactions in a distributed environment?
In a distributed objects world, a transaction is a unit of work composed of a set of operations on
objects. A familiar example is transferring money from one bank account to another. The transfer is two
separate actions—a debit from one account, and a credit to another—that comprise a single
transaction.

In this scenario, which implements a flat transaction model, both actions must be completed for the
desired result to be achieved. If Action 1 is completed, but Action 2 is not, the customer loses money. If
Action 1 is not completed, but Action 2 is, the bank loses money. Therefore, flat transactions are an all-
or-nothing proposition—either all steps of a transaction must complete, or none of the steps must
complete.

There is another type of transaction—a nested transaction—that does not require that all steps of a
transaction are completed. However, VisiTransact Transaction Manager does not support nested
transactions.

Many things can happen to prevent all steps of a transaction from completing such as application logic,
server failure, hardware failure, and network interruptions. Because of these unpredictable
environment factors, transactions must adhere to the following properties, called ACID properties, to
ensure the consistency, reliability, and integrity of applications:

Note

Overview of transaction processing

- 24/262 -

Atomicity. If a transaction is completed successfully (it commits) all of the actions associated with
the transaction are performed. Otherwise, if the transaction is not completed successfully, none
of the actions are performed and the transaction is rolled back.

Consistency. All actions that comprise a transaction must be performed accurately so that the
system moves from one consistent state to another. In the bank example, this means that the
total money in both accounts before the transaction begins is the same as the total money in both
accounts after the transaction completes.

Isolation. This means that intermediate results performed by a transaction are not visible outside
the transaction until the entire transaction completes.

Durability. The results of a transaction are persistent.

Transactions do not always involve the transfer of funds as in the banking example we have just
covered. Transactions are necessary for all sorts of business activities. For example, an online bookstore
needs transactions to perform many activities including: ordering books from suppliers, transferring
inventory from suppliers, updating available quantities of books accurately, charging customers
appropriately for purchases, and fulfilling customer orders. All of these actions, and a multitude of
others, may need to be executed within a transaction.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) specification was adopted by the Object
Management Group (OMG) to ensure a common approach to implementing and managing distributed
objects. CORBA uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner workings and
presents a well defined interface, which reduces application complexity. The cost of developing
applications is also reduced, because once an object is implemented and tested, it can be used over and
over again.

What is the CORBA Transaction Service?
The CORBA Transaction Service, defined by the OMG, enables mission-critical applications in distributed
environments by providing transactional integrity. It defines IDL interfaces that allow multiple
distributed objects to participate in a transaction, and enable a distributed application to handle
transaction completion over the Internet and intranets.

Rocket Software’s implementation of the CORBA Transaction Service is embodied in the VisiTransact
Transaction Service, a component of the Transaction Management architecture.

• •

• •

• •

• •

What is CORBA?

- 25/262 -

Model for a basic transaction
The VisiTransact Transaction Service can be used to manage the completion of a transaction. It works
with objects at the ORB level to coordinate and manage a transaction's commit or rollback. The ORB
enables the VisiTransact Transaction Service to propagate the transaction context to each object
participating in the transaction. To accomplish this, the VisiTransact Transaction Service interfaces with
participants of the transaction at specific points in the transaction management process.

In a distributed application, a transaction can involve multiple objects performing multiple requests.
The objects that are involved can play a number of different roles. For example, an object that begins a
transaction is called the transaction originator. The following table provides descriptions of these roles.

The VisiTransact Transaction Service interacts with an application when the transaction originator
begins the transaction, as transactional information is propagated to transactional objects, and finally,
coordinates the transaction's completion (commit or rollback) across multiple objects.

Although this chapter does not address it, most transactions involve persistent data (such as
databases). For these types of transactions, there are two additional participant roles—Resource and
Recoverable Server. These roles are discussed in Coordinating transaction completion with Resource
objects.

Role of
Participant

Description

Transactional
Client

A transactional client is the user's interface to a transactional application.
Sometimes the transactional client is also the transaction originator.

Transaction
Originator

A transaction originator is the object that begins a transaction. A transaction
originator is not necessarily a transactional client—it might be a transactional
server that originates a transaction.

Transactional
Object

A transactional object is an object whose behavior is affected by the
transaction, but has no recoverable state of its own. Although a transactional
object does not participate in the completion of a transaction, it can force the
transaction to rollback. See Coordinating transaction completion with
Resource objects for information about recoverable objects, or objects whose
recoverable state is affected by the transaction.

Transactional
Server

A transactional server is a collection of one or more transactional objects.

Model for a basic transaction

- 26/262 -

Beginning the transaction
When an object initiates a transaction, an instance of the VisiTransact Transaction Service begins a
transaction for a transaction originator and establishes a transaction context. The transaction context is
then associated with the originator's thread of control that was issued by the VisiBroker ORB. The
transaction context contains transaction information, including an object transaction identifier (OTRID)
that uniquely identifies the transaction.

In step 1 of the figure above, the transaction originator registers with the VisiTransact Transaction
Service its desire to begin a transaction. The VisiTransact Transaction Service answers this request with
step 2 by returning a transaction context to the transaction originator.

Issuing requests to transactional objects
As the transaction originator issues requests to transactional objects in Step 3, each of these requests
is also associated with the transaction context. Using the ORB, the VisiTransact Transaction Service
propagates the transaction context to all objects participating in the transaction.

The transaction context is passed as a Service Context in the GIOP request and response headers.
This makes its propagation completely transparent, and is compliant with the CORBAservices
specification for interoperability between Transaction Service implementations.

Note

Beginning the transaction

- 27/262 -

Completing a transaction
A transaction can be completed in the following ways:

The transaction originator commits the transaction. This is the typical scenario.

Any component in the application, as long as Current is not used, can complete the transaction.

The transaction times out.

If a commit is requested and all participating Resources agree to commit, then the changes are
committed. If any participant votes for rollback, then the transaction is rolled back.

If completion is not requested by the application, the VisiTransact Transaction Service will rollback the
transaction when the timeout period expires.

• •

• •

• •

Completing a transaction

- 28/262 -

A quick start with VisiTransact

This section describes the development of distributed, object-based transactional applications with
VisiTransact using a C++ sample application.

For a Java example, refer to the <install_dir>\examples\vbroker\its folder.

Overview of the example
This C++ example involves a bank that has several accounts. During a transaction, money is transferred
between at least two of these accounts—depending upon the parameters passed to the client program.

The programs for the quick start example are:

transfer. This program takes input from the command line about how much money should be
transferred between which accounts. It then begins the transaction and performs the requested
transfer. After all requested transfers have completed, it requests to complete the transaction
(either commit or rollback).

bank_server. This program binds to a Storage object and creates a Bank object with the name
entered at the command line.

storage_server. This program implements a Storage object for the non-database quick start,
ensures that changes made during the transaction to balances are stored persistently (if
committed), or that the account balances are returned to their state before the transaction (if
rolled back).

The objects for the quick start example are:

Bank. This object provides access to existing Account objects. It creates instances of the Account
object for accounts that exist in the Storage object.

Account. This object lets you view the balance for an account, and credit or debit an account's
balance. It uses the Storage object to interact with persistent data.

Storage. The purpose of this object is to abstract data access into one object that makes changes
to data on behalf of the accounts.

StorageServerImpl. This implementation of the Storage object contains a lightweight Resource
(FakeResourceImpl) that simply updates balances in memory. It is only provided to help you get
up and running quickly with VisiTransact.

• •

• •

• •

• •

• •

• •

• •

A quick start with VisiTransact

- 29/262 -

Files for the quick start example
If you do not know the location of the VisiTransact package, see your system administrator. The
following table lists the files included for the example.

File Description

quickstart.
idl

The IDL for the quickstart example that defines the required interfaces for
objects.

transfer.C The client program that gathers input from the user, and is the originator of a
VisiTransact-managed transaction that invokes transactional server objects as
part of the transaction.

storage_se
rver.C

The server program that creates Storage objects. In this example, the Storage
object is a simple implementation that updates balances in memory and
outputs them. The storage_server is only provided to get you up and
running quickly.

storage_se
rver.h

Contains the specification of the Storage object.

bank_server
.C

The server program that creates the Bank object with information from the
storage_server or storage_ora program, and makes it available to

client programs.

bank.h The specification of the Bank and Account objects.

bank.C Contains the implementations of the Bank and Account interfaces. The Bank
object creates transactional objects (Account objects). The Account object is
the transactional object that calls on the Storage object to credit or debit
account balances.

Makefile Used to build all the test targets.

Files for the quick start example

- 30/262 -

To aid in portability, the example files use the .C extension on both Windows and UNIX so that there
can be a common Makefile .

Prerequisites for running the example
You must install the VisiTransact product, and the VisiBroker C++ Developer (ORB). You must also start
an instance of the VisiTransact Transaction Service, as described in Running the example.

What you will do in this example
Here are the steps to implement the C++ quick start:

Implement a simple interface in IDL that defines the three objects (Bank, Account, and Storage)
required for the transactional application. See Writing the quick start IDL.

Implement the client program and transaction originator (transfer). Gather input from the user about
which accounts to use, and how much money to transfer; initialize the ORB, begin a transaction, bind
to a Bank object, obtain a reference to a transactional object (Account), perform actions with the
transactional object (Account), commit or rollback the transaction, and handle exceptions. See Writing
the transaction originator (transfer client program).

Implement the bank_server program. Initialize the ORB, create a Bank and access a Storage object,
register the Bank object with the POA, and prepare to receive requests. See Writing the bank_server
program.

Implement the Bank. Instantiate and return a transactional object (Account) upon request. See
Writing the Bank object.

Implement a transactional object (Account). Handle requests to view account balances, and credit or
debit account balances. See Writing the transactional object (Account).

Implement a Storage object. Access and update data as requested by business (Account) objects.

File Description

Makefile.c
pp

Used to build all the test targets.

../itsmk Specific make definitions for platforms supported

Note

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Prerequisites for running the example

- 31/262 -

Build the example. To create the client program, we must compile and link the client program code
with the client stub. To create the server programs, we must compile and link the server code with
the client and server skeletons. See Building the example.

Run the example. Start the Smart Agent, the VisiTransact Transaction Service, server programs, and
the client program. See Running the example.

Writing the quick start IDL
The first step to creating a transactional application with VisiTransact is to specify all of your interfaces
using the CORBA Interface Definition language (IDL). IDL is language-independent and has a syntax
similar to C++, but can be mapped to a variety of programming languages.

The example below shows the contents of the quickstart.idl file which defines the three objects
required for the quick start example—Bank, Account, and Storage.

7. 7.

8. 8.

Writing the quick start IDL

- 32/262 -

The interface specification you create in IDL is used by the VisiBroker ORB's idl2cpp compiler to
generate C++ stub routines for the client application, and skeleton code for the objects. The stub
routines are used by the client program for all method invocations. You use the skeleton code, along
with code you write, to create the server programs that implement the objects.

The code for the client and servers, once completed, is used as input to your C++ compiler and linker to
produce your client and server programs.

// quickstart.idl
#include "CosTransactions.idl"
#pragma prefix "visigenic.com"
module quickstart
{
 //requires
 interface Account
 {
 float balance();
 void credit(in float amount);
 void debit(in float amount);
 };

 exception NoSuchAccount
 {
 string account_name;
 };

 interface Bank
 {
 Account get_account(in string account_name)
 raises(NoSuchAccount);
 };
 typedef sequence<string> AccountNames;
 //adapts
 interface Storage
 {
 float balance(in string account)
 raises(NoSuchAccount);
 void credit(in string account, in float amount)
 raises(NoSuchAccount);
 void debit(in string account, in float amount)
 raises(NoSuchAccount);
 AccountNames account_names();
 };
};

Writing the quick start IDL

- 33/262 -

Writing the transaction originator (transfer client
program)

The file named transfer.C contains the implementation of the transaction originator, which also
happens to be the client program. As discussed in Overview of transaction processing the transaction
originator is not always the client program. The transfer client program performs a single VisiTransact-
managed transaction (see Creating and propagating VisiTransact-managed transactions for details). For
information on how to manage transactions in other ways, see Other methods of creating and
propagating transactions.

The client program performs these steps:

Initializes the ORB.

Binds to the Bank object named at the command line.

Begins a transaction.

Obtains a reference to the transactional objects (the source and destination Account objects) named
at the command line.

Invokes the debit() and credit() methods on the Account objects for each set of source/destination/
amount entries to the transfer client program. It prints out the current balances for each Account
before and after the transfer.

Commits or rolls back the transaction.

Handles exceptions.

Initializing the ORB
The first task that your transaction originator needs to do is initialize the ORB, as shown in the example
below. As a component of VisiBroker, command-line arguments for VisiTransact are supplied to
VisiTransact through the VisiBroker ORB initialization call ORB_init() . Therefore, in order for arguments
specified on the command line to have effect on the VisiTransact operation in a given application
process, applications must pass the original argc and argv arguments to ORB_init() from the main
program.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Writing the transaction originator (transfer client program)

- 34/262 -

The ORB_init() function will parse both ORB arguments and VisiTransact arguments, removing them
from the argv vector before returning.

Binding to the Bank object
Before the transfer client program can invoke methods on the transactional (Account) objects, it must
first use the _bind() method to establish a connection to the Bank object. The implementation of the
_bind() method is generated automatically by the idl2cpp compiler. The _bind() method requests the
ORB to locate and establish a connection to the Bank object.

The following example shows how to bind to the Bank object as specified in the bank_name parameter
passed at the command line when the transfer client program is started. Notice how a _var is used to
facilitate memory management.

...
int main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 **CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
**...

Binding to the Bank object

- 35/262 -

Beginning the transaction
Before beginning a transaction, you must obtain a transaction context. VisiTransact-managed
transactions are handled transparently to your application with Current—an object which maintains a
unique transaction for each active thread. To use a VisiTransact-managed transaction, you must obtain
a reference to this Current object. The Current object is valid for the entire process under which you
create it, and can be used in any thread.

The next example shows how to obtain a VisiTransact-managed transaction. First an object reference is
obtained for the TransactionCurrent object using the CORBA::ORB::resolve_initial_references() method.
The Current object returned from this method is then narrowed to the specific CosTransactions::Current
object using the narrow() method. See the VisiBroker documentation for a full description of the
resolve_initial_references() and narrow() methods.

const char *bank_name = argv[1];
 //Locate the bank.
 Quickstart::Bank_var bank;
 //Get the Bank ID
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);
 try
 {
 **bank = quickstart::Bank::_bind("/bank_agent_poa", bankId);
** //bank = quickstart::Bank::_bind(bank_name);
 }
 catch (CORBA::Exception &ex)
 {
 const char *name;
 (bank_name == 0) ? name="NULL" : name=bank_name;
 cerr << "Unable to bind to Bank "" << name << "": " << ex << endl;
 return 1;
 }

Beginning the transaction

- 36/262 -

To perform work that is managed by VisiTransact, you must first begin a transaction using the Current
interface's begin() method. Only one transaction can be active within a thread at a time. The following
example shows how to begin a VisiTransact-managed transaction.

Obtaining references to transactional objects (source and
destination accounts)

Once you bind to the Bank object, you can obtain a reference to the transactional (Account) objects
specified when the transfer program is started. Within the transfer program, these references are
obtained using the get_account() method in the Bank interface. The example below shows the relevant
code from the transfer program.

// Start a transaction.
CosTransactions::Current_var current;
{
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 current = CosTransactions::Current::_narrow(initRef);
}
...

...
CosTransactions::Current_var current;
...
current->begin();
...

Obtaining references to transactional objects (source and destination accounts)

- 37/262 -

In the above example, the transfer client program loops through its input arguments (received at the
command line when the program started), and calls get_account() for each source and destination
account name entered. If the account name entered is valid, the Bank object returns a corresponding
Account object. See Implementing the Bank object and its get_account() method for details on the Bank
object's get_account() method.

Notice that if an invalid account name was entered, an error message is printed and the value of the
commit variable is set to false. Likewise, if a system exception is raised when performing the invocation
of get_account() , an error message is printed and the value of the commit variable is set to false. See
Committing or rolling back the transaction to find out how the commit variable is used for transaction
completion.

...
try
{
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {
 const char* srcName = argv[i];
 const char* dstName = argv[i + 1];
 float amount = (float)atof(argv[i + 2]);
 quickstart::Account_var src = bank->get_account(srcName);
 quickstart::Account_var dst = bank->get_account(dstName);
 ...
 }
}
catch(const quickstart::NoSuchAccount& e)
{
 cout << "Exception: " << e << endl;
 commit = 0;
}
catch(const CORBA::SystemException& e)
{
 cout << "Exception: " << e << endl;
 commit = 0;
}
...

Obtaining references to transactional objects (source and destination accounts)

- 38/262 -

Invoking methods (debit() and credit()) on the transactional
(account) objects

Once the transfer client program has established a connection with the source and destination
Account objects, the debit() and credit() methods of the Account interface can be invoked for each
source/destination/amount triplet that was entered when the transfer program was started.

The debit() and credit() methods are invoked from within the transfer program's main try() clause
using the information returned to the src and dst variables by the invocation of the get_account()
method shown in the previous example. The next example shows the parts of the try() clause that
invoke credit() and debit() .

Committing or rolling back the transaction
Once a transaction has begun, it must be committed or rolled back to complete the transaction. If an
originator of a VisiTransact-managed transaction does not complete the transaction, the VisiTransact
Transaction Service will rollback the transaction after a timeout period. However, it is important to
commit or rollback transactions so that hung transactions do not consume system resources.

The example below shows how the transfer program uses the commit variable to decide whether to
commit or rollback the transaction. If the commit variable is 1 (true), the transaction is committed. If the
commit variable is 0 (false), the transaction is rolled back. In the next example, the 0 sent to commit()
means that heuristics will not be reported. See Transaction completion for information about heuristics.

try
{
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {
 ...
 **src->debit(amount);
 dst->credit(amount);
** ...
 }
}
...

Invoking methods (debit() and credit()) on the transactional (account) objects

- 39/262 -

Handling exceptions
The following example shows the outer try and catch statements for the transfer client program.
Notice how these statements are used to detect any failures (CORBA or application exceptions), print a
message, and return.

...
CORBA::Boolean commit = 1;
...
if(commit)
{
 cout << "*** Committing transaction ***" << endl;
 current->commit(0);
}
else
{
 cout << "*** Rolling back transaction ***" << endl;
 current->rollback();
}
...

Handling exceptions

- 40/262 -

Writing the bank_server program
The bank_server program performs these steps in the main routine:

Initializes the ORB.

Obtains a Storage object and instantiates a Bank object with it.

Registers the Bank object with the ORB and POA.

Enters a loop waiting for client requests.

The argc and argv parameters passed to the ORB_init() methods are the same parameters that are
passed to the main routine. These parameters can be used to specify options for the ORB.

try
{
 ...
}
catch(const CORBA::Exception& e)
{
 cerr << "Exception: " << e << endl;
 return 1;
}
catch(...)
{
 cerr << "Unknown Exception caught" << endl;
 return 1;
}
return 0;
...

1. 1.

2. 2.

3. 3.

4. 4.

Writing the bank_server program

- 41/262 -

Next, the myPOA that is to be used to activate the Storage object is created. The bank_server program
then obtains a Storage object, and retrieves account information from it. Using the account
information, the bank_server program instantiates the Bank object. Lastly, the bank_server program
calls the orb->run() method to start the event loop that receiveclient requests.

int main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
...

Writing the bank_server program

- 42/262 -

const char* bank_name = argv[1];
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();
 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",

poa_manager, policies);
 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);
 // Get a storage object for the bank.
 quickstart::Storage_var storage = quickstart::Storage::_bind("/
 bank_storage_poa", bankId);
 // Create the bank servant
 PortableServer::ServantBase_var bankServant = new BankImpl(bank_name,
storage, orb);
 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId(bank_name);
 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, bankServant);
 // Activate the POA Manager
 poa_manager->activate();
 CORBA::Object_var reference = myPOA->servant_to_reference(bankServant);
 cout << reference << " is ready" << endl;
 // Wait for incoming requests
 orb->run();

Writing the bank_server program

- 43/262 -

Writing the Bank object
There are a few tasks you must do to implement the Bank object:

Derive the BankImpl class from the POA_quickstart::Bank skeleton class.

Implement the Bank object that produces the transactional (Account) objects.

Understanding the BankImpl class hierarchy
The BankImpl class that you implement is derived from the POA_quickstart::Bank class that was
generated by the idl2cpp compiler. The following example shows the BankImpl class.

Implementing the Bank object and its get_account() method
The BankImpl interface defines its constructor and destructor. The constructor creates a Bank object
with the name provided when the bank_server program is started (bank_name). It also creates an
instance of AccountRegistry which is used to keep trace of all instantiated Account objects. The account
names are obtained from the Storage object.

• •

• •

class BankImpl : public POA_quickstart::Bank
{
private:
 quickstart::AccountNames_var _account_names;
 quickstart::Storage_var _storage;
 AccountRegistry _accounts;
 PortableServer::POA_var _account_poa;
public:
 BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb);
 virtual ~BankImpl();
 virtual quickstart::Account* get_account(const char* account_name);
};

Writing the Bank object

- 44/262 -

The next example shows the Bank object's get_account() method. Note that the get_account() method
performs a check to see if the account exists, else it will create a new account. If it does not, a
NoSuchAccount exception is thrown.

BankImpl::BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb)
{
 _account_names = storage->account_names();
 _storage = quickstart::Storage::_duplicate(storage);

 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(2);
 CORBA::Any policy_value;
 policy_value <<= CosTransactions::REQUIRES;
 policies[0] = orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_value);
 policies[1] =
 root_poa-
>create_implicit_activation_policy(PortableServer::IMPLICIT_ACTIVATION);
 _account_poa = root_poa->create_POA("account_poa",
 PortableServer::POAManager::_nil(),
policies);
 _account_poa->the_POAManager()->activate();
 return;
}
BankImpl::~BankImpl()
{
}

Implementing the Bank object and its get_account() method

- 45/262 -

quickstart::Account_ptr
BankImpl::get_account(const char* account_name)
{
 // Lookup the account in the account dictionary.
 PortableServer::ServantBase_var servant = _accounts.get(account_name);
 CORBA::Boolean foundAccount = 0;
 if (servant == PortableServer::ServantBase::_nil()) {
 for(CORBA::ULong i = 0; !foundAccount && i < _account_names->length(); i+
+) {
 if (!strcmp(_account_names[i], account_name)) {
 servant = new AccountImpl(account_name, _storage);
 // Print out the new account
 cout << "Created " << account_name << "'s account." << endl;
 // Save the account in the account dictionary.
 _accounts.put(account_name, servant);
 foundAccount = 1;
 }
 }
 if (!foundAccount) {
 throw quickstart::NoSuchAccount(account_name);
 return 0;
 }
 }
 try {
 CORBA::Object_var ref = _account_poa->servant_to_reference(servant);
 quickstart::Account_var account = quickstart::Account::_narrow(ref);
 cout << "account generated." << endl;
 return quickstart::Account::_duplicate(account);
 }
 catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 return quickstart::Account::_nil();
 }
 throw quickstart::NoSuchAccount(account_name);
 return 0;
}

Implementing the Bank object and its get_account() method

- 46/262 -

Writing the transactional object (Account)
There are a few tasks you must complete to implement the transactional (Account) object:

Derive the AccountImpl class from the POA_quickstart::Account class.

Implement the Account object with implementations for the balance() , credit() , and debit()
methods that invoke the Storage object.

Understanding the AccountImpl class hierarchy
The AccountImpl class that you implement is derived from the POA_quickstart::Account class that was
generated by the idl2cpp compiler. Refer to the first code example in the previous section. The
account_poa has a policy OTS_POLICY_TYPE of REQUIRE defined, hence all objects that are activated on
this poa will need to be transactional objects.

Making the Account object a transactional object
To make an object transactional two things must be done:

Create a poa with OTS_POLICY_TYPE with values REQUIRE or ADAPT.

Use the poa to activate the object

• •

• •

class AccountImpl : public POA_quickstart::Account
{
private:
 CORBA::String_var _account_name;
 quickstart::Storage_var _storage;
public:
 AccountImpl(const char* account_name,
 quickstart::Storage* storage);
 virtual CORBA::Float balance();
 virtual void credit(CORBA::Float amount);
 virtual void debit(CORBA::Float amount);
private:
 virtual void markForRollback();
};

• •

• •

Writing the transactional object (Account)

- 47/262 -

The _ account _poa was created during the construction of the BankImpl object. Refer to the first code
sample in Implementing the Bank object and its get_account() method. In the get_account() function,
whenever a new account is needed it will be activated using the _ account _poa . This makes the Account
object a transactional object.

Implementing the Account object and its methods
As shown in the following example, the AccountImpl class defines its constructor which creates an
Account object with the account_name and storage parameters provided by the Bank object.

As shown in the next example, the Account class also implements a markForRollback() method. When
invoked, this method calls rollback_only() to force the transaction originator to rollback the transaction.

Notice how the markForRollback() method obtains a handle to the TransactionCurrent object, and then
narrows to a Current object so that it can call current->rollback_only() . Since the Account object is not
the transaction originator, it cannot invoke rollback() —with VisiTransact-managed transactions, only
the transaction originator can complete the transaction.

AccountImpl::AccountImpl(const char* account_name,
 quickstart::Storage* storage)
{
 _account_name = CORBA::strdup(account_name);
 _storage = quickstart::Storage::_duplicate(storage);
}

void AccountImpl::markForRollback()
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var current =
 CosTransactions::Current::_narrow(initRef);
 current->rollback_only();
 }
 catch(const CosTransactions::NoTransaction&)
 {
 throw CORBA::TRANSACTION_REQUIRED();
 }
}

Implementing the Account object and its methods

- 48/262 -

As shown in the next example, the Account object also implements the balance() , credit() , and debit()
methods:

The balance() method requests the current balance for the Account object from the Storage
object.

The credit() method requests that the Storage object increment the balance by the amount
parameter.

The debit() method requests that the Storage object decrease the balance by the amount
parameter.

Although the Account object for the quick start example could easily interact with the database
itself, the example is designed to mirror real-world scenarios where a back-end data access
object is used by multiple business logic objects. This makes it easy to change your database in
the future, if it is necessary to do so.

• •

• •

• •

Note

Implementing the Account object and its methods

- 49/262 -

CORBA::Float AccountImpl::balance()
{
 try
 {
 return _storage->balance(_account_name);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::balance: " << e << endl;
 markForRollback();
 return 0;
 }
}
void
AccountImpl::credit(CORBA::Float amount)
{
 if(amount < 0)
 {
 cerr << "Account::credit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->credit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::credit: " << e << endl;
 markForRollback();
 }
}
void
AccountImpl::debit(CORBA::Float amount)
{
 if(amount < 0 || balance() - amount < 0)
 {
 cerr << "Account::debit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->debit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::debit: " << e << endl;

Implementing the Account object and its methods

- 50/262 -

Building the example
The transfer.C file that you created and the generated quickstart_c.C file are compiled and linked to
create the client program. The bank_server.c file that you created, along with the generated
quickstart_s.C, quickstart_c.C, and bank.C files, are compiled and linked to create the bank_server
program. Because Current is a pseudo object and VisiTransact-managed transactions use the Current
object, the client program and server programs must also be linked with the VisiTransact its_support
library.

Selecting a Makefile
The /examples/vbe/its/ directory of your VisiTransact release contains a Makefile for this example.
This directory also contains a itsmk file which is included by the Makefile and defines all site-specific
settings. You may need to customize the itsmk file. The itsmk file assumes that VisiTransact has been
installed in the default installation directory for VisiBroker.

Compiling the example with make
Windows

Assuming the VisiBroker ORB and VisiTransact distribution were installed in C:vbroker, use the following
commands:

The Visual C++ nmake command, a standard facility, runs the idl2cpp compiler and then compiles each
file.

UNIX

Assuming the VisiBroker ORB and VisiTransact distribution were installed in /usr/local/vbroker, issue
these commands:

 markForRollback();
 }
}

prompt> C:
prompt> cd c:vbrokerexamplesvbeits
prompt> nmake cpp

Building the example

- 51/262 -

In this example, make is the standard UNIX facility.

Running the example
Now that you have compiled the necessary components, you are ready to run your first VisiTransact
application.

Starting the Smart Agent (osagent)
Before you attempt to run VisiTransact transactional applications, you must first start the VisiBroker
Smart Agent on at least one host in your local network.

If the Smart Agent has not been set up as a Windows service, or on UNIX, use the following command
to start the Smart Agent:

prompt> osagent

While running the example, you only need to start the Smart Agent once.

Starting the VisiTransact Transaction Service
You must start an instance of the VisiTransact Transaction Service to enable transactions across the
network. To do so, use the following command:

While running the example, you only need to start the VisiTransact Transaction Service once.

prompt> cd /usr/local/vbroker/examples/vbe/its
prompt> make cpp

prompt> ots

Running the example

- 52/262 -

Starting the storage_server program
Start the storage_server program at the command line by typing:

The argument MyBank is the name of the Bank.

Starting the bank_server program
Start the bank_server program at the command line by typing:

In the above example, the argument is the name of the Bank.

Make sure the PATH environment variable includes the path to the VisiTransact directory (where the
binaries are located). On Solaris, make sure the LD_LIBRARY_PATH environment variable includes the
path to the VisiTransact shared libraries.

Running the Transaction Originator (transfer Client Program)
Start the transfer program at the command line with the name of the bank, followed by the source
account, destination account, and amount of money you wish to transfer.

You can include multiple transfers within one execution of the transfer program. To do so, include the
source account, destination account, and amount in sequence for each transfer:

prompt> storage_server MyBank

prompt> bank_server MyBank

Note

prompt> transfer MyBank Paul John 20

Starting the storage_server program

- 53/262 -

Results
Running the transfer client program with “MyBank Paul John 20” results in the following output from
the transfer client program:

prompt> transfer MyBank Paul John 20 Ringo George 40

Account Balance
======= =======
Paul 100.0
John 100.0
*** Transfer $20.0 from Paul's account to John's account ***
Account Balance
======= =======
Paul 80.0
John 120.0
*** Committing transaction ***

Results

- 54/262 -

Viewing the complete example
The following sections show the complete code for the quick start application.

IDL for the quick start example

Viewing the complete example

- 55/262 -

// quickstart.idl
#include "CosTransactions.idl"
#pragma prefix "visigenic.com"
module quickstart
{
 //requires
 interface Account
 {
 float balance();
 void credit(in float amount);
 void debit(in float amount);
 };

 exception NoSuchAccount
 {
 string account_name;
 };

 interface Bank
 {
 Account get_account(in string account_name)
 raises(NoSuchAccount);
 };
 typedef sequence<string> AccountNames;
 //adapts
 interface Storage
 {
 float balance(in string account)
 raises(NoSuchAccount);
 void credit(in string account, in float amount)
 raises(NoSuchAccount);
 void debit(in string account, in float amount)
 raises(NoSuchAccount);
 AccountNames account_names();
 };
};

IDL for the quick start example

- 56/262 -

Transfer client program
This example shows the full transfer client program in the transfer.C file.

Transfer client program

- 57/262 -

// transfer.C
#include "quickstart_c.hh"
USE_STD_NS
int
main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Check the command line arguments
 if (argc % 3 != 2)
 {
 cerr << "Usage: " << argv[0] <<
 " <bank-name> [<src> <dst> <amount>] ..." << endl;
 return 1;
 }
 // parse first arg
 const char *bank_name = argv[1];
 // Locate the bank.
 quickstart::Bank_var bank;
 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);
 try
 {
 bank = quickstart::Bank::_bind("/bank_agent_poa", bankId);
 // bank = quickstart::Bank::_bind(bank_name);
 }
 catch (CORBA::Exception &ex)
 {
 const char *name;
 (bank_name == 0) ? name="NULL" : name=bank_name;
 cerr << "Unable to bind to Bank "" << name << "": " << ex << endl;
 return 1;
 }
 // Start a transaction.
 CosTransactions::Current_var current;
 {
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 current = CosTransactions::Current::_narrow(initRef);
 }
 current->begin();
 CORBA::Boolean commit = 1;
 try

Transfer client program

- 58/262 -

 {
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {
 const char* srcName = argv[i];
 const char* dstName = argv[i + 1];
 float amount = (float)atof(argv[i + 2]);
 quickstart::Account_var src = bank->get_account(srcName);
 quickstart::Account_var dst = bank->get_account(dstName);
 cout << "AccounttBalance" << endl;
 cout << "=======t=======" << endl;
 cout << srcName << "t" << src->balance() << endl;
 cout << dstName << "t" << dst->balance() << endl;
 cout << "n*** Transfer $" << amount << " from " <<
 srcName << "'s account to " << dstName << "'s account ***n" << endl;
 src->debit(amount);
 dst->credit(amount);
 cout << "AccounttBalance" << endl;
 cout << "=======t=======" << endl;
 cout << srcName << "t" << src->balance() << endl;
 cout << dstName << "t" << dst->balance() << endl;
 }
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cout << e << endl;
 commit = 0;
 }
 catch(const CORBA::SystemException& e)
 {
 cout << "Exception: " << e << endl;
 commit = 0;
 }
 // Commit or rollback the transaction.
 if(commit)
 {
 cout << "*** Committing transaction ***" << endl;
 current->commit(0);
 }
 else
 {
 cout << "*** Rolling back transaction ***" << endl;
 current->rollback();
 }
 }
 catch(const CORBA::Exception& e)
 {
 cerr << "Exception: " << e << endl;

Transfer client program

- 59/262 -

bank_server program
The following example shows the bank_server program in the bank_server.C file.

 return 1;
 }
 catch(...)
 {
 cerr << "Unknown Exception caught" << endl;
 return 1;
 }
 return 0;
}

bank_server program

- 60/262 -

// bank_server.C
#include "bank.h"
USE_STD_NS
int
main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Check the command line arguments
 if(argc != 2)
 {
 cerr << "Usage: " << argv[0] << " <bank-name>" << endl;
 return 1;
 }
 const char* bank_name = argv[1];
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();
 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager,
 policies);
 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);
 // Get a storage object for the bank.
 quickstart::Storage_var storage = quickstart::Storage::_bind("/
 bank_storage_poa", bankId);
 // Create the bank servant
 PortableServer::ServantBase_var bankServant = new BankImpl(bank_name,
 storage, orb);
 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId(bank_name);
 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, bankServant);
 // Activate the POA Manager
 poa_manager->activate();

bank_server program

- 61/262 -

Bank and account (transactional) objects
The example below shows the AccountRegistry , Bank , and Account classes in the bank.h file.

 CORBA::Object_var reference = myPOA->servant_to_reference(bankServant);
 cout << reference << " is ready" << endl;
 // Wait for incoming requests
 orb->run();
 }
 catch(const CORBA::Exception& e)
 {
 cerr << "Exception: " << e << endl;
 return 1;
 }
 catch(...)
 {
 cerr << "Unknown Exception caught" << endl;
 return 1;
 }
 return 0;
}

Bank and account (transactional) objects

- 62/262 -

// bank.h
#include "quickstart_s.hh"
#include <vport.h>
// The AccountRegistry is a holder of Bank account implementations
class AccountRegistry
{
 public:
 AccountRegistry() : _count(0), _max(16), _data((Data*)NULL)
 {
 _data = new Data[16];
 }
~AccountRegistry() { delete[] _data; }
 void put(const char* name, PortableServer::ServantBase_ptr servant) {
 VISMutex_var lock(_lock);
 if (_count + 1 == _max) {
 Data* oldData = _data;
 _max += 16;
 _data = new Data[_max];
 for (CORBA::ULong i = 0; i < _count; i++)
 _data[i] = oldData[i];
 delete[] oldData;
 }
 _data[_count].name = name;
 servant->_add_ref();
 _data[_count].account = servant;
 _count++;
 }
 PortableServer::ServantBase_ptr get(const char* name) {
 VISMutex_var lock(_lock);
 for (CORBA::ULong i = 0; i < _count; i++) {
 if (strcmp(name, _data[i].name) == 0) {
 _data[i].account->_add_ref();
 return _data[i].account;
 }
 }
 return PortableServer::ServantBase::_nil();
 }
private:
 struct Data {
 CORBA::String_var name;
 PortableServer::ServantBase_var account;
 };
 CORBA::ULong _count;
 CORBA::ULong _max;
 Data* _data;
 VISMutex _lock; // Lock for synchronization

Bank and account (transactional) objects

- 63/262 -

The next example shows the BankImpl and AccountImpl classes in the bank.C file.

};
class BankImpl : public POA_quickstart::Bank
{
private:
 quickstart::AccountNames_var _account_names;
 quickstart::Storage_var _storage;
 AccountRegistry _accounts;
 PortableServer::POA_var _account_poa;
public:
 BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb);
 virtual ~BankImpl();
 virtual quickstart::Account* get_account(const char* account_name);
};
class AccountImpl : public POA_quickstart::Account
{
private:
 CORBA::String_var _account_name;
 quickstart::Storage_var _storage;
public:
 AccountImpl(const char* account_name,
 quickstart::Storage* storage);
 virtual CORBA::Float balance();
 virtual void credit(CORBA::Float amount);
 virtual void debit(CORBA::Float amount);
private:
 virtual void markForRollback();
};

Bank and account (transactional) objects

- 64/262 -

// bank.C
#include "bank.h"
USE_STD_NS
BankImpl::BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb)
{
 _account_names = storage->account_names();
 _storage = quickstart::Storage::_duplicate(storage);

 PortableServer::POA_var root_poa = PortableServer::POA::_narrow
 (orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(2);
 CORBA::Any policy_value;
 policy_value <<= CosTransactions::REQUIRES;
 policies[0] = orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_value);
 policies[1] = root_poa->create_implicit_activation_policy
 (PortableServer::IMPLICIT_ACTIVATION);
 _account_poa = root_poa->create_POA("account_poa",
 PortableServer::POAManager::_nil(),
 policies);
 _account_poa->the_POAManager()->activate();
 return;
}
BankImpl::~BankImpl()
{
}
quickstart::Account_ptr
BankImpl::get_account(const char* account_name)
{
 // Lookup the account in the account dictionary.
 PortableServer::ServantBase_var servant = _accounts.get(account_name);
 CORBA::Boolean foundAccount = 0;
 if (servant == PortableServer::ServantBase::_nil()) {
 for(CORBA::ULong i = 0; !foundAccount && i < _account_names->length(); i++)
{
 if (!strcmp(_account_names[i], account_name)) {
 servant = new AccountImpl(account_name, _storage);
 // Print out the new account
 cout << "Created " << account_name << "'s account." << endl;
 // Save the account in the account dictionary.
 _accounts.put(account_name, servant);
 foundAccount = 1;
 }
 }

Bank and account (transactional) objects

- 65/262 -

 if (!foundAccount) {
 throw quickstart::NoSuchAccount(account_name);
 return 0;
 }
 }
 try {
 CORBA::Object_var ref = _account_poa->servant_to_reference(servant);
 quickstart::Account_var account = quickstart::Account::_narrow(ref);
 cout << "account generated." << endl;
 return quickstart::Account::_duplicate(account);
 }
 catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 return quickstart::Account::_nil();
 }
 throw quickstart::NoSuchAccount(account_name);
 return 0;
}
AccountImpl::AccountImpl(const char* account_name,
 quickstart::Storage* storage)
{
 _account_name = CORBA::strdup(account_name);
 _storage = quickstart::Storage::_duplicate(storage);
}
void
AccountImpl::markForRollback()
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var current =
 CosTransactions::Current::_narrow(initRef);
 current->rollback_only();
 }
 catch(const CosTransactions::NoTransaction&)
 {
 throw CORBA::TRANSACTION_REQUIRED();
 }
}
CORBA::Float
AccountImpl::balance()
{
 try
 {
 return _storage->balance(_account_name);

Bank and account (transactional) objects

- 66/262 -

 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::balance: " << e << endl;
 markForRollback();
 return 0;
 }
}

void
AccountImpl::credit(CORBA::Float amount)
{
 if(amount < 0)
 {
 cerr << "Account::credit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->credit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::credit: " << e << endl;
 markForRollback();
 }
}
void
AccountImpl::debit(CORBA::Float amount)
{
 if(amount < 0 || balance() - amount < 0)
 {
 cerr << "Account::debit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->debit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::debit: " << e << endl;
 markForRollback();
 }
}

Bank and account (transactional) objects

- 67/262 -

Creating a transactional object

The creation of a transactional object for C++ server and clients can be achieved in two ways: by
inheriting transactional object interfaces or by direct implementation.

Inheriting transactional object interfaces
Inheritance of CosTransactions::TransactionalObject interfaces in the object interfaces defines the
object to be a transactional object in the C++ server and client.

Implementing transactional object interfaces
The other way, which is compliant with the OMG OTS 1.4 specification and illustrated in the example,
will allow server and clients to define their transactional object to enhance its transaction controls. With
these new improvements, servers are able to force a transaction requirement upon a target object by
setting appropriate policies for it. Meanwhile, clients should have to make corresponding invocations
according to the target object's requirement, with some new client side policies to regulate their
behaviors. Thus a strong semantic control is guaranteed.

It also provide the support for policy creation and policy check on both client and server sides. It
safeguards the transactional object reference creation and transactional invocations in a distributive
transaction environment.

Transactional POA policy interfaces

OTSPolicy
This policy is used to describe the shared transaction behavior of a target object. It has three possible
values:

REQUIRES the target object need a transaction to be present with the incoming calls.

FORBIDS no transaction should be present with the invocations on the target object.

ADAPTS the target object is sensitive to the presence or absence of a current transaction.

• •

• •

• •

Creating a transactional object

- 68/262 -

InvocationPolicy
This policy specifies what kind of transactions the target object supports. A target object can choose to
supported SHARED transaction model, UNSHARED transaction model, or EITHER of them by setting the
invocation policies with the corresponding values.

When defining both OTSPolicy and InvocationPolicy for a target object, not all combinations are
valid. Please see the OMG OTS specification version 1.2 for detail. Any one of invalid combinations in
policy creation will result in an InvalidPolicy exception.

NonTxTargetPolicy
This policy is used to PERMIT a client invocation on a non-transactional target object during an active
transaction or to PREVENT the client from doing it. Any client invocation that conflicts with the policy
will get an INVALID_TRANSACTION exception.

Affected Server Behaviors
A new transactional server should use OTSPolicy and InvocationPolicy (optional) to control the
transactional behaviors of the objects it creates. The previously specified TransactionalObject should not
be used in the new server.

To create an object with needed transactional behaviors, a server must create POAs with proper
policies. A POA uses the policy values with which it is created to control the object reference creation.
VisiTransact Transaction Manager will examine the validity of those policies and then do one of the
following:

if all policies are valid, a POA with specified policies is created for object activation and reference
creation;

if policies are invalid, an exception is raised;

if OTSPolicy is absent on creating a POA, VisiTransact Transaction Manager provides a default value.
(FORBIDS).

In the absence of InvocationPolicy, objects thus created should be treated as if they support the
InvocationPolicy of EITHER.

Note

1. 1.

2. 2.

3. 3.

InvocationPolicy

- 69/262 -

Affected Client Behaviors
Clients shall make invocations under circumstances conforming to the requirements of the target
objects. Otherwise they will get exceptions from VisiTransact Transaction Manager.

For an object that REQUIRES transactions, a call on it must happen within the scope of an active
transaction, for example, the calling thread must be associated with an active transaction.

For an object that FORBIDS transactions, a call on it must be made outside the scope of any active
transaction, for example, the calling thread is associated with no transaction.

For an object that ADAPTS transactions, a call on it is allowed in either case. However, the target object
will behave differently depending on whether the incoming call is associated with an active transaction
or not.

During an active transaction, the client uses the NonTxTargetPolicy to manipulate calls on non-
transactional objects. If a client doesn't set the policy, the default value for this is PERMIT.

Dealing with UNSHARED transactions
The support for UNSHARED transactions is not fully provided with this release because the current
Visibroker has a model of Asynchronous Method Invocation called NativeMessaging that is different
from OMG AMI model. So VisiTransact Transaction Manager servers and clients shouldn't directly
participate in an unshared transaction.

However, the InvocationPolicy of any valid values can be created successfully for a POA at the server
side irrespective of this limitation.

Affected Client Behaviors

- 70/262 -

Determining your approach to transactions

This section provides an overview of the directions you can take when building transactional
applications with VisiTransact Transaction Manager.

Transaction management approaches
A program can choose the type of context management it will use, and the method of context
propagation used to transmit the transactional context to other objects. Using a type of context
management does not restrict your choice of transaction propagation.

Direct vs. indirect context management
The CORBAservices Transaction Service specification from OMG defines the following types of context
management:

Indirect Context Management. With indirect context management, an application uses the
Current object provided by the Transaction Service to associate the transaction context with the
application thread of control and manage it.

Direct Context Management. In direct context management, an application manipulates the
Control and other objects associated with the transaction.

Using indirect context management simplifies programming, and enables your application to take
advantage of performance enhancements and optimizations that are possible when the VisiTransact
Transaction Service controls the transaction context. For example, VisiTransact-managed transactions
take advantage of the underlying VisiBroker ORB to minimize remote calls. Further, VisiTransact-
managed transactions save system resources by caching the propagation context and transaction
context at the application end, thereby eliminating unnecessary remote calls to retrieve this data.

Direct context management might be more convenient if you are using explicit propagation or you are
trying to use multiple VisiTransact Transaction Service instances to originate transactions. In addition, if
you do not want to link in VisiTransact libraries, you must use direct context management. In rare
circumstances you may want to use your own stubs from your own IDL files rather than use VisiTransact
libraries. The only way you can use your own stubs is by using direct context management. If you use
indirect context management, you use Current; when you use Current, you use VisiTransact libraries.

• •

• •

Determining your approach to transactions

- 71/262 -

If you use direct context management, or a mixture of both context management modes, you must
ensure transactional integrity for your application. Once you use direct context management, the
VisiTransact Transaction Service has lost the ability to check transaction completeness. See How does
the VisiTransact Transaction Service ensure checked behavior? for more information about checked
behavior.

Implicit vs. explicit propagation
The CORBAservices Transaction Service specification from OMG defines the following propagation
types:

Implicit propagation. With implicit propagation, requests are implicitly associated with the
application's transaction—meaning they share the application's transaction context. The
transaction context is transmitted implicitly to the participating objects by the VisiTransact
Transaction Service, without direct intervention by the transaction originator. An object that
supports implicit propagation would not typically expect to receive any Transaction Service object
as an explicit parameter.

Explicit propagation. With explicit propagation, the transaction originator (and potentially
participating transactional objects) propagates a transaction context by passing objects defined
by the Transaction Service as explicit parameters.

The major advantage to implicit propagation is that the VisiTransact Transaction Service handles
transaction propagation for you. Another advantage is that implicit propagation does not require you to
change the signatures of existing methods to support transactions—by making the object transactional,
you enable all of the object's methods to be executed as part of a transaction.

Explicit propagation also has its advantages. First, it allows you to mix transactional and non-
transactional methods within an object. This is useful if you want to have transactional semantics for
one method but not for others in a transaction.

Secondly, you might use explicit propagation is if you require interoperability with CORBA 1.x
implementations (such as VisiBroker 2.0). Because explicit propagation does not require cooperation
between the ORB and the Transaction Service, it can be used for this kind of backward-compatibility.

A third reason for using explicit propagation is that it allows other objects to terminate transactions. In
other words, explicit propagation enables you to pass the Terminator to another transaction
participant; this enables the participant to terminate the transaction.

• •

• •

Implicit vs. explicit propagation

- 72/262 -

Context management and propagation
A client may use either direct or indirect context management with either implicit or explicit
propagation. This results in several ways in which client applications may communicate with
transactional objects:

Indirect Context Management with Implicit Propagation

Indirect Context Management with Explicit Propagation

Direct Context Management with Implicit Propagation

Context Management with Explicit Propagation

Indirect context management with implicit propagation
The client application uses methods on the Current object to create and control its transactions. When it
issues requests on transactional objects, the transaction context sact-managed-transactions.md) for
details on using VisiTransact-managed transactions.

Indirect context management with explicit propagation
The client uses a combination of the Current, Control, and other objects which describe the state of the
transaction. A client application that uses the Current object (and therefore, is also automatically using
implicit propagation) can use explicit propagation by gaining access to the Control object with the
Current::getControl() method. It can use a VisiTransact Transaction Service object as an explicit
parameter to a transactional object. This is explicit propagation.

Direct context management with implicit propagation
The client uses a combination of the Current, Control, and other objects which describe the state of the
transaction. A client that accesses the VisiTransact Transaction Service objects directly can use the
Current::resume() method to set the implicit transaction context associated with its thread. This allows
the client to invoke methods of objects that require implicit propagation of the transaction context.

Direct context management with explicit propagation
The client application directly accesses the Control object and the other objects which describe the state
of the transaction. To propagate the transaction to an object, the client must include the appropriate
VisiTransact Transaction Service object as an explicit parameter of a method.

See Other methods of creating and propagating transactions for details on managing transactions from
your application.

• •

• •

• •

• •

Context management and propagation

- 73/262 -

In-process vs. out-of-process VisiTransact transaction
service

If most of your transactions are isolated to, and used within, a single process, you may decide to use an
in-process instance of the VisiTransact Transaction Service. However, this means that the requirements
for transactions (that is, high availability)—usually handled by a stand-alone instance of the VisiTransact
Transaction Service—can only be met if the application process remains running when transactions are
in progress. This requirement is especially important if other applications (outside of the process) are
using the instance of the VisiTransact Transaction Service that you have embedded within your
application process. See Embedding a VisiTransact Transaction Service instance in your application.

You can use multiple instances of the VisiTransact Transaction Service on your network. To make the
behavior of your transactions more predictable, you can specify which instance of the VisiTransact
Transaction Service your transaction originator will use.

You can control the instance of the VisiTransact Transaction Service used by arguments passed tt
capabilities.

Although the thread and connection management of the VisiBroker ORB can conserve system
resources, the thread pooling strategy could be a disadvantage if you need control over which thread is
assigned to a particular transaction. With the thread pooling model, a worker thread is assigned for
each client request, but only for the duration of that particular request. Consider other threading
models offered by VisiBroker if you need more control. Also note that thread safety issues may arise if
other libraries are not thread safe.

Integrating existing applications and transactional
systems

You can integrate several external transactional systems using other CORBA Transaction Services. Since
VisiTransact is fully CORBA 2.6-compliant, it is interoperable with other CORBA 2.6-compliant
implementations of the OMG CORBA Transaction Service specification. VisiTransact provides valuable
extensions to the CORBAservices specification (useful methods such as begin_with_name() , and other
features) that cannot be handled by other transaction service implementations.

In addition, you can use any CORBAservices-compliant resource provided by yourself, a third-party, or a
database vendor.

Another option is to implement your own Resource using the Resource interface. This option requires
complex programming because logging and recovery, heuristics, and other necessary coding is not
handled for you.

•

In-process vs. out-of-process VisiTransact transaction service

- 74/262 -

Using a combination of approaches
You can mix and match any of the approaches described in this chapter to suit the purposes of your
distributed, transactional application.

Mixing various types of transaction approaches. For example, you might have a transaction
using explicit propagation and then switch to implicit. See Changing from explicit propagation to
implicit for more information.

Integrating multiple systems with your VisiTransact application. For example, you can use
databases, transaction processing monitors, and messaging software in your transactional
application—and integrate them all with VisiTransact.

Implementing transactions for the web
If you are developing a web-based transactional application, you may decide to use web browsers as a
front-end to the application, and leave the transaction origination and other logic to a server-based
object.

Keeping the VisiTransact transaction within the boundaries of the Web server's local network means
that you gain performance advantages because of the locality of the VisiTransact Transaction Service
and the transaction participants. Also, you provide local autonomy of transactions within one
company's control. With this application architecture, communication problems across external
networks will not affect transaction completion or integrity.

Building C++ VisiTransact applications
When designing C++ applications that use VisiTransact you can use standalone instances of the
VisiTransact Transaction Service, or embed instances of the VisiTransact Transaction Service in your C++
application components.

The following sections describe these alternatives in greater detail.

• •

• •

Using a combination of approaches

- 75/262 -

Using stand-alone VisiTransact Transaction Service instances
Most VisiTransact applications will use an instance of the VisiTransact Transaction Service that is
running on the network—rather than embedding an instance in their process. When the application is
executed it can use any available VisiTransact Transaction Service instance, or control the instance of
the VisiTransact Transaction Service that is used.

A C++ program that uses the VisiTransact Transaction Service interfaces must be linked with
its_support.lib (its_support.so on Solaris).

If the program only uses direct context management with explicit propagation, it can use the stubs
and header files generated from the CosTransactions.idl or VISTransactions.idl files.

Embedding a VisiTransact Transaction Service instance in your
application

Embedding a VisiTransact Transaction Service instance in a C++ executable entails linking in ots_r.lib
(ots_r.so on Solaris) and its_support.lib (its_support.so on Solaris) libraries with your application.
Adding these libraries to the link line embeds an instance of the VisiTransact Transaction Service in the
application's process.

If you link with VisiTransact libraries, you must include the _c.hh and _s.hh files provided by VisiTransact.
You cannot generate your own stub files. This is to ensure you are using versions of the headers that
are compatible with the objects embedded in VisiTransact libraries. You must perform this step if you
link with the VisiTransact libraries.

Additionally, you must explicitly initialize and terminate the instance of the VisiTransact Transaction
Service from your application as described in the following steps:

Include visits.h in your C++ application.

Initialize the VisiTransact server components with ORB_init() . Invoke VISTransactionService::init() to
initialize the VisiTransact Transaction Service instance. This must happen after the ORB_init()
invocation. For example:

Invoke VISTransactionService::terminate() to shutdown the VisiTransact Transaction Service instance.

Note

1. 1.

2. 2.

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 VISIts::init(argc, argv);

3. 3.

Using stand-alone VisiTransact Transaction Service instances

- 76/262 -

You must have the following in the link line:

UNIX: ots_r.so

WinNT: ots_r.lib

ots64_r.so and its_support64.so on 64 bit platform. ots_r.a (ots64_r.a) and
its_support.a (its_support64.a) on AIX and ots_r.sl (ots64_r.sl) and its_support.sl (its_support64.sl)
on HP-UX.

Confirm that the VisiTransact Transaction Service is up and running by using osfind.

The example below shows an application that embeds the VisiTransact Transaction Service.

Binding to the embedded instance of the VisiTransact Transaction
Service

When you have the VisiTransact Transaction Service embedded in the application server, you must
make sure that the client binds to the correct instance of the VisiTransact Transaction Service. To do so,
you must specify the name of the VisiTransact Transaction Service when starting the client application
using certain command-line arguments. This name must match the one that is embedded in the
application server.

4. 4.

Note

5. 5.

// Application main
#include <visits.h> // for VISIts
#include <corba.h>
int main(int argc, char** argv)
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 **VISTransactionService::init(argc, argv);
** // the main work of the application is now performed
 ...
 **VISTransactionService::terminate();
**}

Binding to the embedded instance of the VisiTransact Transaction Service

- 77/262 -

If you are creating transactions directly from the TransactionFactory rather than using Current , then
the client will have to bind to the correct TransactionFactory . Refer to the semantics for binding to
any CORBA object to make sure the client binds to the correct object.

Using header files supplied with VisiTransact
To compile a C++ source file that will link with its_support.lib or ots_r.lib, you must include the version
of CosTransactions_c.hh or VISTransactions_c.hh supplied by VisiTransact, not an IDL client stub
header file that you generate from CosTransactions.idl or VISTransactions.idl. (The objects you will
link against in the VisiTransact-supplied libraries are valid only against the header files used to build
them.) Any application using the Current interface will be linking against these libraries.

Note

Using header files supplied with VisiTransact

- 78/262 -

Creating and propagating VisiTransact-
managed transactions

This section focuses on using the Current interface in VisiTransact-managed transactions. It includes
information about how to gain access to a VisiTransact-managed transaction with Current , and begin,
rollback, and commit the transaction using the methods in the Current interface. It also explains how
transactional objects can share in a VisiTransact-managed transaction.

Introducing Current as used in VisiTransact-managed
transactions

With VisiTransact-managed transactions you are using the Current interface for all transaction
management. You are beginning transactions using Current and you are using Current for the implicit
transaction propagation. This means that you will always originate your transactions using
Current::begin() .

Current is an object that is valid for the entire process and manages the association of each thread's
transaction context. Each thread has its own independent, isolated association with a transaction
context.

In VisiTransact-managed transactions, transaction participants share the same transaction context
because VisiTransact transparently forwards the transaction context to each participant. This means
that the state of a transaction is maintained as the originator calls on other objects to perform actions,
which may in turn call other objects.

Creating and propagating VisiTransact-managed transactions

- 79/262 -

The transaction originator requests that Object A performs the doWork() method.

Object A requests that Object B performs the doMoreWork() method.

Object B returns its results to Object A.

Object A returns its results to the transaction originator.

In all four steps, the VisiTransact Transaction Service automatically and transparently propagates the
transaction context between the transactional objects. If the first transactional object makes a
subsequent request of another object, the transaction context flows on to this second object, as is
shown in steps 1 to 4 in the figure above. If an object is not a transactional object, it does not receive
the context, and, therefore, it cannot forward the context to any other object.

How does Current work?
VisiTransact-managed transactions are made possible with the Current object. The Current interface
defines methods that simplify transaction management for most applications.

The Current interface is supported by a pseudo object whose behavior depends upon, and may alter,
the transaction context associated with the invoking thread. Because Current is not a CORBA object, it
cannot be accessed remotely.

A new transaction created with the begin() method is associated with the specific thread that called the
method. A thread can be associated with only one transaction at a time. If a thread exits, or if the
transaction originator's thread returns without completing the transaction, then any active transaction
left associated with the thread will timeout and be rolled back.

The application does not need to implement critical sections to ensure synchronization between
threads when using the Current object.

1. 1.

2. 2.

3. 3.

4. 4.

Note

How does Current work?

- 80/262 -

Obtaining a Current object reference

For C++
To gain access to a VisiTransact-managed transaction, you must obtain an object reference to the
Current object. The Current object reference is valid throughout the process. The following steps
describe the general process for obtaining a reference to a Current object, and include code examples.

Call the ORB resolve_initial_references() method. This method obtains a reference to the Current
object.

Narrow the returned object to a CosTransactions::Current or VISTransactions::Current object .

When you narrow to CosTransactions::Current , you specify your use of the original set of methods
provided by the CosTransactions module. When you narrow to VISTransactions::Current , you specify the
original set and the extensions to the Current interface provided by VisiTransact.

See Extensions to the Current interface for descriptions of VisiTransact extensions to the Current
interface.

The following example shows examples of these alternatives in C++.

For Java
However for Visibroker for Java, you need to resolve to Current every time you access it in another
thread, to gain access to a VisiTransact-managed transaction.

The following steps describe the behavioral difference between Java and C++ OTS:

When a user calls send_deferred() during a transaction, the resultant behavior is indeterminate.

1. 1.

2. 2.

// To use OMG-compliant methods and behavior
CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_var
 **current = CosTransactions::Current::_narrow(obj);
**// To use OMG behavior on CosTransactions methods and also use the
// additional VisiTransact methods
CORBA::Object_var
obj = orb->resolve_initial_references("TransactionCurrent");
VISTransactions::Current_var
 current = VISTransactions::Current::_narrow(obj);

• •

Obtaining a Current object reference

- 81/262 -

Commitment of a transaction in another thread within the same process that did not start the
transaction is not restricted. This is also the case for Visibroker for C++ implementation.

Users might not be able to make use of OTS in conjunction with naming service in certain
programmatic ways (example: do rir to naming service and then resolve to a name).

This is because in Visibroker for Java implementation looks for a transaction service instance only upon
the first transaction related call (for example, Current::begin()) .

Working with the Current interface and its methods
The Current interface offers several methods for managing the current thread or context's transaction.
The table below describes these methods.

See Extensions to the Current interface for descriptions of VisiTransact extensions to the Current
interface.

• •

• •

Method Description

begin() Creates a new transaction. The SubtransactionsUnavailable exception
will be raised if a transaction is already in progress. The transaction created
will have a timeout from the last call to set_timeout() . If
set_timeout() is not issued, the default timeout value of the VisiTransact

Transaction Service is used.

commit(in
boolean r
eport_heur
istics)

Completes the transaction. Only the originator can call this method. The
transaction is rolled back if it cannot be committed.

rollback() Rolls back the transaction. Only the originator can call this method.

rollback_o
nly()

Modifies the transaction so that it will be rolled back. This method is used by
participants other than the originator to ensure that the transaction will be
rolled back.

get_status(
)

Returns the status of the transaction. If there is no transaction in progress,
the StatusNoTransaction value is returned.

get_transa
ction_name(
)

Returns the transaction name—this is a descriptive string assigned to the
transaction either by the VisiTransact Transaction Service or the user. If there
is no transaction in progress, an empty string is returned.

Working with the Current interface and its methods

- 82/262 -

If you use get_control() , suspend() or resume() , it might affect checked behavior. For more
information, see How does the VisiTransact Transaction Service ensure checked behavior?.

As shown in the following example, you can use the methods shown in the table above to perform
actions with VisiTransact-managed transactions. This example shows the MyBank interface for the
transactional object which defines the withdraw() method.

Method Description

set_timeout
()

Sets a timeout period by which any new transactions in the process must
complete. If the timeout is set to 0, it sets any subsequent transaction that is
begun to the default transaction timeout for the VisiTransact Transaction
Service instance that it uses. If the timeout is greater than 0, it sets the new
timeout to the specified number of seconds. If the seconds parameter
exceeds the maximum timeout valid for VisiTransact Transaction Service
instance being used, then the new timeout is set to that maximum, to bring it
in range. When a transaction created by a subsequent call to begin() in
any thread in the process takes longer to start transaction completion than
the established timeout, it will be rolled back. Otherwise, the timeout is
ignored. The timeout does not affect transactions that are already in
progress.

get_control
()

Returns a Control object that represents the transaction context currently
associated with the process or thread. This Control object can be used to
resume this transaction context if the transaction context is suspended, or to
perform explicit propagation.

suspend() Suspends the current transaction. This method returns a Control object that
represents the transaction context currently associated with the process or
thread. This object can be used to resume this transaction context.

resume() Resumes a suspended transaction or associates a transaction context with
the process or thread.

Note

Working with the Current interface and its methods

- 83/262 -

The next example shows an example of an originator beginning a transaction and calling the withdraw()
method on the MyBank transactional object. Then the originator either commits or rolls back the
transaction.

If an originator begins a transaction, it must commit or rollback the transaction. The VisiTransact
Transaction Service will rollback the transaction if it times out. For example, a situation when a
transaction may time out is if the originator's thread dies before the transaction is committed or rolled
back.

Multiple threads participating in the same transaction
If you have a process and want to use multiple threads in the same transaction, you must pass the
transaction context to each of the threads. In the typical scenario, you will start with a thread that has
the transaction context—either because it is the originator and invoked Current::begin() , or because
an operation passed the transaction context to it (implicitly or explicitly) and it needs to propagate that
context to the other threads. This can be achieved by making the transaction's Control object available
to the other threads and they can invoke Current::resume() specifying that Control object. Note that
VisiTransact cannot provide checked behavior in this case.

#include <CosTransactions.idl>
interface MyBank
{
 float balance(in long accountNo);
 boolean withdraw(in long accountNo, in float amount);
};

...
 // get object reference to my object implementation
 MyBank_var bank = MyBank::_bind();
 // start a transaction
 current->**begin**();
 if(bank->withdraw(10, 444))
 {
 // invoke a CORBA request
 current->**commit**(0);
 }
 else
 {
 current->**rollback**();
 }
...

Multiple threads participating in the same transaction

- 84/262 -

Using multiple transactions within a context or thread

This release of the VisiTransact Transaction Service does not support nested transactions. However,
the procedure described in this section can be used to enable multiple transactions per thread or
context.

You can manage multiple transactions within a thread; however, a thread can have only one active
transaction at a time. The suspend() method is used to disassociate the current context, and resume() is
used to associate another context. The table in Working with the Current interface and its methods
describes the methods used to implement multiple transactions within a thread.

The following example shows an example of an object that originates multiple transactions from within
a thread. This example illustrates that the MyBank_impl::withdraw() method can suspend the transaction
in which the method was called, start a new transaction, and then resume the earlier transaction.

Note

Using multiple transactions within a context or thread

- 85/262 -

Discovering an instance of the VisiTransact Transaction service
By default, the first time you start a transaction with begin() an instance of the VisiTransact Transaction
Service is found using the Smart Agent. For details on the Smart Agent, see the VisiBroker Developer's
Guide.

You can control the instance of the VisiTransact Transaction Service used with arguments passed to
ORB_init() , or by how you set the VISTransactions::Current interface arguments. The Current arguments
will override any arguments passed to ORB_init() . The arguments will only take effect for subsequent
transactions that use Current::begin() .

The arguments that you can set are:

CORBA::Boolean MyBank_impl::withdraw(CORBA::Long accountNo,
 CORBA::Float amount)
{
 try
 {
 // check to see if a transaction has been started
 CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
 // Suspend the current transaction. If there is no current transaction,
 // the control will be null.
 CosTransactions::Control_var control = current->**suspend**();
 // start a new transaction
 try
 {
 current->**begin**();
 // do your logic
 current->**commit**(0);
 }
 catch(...)
 {
 // resume earlier transaction
 current->**resume**(control);
 throw;
 }
 }
 catch(..) { }
}

Discovering an instance of the VisiTransact Transaction service

- 86/262 -

Host Name. The Smart Agent will find any available VisiTransact Transaction Service instance that
is located on the specified host.

VisiTransact Transaction Service Name. The Smart Agent will find the named VisiTransact
Transaction Service instance anywhere on the network.

IOR. VisiTransact uses the specified IOR for the requested Transaction Service
(CosTransactions::TransactionFactory) to locate the desired instance of a Transaction Service
implementation on the network. This argument enables VisiTransact to operate without the use of
a Smart Agent (osagent).

If you specify a combination of Host Name and VisiTransact Transaction Service Name, the Smart Agent
will find the named VisiTransact Transaction Service instance on the named host. If you specify the IOR
with either the Host Name or VisiTransact Transaction Service Name, the Smart Agent will find the
VisiTransact Transaction Service instance by IOR only—it ignores the Host Name and VisiTransact
Transaction Service Name.

The following table lists the arguments you can use to specify an instance of the VisiTransact
Transaction Service.

The following example shows how to specify an instance of the VisiTransact Transaction Service by
name using the ots_name argument of the VISTransactions::Current interface.

• •

• •

• •

Characteristic Argument to ORB_init() VISTransactions::Current
Interface

Host Name -
Dvbroker.ots.curren
tHost

ots_host

VisiTransact Transaction
Service Name

-
Dvbroker.ots.curren
tName

ots_name

IOR -
Dvbroker.ots.curren
tFactory

ots_factory

Discovering an instance of the VisiTransact Transaction service

- 87/262 -

Propagating VisiTransact-managed transactions
To enable implicit propagation, a participant must be a transactional object—it must inherit from
CosTransactions::TransactionalObject or define the OTSPolicy object with either the REQUIRE or ADAPT
value. To enlist another participant in a transaction, the object enlisting the other participant must have
a transaction associated with the current thread.

There are three ways a transaction is associated with the current thread:

If a participant in a transaction implicitly receives the transaction context from another object.

If a new transaction is started using Current::begin() .

If a transactional object context has been associated with the thread using Current::resume() .

Ensuring a transaction is in progress
If a participant requires a transaction, it should verify that a transaction is not currently in progress
before beginning a new transaction. If a participant attempts to begin a new transaction when a
transaction is already running, the VisiTransact Transaction Service throws a
CosTransactions::SubtransactionsUnavailable exception. A participant that begins a new transaction must
also rollback or commit the transaction before returning.

The following example illustrates how a server object ensures that its work is done as a transaction and
avoids starting a new transaction when a transaction is already in progress.

...
CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_var current =
 VISTransactions::Current::_narrow(obj);
// to set the VisiTransact Transaction Service instance
current->ots_name("MyTxnSvc");
...

• •

• •

• •

Propagating VisiTransact-managed transactions

- 88/262 -

CORBA::Boolean MyBank_impl::withdraw(CORBA::Long accountNo,
 CORBA::Float amount)
{
 // get ORB instance
 CORBA::ORB_ptr orb = CORBA::ORB_init();
 // get Current reference
 CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
 CORBA::Boolean startFlag = 0;//use to signal creation of the transaction
 CORBA::Boolean status = 0;
 try
 {
 // check to see if a transaction has been started
 **if(current->get_status() == CosTransactions::StatusNoTransaction)
** {
 current->begin();
 startFlag = 1; //we started and now own the current transaction
 }
 if(balance(accountNo) > amount)
 {
 // withdraw logic
 ...
 status = 1;
 }
 }
 catch(...) { }
 if(startFlag && status)
 {
 current->commit();
 }
 else if(startFlag)
 {
 current->rollback();
 }
 return status;
}

Ensuring a transaction is in progress

- 89/262 -

Marking a transaction for rollback
When using Current, only an originator can terminate the transaction with commit() or rollback() . In
this case, if a participant does not want the transaction to commit, it can use the rollback_only()
method from the Current interface. When the rollback_only() method is called by a participant, the
transaction associated with the target object is modified so that the only possible outcome is to rollback
the transaction.

When invoking rollback_only() , the CosTransactions::NoTransaction exception is raised if there is no
transaction in progress. The following example shows how a participant would use the rollback_only()
method.

Obtaining transaction information
A participant can obtain information about the current transaction such as its transaction name or
transaction status using methods in the Current interface. The following table discusses these methods.

The get_status() method can return one of the following values:

StatusActive

StatusCommitted

StatusCommitting

StatusMarkedRollback

StatusNoTransaction

StatusPrepared

...
CosTransactions::Current_var current;
**current->rollback_only();
**...

Method Description

get_status() Returns the status of a transaction associated with the current
thread.

get_transaction_na
me()

Returns a printable string describing the transaction associated
with the current thread.

• •

• •

• •

• •

• •

• •

Marking a transaction for rollback

- 90/262 -

StatusPreparing

StatusRolledBack

StatusRollingBack

StatusUnknown

Extensions to the Current interface
VisiTransact has an extended interface that provides arguments for specifying an instance of the
VisiTransact Transaction Service, as well as additional methods. See Discovering an instance of the
VisiTransact Transaction service for information on the VISTransactions::Current arguments. The
following table shows the methods in the VisiTransact-extended Current interface in the
VISTransactions.idl file. For more information about the Current interface, see Current interface in the
VisiBroker for C++ API Reference.

• •

• •

• •

• •

Method Description

begin_with_
name()

Enables its caller to pass a user-defined informational transaction name. For
example, this helps with diagnostics because the user-defined transaction
name is included in the value returned by the get_transaction_name()
method. The name also helps with administration, because the Console will
report the name in the detailed information about an outstanding
transaction.

get_txcont
ext()

Returns a PropagationContext which can be used by one VisiTransact
Transaction Service domain to export a transaction to a new VisiTransact
Transaction Service domain.

register_r
esource()

Registers a Resource for a recoverable object. This method is a shortcut for
using the Control and Coordinator objects to register a Resource for a
recoverable object. It returns a Recovery Coordinator object that can be used
to help coordinate recovery. Most applications will not normally call this
method. See Coordinating transaction completion with Resource objects for
information about Resources.

register_s
ynchroniza
tion()

Registers a synchronization object. This method is a short-cut for using the
Control and Coordinator object to register a Synchronization object. See
Implementing Synchronization objects for details on Synchronization
objects.

Extensions to the Current interface

- 91/262 -

Method Description

get-otid() Provides the object transaction ID (otid) through the Current interface
as a convenience. This avoids going to the Coordinator and looking through
a PropagationContext . The otid is used to identify a transaction to a
recoverable object. Most applications will not normally call this method.

Extensions to the Current interface

- 92/262 -

Other methods of creating and propagating
transactions

This section focuses on the other facilities available for managing transactions. It includes information
on using the VisiTransact Transaction Service interfaces— TransactionFactory , Control , Coordinator , and
Terminator .

Introduction
Although typically you will use the Current interface to manage transactions, there are several other
approaches to transaction management you can use:

Indirect Context Management with Explicit Propagation. The client uses a combination of the
Current, Control, and other objects which describe the state of the transaction. A client application
that uses the Current object (and therefore, is also automatically using implicit propagation) can
use explicit propagation by gaining access to the Control object with the Current::getControl()
method. It can use a VisiTransact Transaction Service object as an explicit parameter to a
transactional object. This is explicit propagation.

Direct Context Management with Implicit Propagation. The client uses a combination of the
Current, Control, and other objects which describe the state of the transaction. A client that
accesses the VisiTransact Transaction Service objects directly can use the Current::resume()
method to set the implicit transaction context associated with its thread. This allows the client to
invoke methods of objects that require implicit propagation of the transaction context.

Direct Context Management with Explicit Propagation. The client application directly accesses
the Control object and the other objects which describe the state of the transaction. To propagate
the transaction to an object, the client must include the appropriate VisiTransact Transaction
Service object as an explicit parameter of a method.

Managing transactions with these approaches means using these interfaces:

TransactionFactory . This interface defines methods that allow a transaction originator to begin a
transaction. To view the TransactionFactory interface, see Creating transactions with the
TransactionFactory.

Control . This interface allows an application to explicitly manage or propagate a transaction
context. To view the Control interface, see Gaining control of a transaction with the control object.

• •

• •

• •

• •

• •

Other methods of creating and propagating transactions

- 93/262 -

Terminator . This interface enables an application to commit or rollback transactions. Typically, its
methods are used by transaction originators—however, by propagating the Control or Terminator
object, any transaction participant can commit or rollback the transaction. To view the Terminator
interface, see Committing or rolling back transactions with Terminator.

Coordinator . This interface enables a participant to determine the status of a transaction, discover
the transaction name, obtain the transaction context, as well as designate that a transaction
should be rolled back from a participant other than the transaction originator. See Marking a
transaction for rollback and Obtaining transaction information for information on methods in the
Coordinator interface.

Creating transactions with the TransactionFactory
The TransactionFactory interface is provided to allow the transaction originator to begin a transaction.
As shown in the following example, this CosTransactions interface provides two methods— create() and
recreate() . The create() method is used to start a new transaction. The recreate() method is used to
create a transaction's Control object from a propagation context and is not typically used by a normal
application.

VisiTransact also supplies an extension to the TransactionFactory interface that allows a transaction to
be created using a specific name— create_with_name() . Naming a transaction is useful for tracking the
progress of a particular transaction, as well as debugging its execution.

• •

• •

module CosTransactions
{
 interface TransactionFactory
 {
 Control **create**(in unsigned long time_out);
 Control **recreate**(in PropagationContext ctx);
 };
};

Creating transactions with the TransactionFactory

- 94/262 -

The following table defines the methods for creating transactions with TransactionFactory .

For more information about the TransactionFactory interface, see TransactionFactory interface in the
VisiBroker for C++ API Reference.

The following example shows how to begin a new transaction that uses the default timeout period.

module VISTransactions
{
 // TransactionFactory
 // This extends the CosTransactions::TransactionFactory by
 // allowing someone to create a transaction with a user-defined
 // name that can be used for debugging, error reporting, etc.
 interface TransactionFactory : CosTransactions::TransactionFactory
 {
 CosTransactions::Control **create_with_name**(in unsigned long time_out,
 in string userTransactionName);
 };
};

Method Description

create(in unsigned
long time_out)

Creates a new transaction and returns a Control object which
can be used to manage participation in the new transaction. If
time_out is set to 0 seconds, the default timeout for the

instance of the VisiTransact Transaction Service is used.

create_with_name(in
unsigned long
time_out, in string
userTransactionName)

Creates a new transaction with a user-defined name as
supplied in the userTransactionName argument.

recreate(in
PropagationContext
ctx)

Creates a new representation of an existing transaction as
defined by the PropagationContext (the transaction
context) and returns a Control object. The Control object can
be used to manage or control participation in the existing
transaction.

Creating transactions with the TransactionFactory

- 95/262 -

The PropagationContext can be obtained from an existing transaction using the
CosTransactions:Coordinator::get_txcontext() method described in Obtaining transaction information.

Gaining control of a transaction with the control object
The Control interface allows an application to obtain the Terminator and Coordinator object references
in order to explicitly manage or propagate a transaction context. An object supporting the Control
interface is associated with one specific transaction.

The following example shows the Control interface.

The table below defines the methods for the Control interface.

...
CosTransactions::TransactionFactory_var txnFactory;
CosTransactions::Control_var control;
**control = txnFactory->create_with_name
 (0,"BankTransfer#1");
** //use default
 //timeout value
...

Note

module CosTransactions
{
 interface Control
 {
 Terminator **get_terminator**()
 raises(Unavailable);
 Coordinator **get_coordinator**()
 raises(Unavailable);
 };
};

Gaining control of a transaction with the control object

- 96/262 -

To obtain references to Terminator and Coordinator objects, you would include statements similar to
those shown in the following example in your originator code. These objects are distinct because most
methods only require one of them.

Explicitly propagating transactions from the originator
With transactions originated using the TransactionFactory , the transaction originator handles
transactions using several VisiTransact Transaction Service interfaces. Through these interfaces, more
than one transaction may be managed at a time by the transaction originator.

In these types of transactions, participants of a transaction share the same transaction context because
the originator forwards the transaction context to each participant through an explicit parameter that is
part of the IDL signature for all the operations. This means that the state of a transaction is maintained
as the originator calls on other objects to perform actions, which may in turn call other objects using
the same parameter. Note that the figure below shows the context being passed between transaction
participants from within method calls.

Method Description

get_terminator() Returns a Terminator object which supports operations to end the
transaction. The Terminator object can be used to rollback or commit the
transaction associated with the Control object. The CosTransactions::
Unavailable exception is raised if the Control object cannot provide the

Terminator object.

get_coordinator() Returns a Coordinator object which supports operations needed by
Resources to participate in a transaction. The Coordinator object can be
used to register Resources for the transaction associated with the Control
object. The CosTransactions::Unavailable exception is raised if the
Control object cannot provide the Coordinator object.

...
CosTransactions::Control_var control
CosTransactions::Terminator_var newTranTerminator;
CosTransactions::Coordinator_var newTranCoordinator;
**newTranTerminator = control->get_terminator();
newTranCoordinator = control->get_coordinator();
**...

Explicitly propagating transactions from the originator

- 97/262 -

With transactions originated using the TransactionFactory , you can use implicit propagation. See
Changing from explicit propagation to implicit.

The transaction originator requests that Object A performs the doWork() method, passing a Control
object or Coordinator object.

Object A requests that Object B performs the doMoreWork() method, and also passes it the Control or
Coordinator object, allowing Object B to operate as part of the existing transaction.

Object B returns its results to Object A.

Object A returns its results to the transaction originator.

To explicitly propagate a transaction to participants of a transaction, the originator must include the
Control, Coordinator, or Terminator object as an explicit parameter to remote invocations of
transactional objects.

If you pass a Terminator object, you give the participant the limited ability to terminate the
transaction—they cannot do anything else.

If you pass a Coordinator object, you allow the remote object to be a participant in the
transaction, but do not give the ability to terminate the transaction. Passing the Coordinator
allows the remote object to ensure that the transaction is rolled back.

If you pass a Control object, you give the participant the abilities of both the Coordinator and
Terminator objects.

The example below shows the Control object, control, being passed as an explicit parameter to the
withdraw() method of the remote transactional object.

Note

1. 1.

2. 2.

3. 3.

4. 4.

• •

• •

• •

Explicitly propagating transactions from the originator

- 98/262 -

Changing from explicit propagation to implicit
You may want to start a transaction with explicit propagation and then switch to implicit. To set up your
implicit transaction context, pass the Control object into Current::resume() . See Using multiple
transactions within a context or thread for details on using Current::resume() and Current::suspend() .

Getting the explicit context from Current
If you start a transaction with implicit propagation and later want to get the transaction context
explicitly, use Current::get-control() .

Committing or rolling back transactions with Terminator
The Terminator interface supports operations to commit or rollback a transaction. Typically, these
operations are used by the transaction originator. The following example shows the Terminator
interface.

The following table defines the methods provided by the Terminator interface.

...
CosTransactions::Control_var control;
CORBA:Boolean didSucceed;
didSucceed=bank->withdraw(10, 444, **control**) // invoke a CORBA request
...

module CosTransactions
{
 interface Terminator
 {
 void **commit**(in boolean report_heuristics)
 raises (HeuristicMixed, HeuristicHazard);
 void **rollback**();
 };
};

Changing from explicit propagation to implicit

- 99/262 -

The next example shows the MyBank interface for the transactional object which the originator is
accessing to perform actions.

The following example shows how an originator either commits or rolls back a transaction involving the
MyBank transactional object. This example is specific for working with transactions in the withdraw()
method. Note that the balance() method would not be allowed to terminate the transaction since it is
only passed the Coordinator.

Method Description

commit (in boolean
report_heuristics)

Commits the transaction if the transaction has not been marked as
rollback only, and if all of the participants in the transaction agree to
commit. Otherwise, the transaction is rolled back and the CORBA::TRA
NSACTION_ROLLEDBACK exception is raised. When the transaction is

committed, all changes to recoverable objects made in the scope of the
transaction are made permanent and visible to other transactions or
clients.

If the report_heuristics parameter is true, the VisiTransact
Transaction Service will report inconsistent outcomes using the CosTr
ansactions::HeuristicMixed and CosTransactions::Heurist
icHazard exceptions.

rollback() Rolls back the transaction. When a transaction is rolled back, all
changes to recoverable objects made in the scope of the transaction
are rolled back.

#include <CosTransactions.idl>
interface MyBank {
 float balance(in long accountNo,
 in CosTransactions::Coordinator coord);
 boolean withdraw(in long accountNo,
 in float amount,
 in CosTransactions::Control control);
};

Committing or rolling back transactions with Terminator

- 100/262 -

See Heuristic completion for details about heuristic completion when committing a transaction.

Marking a transaction for rollback
If the participant does not want the transaction to commit, it can use the rollback_only() method from
the Coordinator interface. When the rollback_only() method is called by a participant, the transaction
associated with the current thread is modified so that the only possible outcome is to rollback the
transaction. The CosTransactions::Inactive exception is raised if the transaction has already been
prepared. The example below shows how a participant would use the rollback_only() method.

...
CORBA::Boolean didSucceed;
...
 CosTransactions::Terminator_var
 txnTerminator=control->get_terminator();
 if(didSucceed)
 { // invoke a CORBA request
 try
 {
 txnTerminator->**commit**(1);
 }
 catch(CORBA::TRANSACTION_ROLLEDBACK&)
 {
 // Return failure.
 }
 }
 else
 {
 txnTerminator->**rollback**();
 }
...

Marking a transaction for rollback

- 101/262 -

Obtaining transaction information
A participant can obtain information about a transaction such as the transaction name or transaction
status, or obtain the transaction context for a transaction using methods in the Coordinator interface.
The following table describes these methods.

The get_status() method can return one of the following values:

StatusActive

StatusCommitted

StatusCommitting

StatusMarkedRollback

StatusNoTransaction

StatusPrepared

StatusPreparing

StatusRolledBack

StatusRollingBack

StatusUnknown

...
CosTransactions::Coordinator_var coord;
**coord->rollback_only();
**...

Method Description

get_status() Returns the status of a transaction associated with the current
thread.

get_transaction_name() Returns a printable string describing the transaction associated with
the current thread.

get_txcontext() Returns a PropagationContext object.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Obtaining transaction information

- 102/262 -

Transaction completion

This section provides information about transaction completion, explains heuristic completion, and
provides information necessary for multithreaded applications.

Transaction completion
Transaction completion is a sequence of steps that the VisiTransact Transaction Service goes through
when it receives a request to either commit or rollback the work of a transactional application. The
request for completion can be initiated in different circumstances:

The transaction originator initiates completion by invoking either commit() or rollback() .

A transaction timeout occurs and triggers completion.

During recovery of the VisiTransact Transaction Service, incomplete transactions (found in the log
records) are reinstantiated and transaction completion is resumed.

How does the VisiTransact Transaction Service ensure completion?
When a transaction originator requests to commit or roll back a transaction, the VisiTransact
Transaction Service initiates the completion procedure for the transaction. Assume there are two
Resources that are involved in a single transaction. When a request to commit arrives, the VisiTransact
Transaction Service will initiate a two phase commit procedure to coordinate the completion.

• •

• •

• •

Transaction completion

- 103/262 -

If the transaction completes by successfully executing the two phase commit procedure without failure,
the originator is notified with the outcome. If the transaction cannot complete due to a specific reason
—for example, when one of the Resources is not available in the commit phase of the two phase
procedure—the VisiTransact Transaction Service cannot complete the transaction and it will place the
transaction in a Retry Queue for later attempts. When a transaction is placed in the Retry Queue, the
transaction is not dispatched immediately for completion. There is a programmed delay between each
retry attempt to prevent degradation of system performance. The minimum time between retry
attempts is 15 seconds and the maximum is 900 seconds. The first retry attempt will start after 15
seconds and for the subsequent attempts, the delay is increased until it reaches 900 seconds. After that,
the retry attempts are every 900 seconds. If a retry attempt is made due to a timeout or a recovery, the
first retry attempt is dispatched immediately without waiting for the 15 seconds delay. During retry
attempts, the VisiTransact Transaction Service executes only those portions of a transaction that have
not yet been completed. The transaction remains in the Retry Queue until it completes or until a “Stop
Completion” command is issued by the VisiBroker Console. If you query from the Console for a list of
transactions, the transactions with several retry attempts are highlighted.

Retry attempt scenarios are as follows:

A transaction timeout occurs. If a timeout period has been specified for a transaction and the
transaction does not complete within this limit, the transaction is placed in the Retry Queue. If the
transaction has entered the completion stage when the timeout expires, the timeout will be
ignored by the VisiTransact Transaction Service. You can set the default timeout for the
VisiTransact Transaction Service at the command line.

A Resource is unavailable. A Resource that is involved in the transaction is temporarily not
available due to a communication failure or because the Resource server is down. The transaction
is placed in the Retry Queue until it completes.

The VisiTransact Transaction Service recovers and decision records show transactions are
incomplete. During recovery, the information is gathered from the transaction log about the
transactions that were incomplete when the VisiTransact Transaction Service went down. If the
decision records indicate that the transaction has not completed yet, they are placed in the Retry
Queue for completion.

The number of times a transaction has to be retried can be configured using the property:

By configuring this property and setting it to an integer value " n ", you can change the number of
retries.

• •

• •

• •

vbroker.ots.completionRetryAttempts=n.

How does the VisiTransact Transaction Service ensure completion?

- 104/262 -

If n is set to a value less than or equal to 0, the transaction is retried for ever. This is the default
behavior. If it is set to a value greater than 0, the transaction is put into the retry queue, and during
each attempt the transaction service will try to run the transaction to completion. If it fails, the
transaction is put into the retry queue no more than n number of times. Note that " n " includes the
original attempt in the count. So if for example you do not want the transaction to be retried after a
failure, you must set " n " to 1. If you do want the transaction to be retried only once after a failure, you
must set " n " to 2.

How does the VisiTransact Transaction Service ensure checked
behavior?

The VisiTransact Transaction Service implements full Distributed Transaction Processing (DTP) checked
behavior to provide an extra level of transaction integrity. Checked behavior protects against loss to
data integrity by ensuring that all transactional requests made by the application have completed their
processing before the transaction is committed. This guarantees that a commit will not succeed unless
all transaction participants have completed the processing of their transactional requests. Checked
behavior occurs by default when all requests are synchronous.

Checked behavior is enforced for VisiTransact-managed transactions involved with deferred
synchronous requests: transactions are rolled back if there are pending replies when a commit() is
issued. If the request handler of a transactional object makes a deferred synchronous request and
replies before the deferred synchronous request returns, the transaction is marked for rollback.

VisiTransact does not enforce checked behavior on one-way requests.

The example below shows the client code for checked behavior when you have a deferred synchronous
request and the reply returns after commit() is invoked. Checked behavior is successful—the transaction
is rolled back.

How does the VisiTransact Transaction Service ensure checked behavior?

- 105/262 -

The example below shows the client code for checked behavior when you have a deferred synchronous
request and the reply returns before commit() is invoked. Checked behavior is successful—the
transaction is committed.

...
 // get reference to the Current
 ...
 // begin a transaction
 current->begin();
 // create a dynamic request
 CORBA::Request_var bankRequest = bank->_request("withdraw");
 CORBA::NVList_ptr arguments = bankRequest->arguments();
 CORBA::Any_var amt = new CORBA::Any();
 *amt<<= ((float)1000.00);
 arguments->add_value("amount", amt, CORBA::ARG_IN);
 ...
 //invoke deferred synchronous request
 bankRequest->send_deferred();
 //forget to get the response
 // commit the txn
 try
 {
 **current->commit(0);
** }
 catch(CORBA::TRANSACTION_ROLLEDBACK& e)
 {
 **cerr << "SUCCESS, commit check worked()" << endl;
** }
...

How does the VisiTransact Transaction Service ensure checked behavior?

- 106/262 -

Heuristic completion
Heuristic completion is when a transaction attempts to complete and one of its participating Resources
makes a heuristic decision during the completion stage. An heuristic decision is a unilateral decision
made by one or more Resources to commit or rollback updates without regard to the outcome
determined by the transaction manager.

Heuristic decisions typically only occur during unusual circumstances that prevent normal processing,
such as a network failure, or if the coordinator does not complete the two-phase commit process in a
timely manner. When a heuristic decision is made there is a risk the decision is different from the
outcome determined by the transaction manager, resulting in a loss of data integrity.

The types of heuristic outcome exceptions that are returned by the resources are:

HeuristicRollback - The commit operation on Resource reports that a heuristic decision was made
and that all relevant updates have been rolled back.

HeuristicCommit - The rollback operation on Resource reports that a heuristic decision was made
and all relevant updates have been committed.

HeuristicMixed - The Resource has committed some relevant updates, and rolled back others.

HeuristicHazard - The Resource does not know the result of at least one relevant update (the
disposition of all relevant updates is not known). For the updates that are known, either all have
been committed or all have been rolled back.

...
 // case where request arrived before commit
 current->begin();
 **cerr << " === Invoking a dii deferred sync request" << endl;
** bankRequest->send_deferred();
 try {
 //wait for reply
 **bankRequest->get_response();
 current->commit(0);
** }
 catch(CORBA::TRANSACTION_ROLLEDBACK& e)
 {
 cerr << "FAILURE, TRANSACTION_ROLLEDBACK not expected" << endl;
 }

 }

• •

• •

• •

• •

Heuristic completion

- 107/262 -

A Resource can make a heuristic decision at any point during two-phase commit. For example, if the
Terminator does not complete the two-phase commit in a timely manner, a Resource can elect to make
a heuristic decision. A heuristic decision is a way that a Resource object can break guarantees it made
during the two-phase commit process (that is, when it returned VoteCommit during prepare()).

However, if a Resource has replied VoteCommit to the Terminator, and then subsequently makes a
heuristic decision, it is still responsible for reporting its action regarding the transaction. The following
may occur when the Terminator eventually requests that the Resource rollback or commit:

The heuristic decision may be consistent with the outcome. If this is the case, the transaction
can be completed normally, and the Resource may “forget” about the transaction and the
heuristic decision. The Terminator does not need to be informed of the heuristic decision since it
was consistent with the outcome of the transaction.

The heuristic decision may differ from the outcome. In this case, the Resource consults its
record of the heuristic outcome (which it previously placed in the stable storage), and returns one
of the heuristic outcome exceptions (HeuristicCommit, HeuristicRollback, HeuristicMixed or
HeuristicHazard) when completion continues.

The heuristic outcome details must be retained in stable storage until the Resource is instructed
to “forget” the transaction by the Coordinator.

Enabling heuristic reporting to your application
A transaction originator can request to receive heuristic reporting by setting the report_heuristics
parameter of the commit() method to true . Notice the following code sample shows the commit()
method as commit(1) for C++.

• •

• •

• •

Enabling heuristic reporting to your application

- 108/262 -

Handling heuristic reporting

A Resource can handle heuristic reporting programmatically, or can require the intervention of a system
administrator.

 ...
 if (bank->withdraw(10,444)) //invoke the withdraw method.
 {
 try
 {
 current->commit(1); //The parameter 1 requests the server to
 //return the heuristic outcomes if
there are any.
 }
 catch (const CosTransactions::NoTransaction& e)
 {
 //commit was issued when there is no transaction
 //Handle it.

 }
 catch (const CosTransactions::HeuristicMixed& e)
 {
 //Heuristic decision was made. Some of the relevant updates
 //have been committed and others may have rolled back.
 //Handle it.
 }
 catch (const CosTransaction::HeuristicHazard& e)
 {
 //Heuristic decision was made. The relevant updates that
 //have been made either all have been committed or rolledback.
 //Handle it.
 }
 }
 else
 {
 current->rollback();
 }

Enabling heuristic reporting to your application

- 109/262 -

OTS exceptions
Additional OTS exceptions are:

SubtransactionsUnavailableThis exception is raised if the client thread already has an associated
transaction and the transaction service implementation does not support nested transactions.

NotSubtransactionThis exception is raised if the current transaction is not a subtransaction.

InactiveThis exception is raised in a few scenarios whereby no action is taken when the current
context is not right for the command issued.

NotPreparedThis exception is raised when a transaction is not prepared (for two-phase commit
transactions only).

NoTransactionThis exception is raised when there is no transaction associated with the client
thread.

Unavailable This exception is raised when the application can't get hold of propagation context.

SynchronizationUnavailable This exception is raised if the system does not support
synchronization.

• •

• •

• •

• •

• •

• •

• •

OTS exceptions

- 110/262 -

Coordinating transaction completion with
Resource objects

This section provides information about how you can participate in one- and two-phase commits using
Resource object(s).

Understanding transaction completion
The transaction process described in Model for a basic transaction was a simple example that did not
involve data. The following diagram expands on that earlier example to show the objects that are
necessary when transactions involve data—Recoverable Server, Recoverable Object, Recovery
Coordinator, and Resource object. In practice, several of these objects are encapsulated by transactional
software for data, as shown in the figure below. These objects are shown so that you will understand
the process going on underneath, and will recognize these interfaces in the IDL.

If you are using VisiTransact-managed transactions, this diagram also shows you the back-end objects
(Coordinator, Terminator, and Recovery Coordinator) that the VisiTransact Transaction Service uses to
perform the work of two-phase commits. You only manage these object directly if you are not using
VisiTransact-managed transactions.

The table below describes the objects involved in two-phase commit.

Object Description

Coordinator Facilitates registration of recoverable objects with a transaction, and
manages coordination between transactions.

Terminator Coordinates the termination of a transaction—it ensures that participants
either all commit or all rollback the work of a transaction.

Coordinating transaction completion with Resource objects

- 111/262 -

Participating in transaction completion
Completing a transaction is where two-phase commit diverges from the simple example addressed in
Model for a basic transaction. When the VisiTransact Transaction Service executes the two-phase
commit process, it ensures that the entire transaction is either rolled back or committed atomically. In
the first phase of the two-phase commit process, the Terminator asks the participants of the transaction
if they can prepare the transaction to commit. If all participants vote that they can, the Terminator then
tells all participants to commit the transaction during the second phase. If at least one participant votes
that it is not prepared to commit, the Terminator instructs the participants to rollback the transaction.

If a transactional application only involves one Resource, the VisiTransact Transaction Service
initiates a one-phase commit process rather than a two-phase commit process.

The following sections expand on the concept of completing a transaction to explain the process of two-
phase commit.

Object Description

Recoverable
Server

A collection of one or more objects. At least one of the objects is
recoverable.

Recoverable
data

Data, such as a table in a database, whose content is affected by the
completion of the transaction. Not all recoverable objects will implement a
CORBA interface.

Resource
Object

Represents the relationship between the VisiTransact Transaction Service
and a recoverable object for the life of a transaction. One Resource object is
required for each recoverable object participating in a transaction.

Transactional
Software

for Data

A collection of objects (Recoverable Server, Recoverable Data, Transactional
Object, and Resource Object) used to access data either in a database, file
system, or other service such as the VisiBroker Naming Service.

Recovery
Coordinator

Used in case of failure by Resource objects to determine the outcome of the
transaction, and to coordinate the recovery process with the VisiTransact
Transaction Service.

Note

Participating in transaction completion

- 112/262 -

Resource object is registered for the transaction
Resource objects must be registered for all recoverable data involved in the transaction. The
transactional object registers the Resource with the transaction's Coordinator for the recoverable data.

Transaction originator initiates transaction completion
The transaction originator notifies the Terminator that it wishes to complete the transaction, which
initiates the two-phase commit process with the VisiTransact Transaction Service. This step replaces
step 4 in Completing a transaction.

In this step, the same action is taking place, but you see behind the scenes that the invocation of
commit() is actually handled by the Terminator.

Terminator tells Resource objects to prepare
Once the Terminator receives notice that the transaction originator wishes to commit the transaction,
the Terminator contacts all Resource objects participating in the transaction, and notifies them they
must prepare to commit the transaction. To do so, the Terminator invokes the prepare() method on all
Resource objects registered with the transaction.

Resource object is registered for the transaction

- 113/262 -

If only one Resource is registered with the Coordinator, the Terminator performs a one-phase commit
as an optimization. To do so, it invokes commit_one_phase() on the Resource rather than invoking
prepare() and then commit() .

Any exception that occurs during the prepare phase causes a rollback of the transaction.

Resource objects return a vote to the terminator
When Resource objects are told to prepare, they respond to the Terminator with a vote:

VoteCommit means the Resource guarantees that it can commit the transaction when asked, even
if there is a failure after prepare() .

VoteRollback means the Resource requires the transaction to rollback, and is proceeding to
rollback its own data.

VoteReadOnly means that the Resource does not have persistent data affected by the transaction.
There, it is independent of the two-phase commit—the two-phase commit does not affect its
state.

If the Resource returns VoteRollback or VoteReadOnly, it will not be contacted again by the VisiTransact
Transaction Service, and can safely destroy itself. For this example, let's assume that both Resource A
and Resource B return VoteCommit.

• •

• •

• •

Resource objects return a vote to the terminator

- 114/262 -

Terminator decides whether to commit or roll back
Based on the votes received by the Resource objects, the Terminator determines whether the
transaction will be committed or rolled back. At this point, the completion decision is made and logged.
If any of the Resource objects return VoteRollback, raise exceptions, or invoke rollback_only() , the
transaction will be rolled back by the Terminator.

If the transaction decision was to rollback, the Terminator invokes rollback() on all Resources—except
those that returned VoteRollback or VoteReadOnly. If the decision is to commit, the Terminator invokes
commit() on all Resources, and the two-phase commit process is finished.

For this example, both Resource objects involved with the transaction returned VoteCommit, so the
Terminator object requests that the Resource objects commit the transaction.

Resource objects vote to commit the transaction
When a Resource object commits a transaction, it makes any data changed by the transaction visible to
all readers of the data—the data stored by the recoverable object is changed according to the outcome
of the transaction. Also, the Resource object stores other information in case of failure. Lastly, once the
transaction has been committed, all objects associated with the transaction (the Coordinator,
Terminator, and Recovery Coordinator) are removed.

Terminator decides whether to commit or roll back

- 115/262 -

Summary of steps for two-phase commit
As shown by the previous sections, the steps for two-phase commit are:

Resource objects are registered for the transaction.

Transaction originator initiates transaction completion.

Terminator tells Resource objects to prepare.

Resource objects return a vote to the Terminator.

Terminator decides whether to commit or rollback.

Terminator tells Resource objects to commit or rollback.

Summary of steps for single-phase commit
The steps for a single-phase commit are:

Resource object is registered for the transaction.

Transaction originator initiates transaction completion.

Terminator tells the Resource object to commit one phase.

Resource object returns a vote to the Terminator.

Terminator decides whether to commit or rollback.

Terminator tells the Resource object to commit or rollback.

Summary of steps for a rollback
The steps for a rollback are:

Resource objects are registered for the transaction.

Transaction originator initiates transaction completion.

Terminator tells Resource objects to rollback.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

1. 1.

2. 2.

3. 3.

Summary of steps for two-phase commit

- 116/262 -

Participating in transaction recovery after failure
If the VisiTransact Transaction Service (or its host) experiences a failure once the decision to commit the
transaction has been logged, the Terminator proceeds to invoke commit() on all Resources once the
VisiTransact Transaction Service and participating Resource objects are running again.

If the decision was to rollback, and the VisiTransact Transaction Service (or its host) experiences a
failure, the VisiTransact Transaction Service considers the transaction to be rolled back once it is running
again. This is because the VisiTransact Transaction Service does not keep track of Resources when a
transaction is marked for rollback, and therefore it cannot proactively tell Resources to rollback. Instead,
Resources must use the Recovery Coordinator (specifically, the replay_completion() method) to find out
that the transaction rolled back.

If a VisiTransact Transaction Service fails before a Resource object has committed but after it has been
prepared and the VisiTransact Transaction Service has not yet logged the decision, then the Resource is
responsible for contacting the Recovery Coordinator and initiating transaction completion.

If a failure occurs and the Terminator cannot reach a registered Resource, the Terminator must keep
trying to contact the Resource until it can be reached. In this way, atomic transactions are guaranteed
because Resource objects will be restarted, and the VisiTransact Transaction Service will ensure that
recoverable objects complete the transaction in conformance with the outcome.

These basic rules apply to transaction recovery following a failure of the VisiTransact Transaction
Service:

If the decision to commit the transaction has been logged, the Terminator invokes commit() on all
Resources, and the two-phase commit process is finished.

If the Terminator only contains heuristic information, nothing happens.

If the transaction is marked for rollback before the failure, it is lost and therefore rolled back.

If a registered Resource exists but cannot be reached, the Terminator must keep trying to contact
the Resource until it can be reached.

• •

• •

• •

• •

Participating in transaction recovery after failure

- 117/262 -

Managing heuristic decisions

This chapter provides information about the heuristic decisions that you must manage for your
transactional applications.

What is a heuristic decision?
A heuristic decision is a unilateral decision made by one or more transaction participants to commit or
rollback updates without first obtaining the consensus outcome determined by the VisiTransact
Transaction Service. Heuristic decisions are typically made in unusual circumstances, such as
communication failures, that prevent normal processing. When a heuristic decision is made, there is a
risk that the decision will differ from the consensus outcome, resulting in a loss of data integrity.

The types of heuristic outcome exceptions that can be returned are:

HeuristicRollback . The participant rolled back all relevant updates.

HeuristicCommit . The participant committed all relevant updates.

HeuristicMixed . The participant has committed some relevant updates, and rolled back others.

HeuristicHazard . The participant does not know the result of at least one relevant update.

For more information about heuristic decisions and exceptions, see Transaction completion.

What is the heuristic.log file?
VisiBroker VisiTransact produces one heuristic log per instance of the VisiTransact Transaction Service,
located by default in <VBROKER_ADM>/its/transaction_service/<transaction_service_name>/heuristic.log. This
log is saved in text format and can be viewed, but should not be edited. The heuristic log contains
records for any heuristically-completed transaction associated with the VisiTransact Transaction Service
instance.

A heuristic log record contains information which is global to the transaction:

Exception. The exception that was reported back to the transaction originator, if requested. This
appears before the Transaction Info portion of the log record; for example:
CosTransactions::HeuristicHazard Exception.

• •

• •

• •

• •

• •

Managing heuristic decisions

- 118/262 -

Transaction Name. The name of the transaction (either user-defined, or assigned by the
VisiTransact Transaction Service). This appears in the name field of the Transaction Info portion of
the log record; for example, Update_Inventory_Database.

Transaction Identifier. The ASCII version of the transaction identifier (otid). This appears in the
id field of the Transaction Info portion of the log record.

Host of Transaction Originator. The IP address of the host machine where the transaction
originator is located. This appears in the host field of the Originator Info portion of the log record.

The heuristic log also contains the following information for each Resource in the Participant Info
sections of the log record:

Resource Name. The name of the Resource object registered with the VisiTransact Transaction
Service instance that made the heuristic decision. This appears in the name field.

Resource Host. The IP address of the host on which the Resource is located. This appears in the
host field.

Resource IOR. The interoperable object reference (IOR) of the Resource. This appears in the ior
field.

Resource Vote. The vote sent by the Resource when asked to prepare to commit. This appears in
the voteForPrepare field.

Resource Decision. The heuristic decision made by the Resource (for example,
OutcomeHeuristicHazard or OutcomeHeuristicMixed). This appears in the outcome field.

You can archive the heuristic log file by moving it to a different location, if you have the appropriate file
permissions. If you do this, the next time a heuristic occurs, the VisiTransact Transaction Service
instance will recreate the heuristic log file. You can also make backup copies of the log by copying the
log file to an alternate location. This is useful if you want to keep a daily backup of the heuristic log for
your records.

Do not edit the heuristic.log file.

• •

• •

• •

• •

• •

• •

• •

• •

Caution

What is the heuristic.log file?

- 119/262 -

Interpreting the heuristic log
Assume that a transaction named Update_Inventory_Database has begun. Two Resources are
registered with this transaction—inventory and customer. As part of the transaction completion, these
Resources are asked to prepare to commit the transaction, and both Resources return a vote of
VoteCommit. The VisiTransact Transaction Service then requests that the Resources commit the
transaction. The customer Resource commits successfully and returns, but the inventory Resource
makes a heuristic decision and returns with an exception of HeuristicHazard.

The following heuristic log shows what would appear in the heuristic log for this transaction. Notice that
the exception returned to the transaction originator is CosTransactions::HeuristicHazard . The boldface
type marks the location of the information described in What is the heuristic.log file?. Extra white space
has been added to the example heuristic log entry for easier viewing.

Interpreting the heuristic log

- 120/262 -

06/02/98, 14:43:43.587, gemini, /net/gemini/vsi2/its/dev/jmitra/vbroker/
adm/../bin/ots,
>None, 0, 0, Error, TransactionService, 4004,
at 0X000001, 0X04110FA4, 896823823, >587
CosTransactions::HeuristicHazard Exception:
Transaction Info:
name = Update_Inventory_Database
Id =
_56495349_01000000_ce400ff2_0000cac1_67656d69_6e695f6f_74730000_00000000_000
00000_00000000_00000000_00000000_3574720f_0000e845_00000000_00000000
Originator Info:
host = 206.64.15.75
Participant Info:
name = inventory
host = 206.64.15.75
ior = IOR:
002020200000002549444c3a73797374656d5f746573742f44756d6d7950617274696369
70656e743a312e3000202020000000010000000000000062000100000000000d3230362e3634
2e31352e373500000f730000004600504d43000000000000002549444c3a73797374656d5f74
6573742f44756d6d795061727469636970656e743a312e30000000000000000e746573745265
736f757263653100
voteForPrepare = VoteCommit
outcome = OutcomeHeuristicHazard
Participant Info:
name = customer
host = 206.64.15.75
ior = IOR:
002020200000002549444c3a73797374656d5f746573742f44756d6d7950617274696369
70656e743a312e3000202020000000010000000000000062000100000000000d3230362e3634
2e31352e373500000f730000004600504d43000000000000002549444c3a73797374656d5f74
6573742f44756d6d795061727469636970656e743a312e30000000000000000e746573745265
736f757263653200
voteForPrepare = VoteCommit
outcome = OutcomeNone

Interpreting the heuristic log

- 121/262 -

What to do once the problem has been isolated
Once you have determined the nature of the problem by looking through the heuristic log, you can do
several things to correct the problem.

The first thing to do is to match the transaction name and transaction identifier found in the heuristic
log with the transaction identifier in the log on the Resource side (that is, the database log). Once you've
located the problem, you can correct it manually on the Resource side. For example, as described in
Interpreting the heuristic log you would locate Update_Inventory_Database in the Resource log, and take
steps to manually commit the changes to the inventory Resource.

What to do once the problem has been isolated

- 122/262 -

Implementing Synchronization objects

This section provides information about how you can implement Synchronization objects.

What are Synchronization objects?
A Synchronization object enables an object to be notified before the start of, and after the end of, the
transaction's completion. The figure below shows how typical Synchronization objects fit into the
architecture of a transactional application.

The before_completion() method is invoked after the application invokes commit(), but before the
VisiTransact Transaction Service begins transaction completion. The before_completion() method is not
invoked for a rollback request. The after_completion() method is always invoked during normal
processing.

Synchronization objects are not recoverable. If an instance of the VisiTransact Transaction Service fails,
Synchronization objects will not be contacted.

Using Synchronization objects before the commit protocol
With the before_completion() method, Synchronization objects can perform processing after the work of
a transaction has been done, but before the commit protocol starts (i.e. before prepare() or
commit_one_phase). For example, you can:

Improve performance. You can cache changes during interactions with a transactional object,
and then use the Synchronization object to flush the changes to disk, and even register a
Resource. The advantage is that you do not have a Resource object or an open database
connection until you need one.

• •

Implementing Synchronization objects

- 123/262 -

Trigger additional work. For example, you can write a record to an audit database and register
that database as a Resource from the Synchronization object.

Check the transaction's integrity. You can verify that all of the necessary operations were
performed. For example, you might verify that the balance of an account was updated, and that
the balance change was recorded in a history table.

Using Synchronization objects after rollback or commit
With the after_completion() method, Synchronization objects can do work after the transaction has
been completed; that is, after the Terminator tells Resources to commit(), rollback() , or
commit_one_phase() . You might use Synchronization objects to perform the following types of actions:

Perform cleanup. For example, you might release memory objects.

Notify other processes of the transaction completion. For example, the Synchronization object
might send the results of the transaction as an event to an event channel, or communicate the
results of the transaction to another object whose processing depends on the outcome of the
transaction. The status condition is either StatusCommitted or StatusRolledBack .

Registering Synchronization objects
You register a Synchronization object with the CosTransactions::Coordinator using one of the following
methods:

CosTransactions::Coordinator::register_synchronization()

VISTransactions::Current::register_synchronization()

Irrespective of whether the transactional application uses VisiTransact-managed or explicitly
propagated transactions, the VisiTransact Transaction Service uses implicit propagation to pass
transaction information to Synchronization objects.

When a Synchronization object has been registered and a request to commit the transaction is made,
the Terminator automatically invokes before_completion() on any Synchronization objects before
actually performing the completion. You determine what happens during the before_completion()
invocation from within your Synchronization object. When all registered Synchronization objects have
completed, the Terminator proceeds with its transaction completion. A rollback can be ensured by
invoking rollback_only() (on the VISTransactions::Current or CosTransactions::Coordinator) from a
before_completion() method. Additionally, any exception thrown by a before_completion() method
(including CORBA::TRANSACTION_ROLLEDBACK) will cause the transaction to be rolled back.

• •

• •

• •

• •

• •

• •

Using Synchronization objects after rollback or commit

- 124/262 -

If any of the Synchronization objects mark the transaction for rollback, the Terminator stops invoking
before_completion() on the remaining Synchronization objects. Because any Synchronization object can
invoke rollback_only() , invoking commit() does not guarantee the transaction will commit.

The next time the Terminator interacts with Synchronization objects is after transaction completion; that
is, it has received all commit() , commit_one_phase() , or rollback() responses from Resource objects. At
this time, the Terminator automatically invokes after_completion() on all registered Synchronization
objects and passes them the transaction outcome as status. You determine what happens during the
after_completion() invocation from within your Synchronization object.

The following figure shows a time line for the various invocations during the two-phase commit process
when Synchronization objects involved.

How failures affect Synchronization objects
If a Synchronization object is unavailable when the Terminator attempts to invoke its
before_completion() method, the transaction will be rolled back. Any Synchronization objects that have
not been contacted will not have before_completion() invoked on them. If any Synchronization object is
unavailable when the VisiTransact Transaction Service tries to invoke after_completion() , it is ignored.

When the VisiTransact Transaction Service instance recovers, it does not remember Synchronization
objects, and will only replay completion and not Synchronization objects.

How failures affect Synchronization objects

- 125/262 -

The role of Synchronization objects in transaction objects
If you want your transactional object to be notified of the outcome of a transaction, it must provide a
Synchronization interface. The VisiTransact Transaction Service notifies Synchronization objects of how a
transaction completed when it invokes the after_completion() method.

The role of Synchronization objects in transaction objects

- 126/262 -

Backward compatibility and migration.

Backward compatibility

OTS1.1 Clients vs OTS1.4 Servers
OTS1.1 clients can safely call methods on the objects at OTS1.4 servers provided that those server
objects have ADAPTS OTS policy values in their IORs.

If the objects obtained from OTS1.4 servers have REQUIRES OTS policy values in their IORs, any
invocation on those objects must happen within the scope of an active transaction. Also, if the objects
obtained from OTS1.4 servers have FORBIDS OTS policy values in their IORs, any invocation on those
objects must happen outside the scope of an active transaction.

OTS1.1 Servers vs OTS1.4 Clients
OTS1.4 clients can work well with OTS1.1 servers, as if they are OTS1.1 clients. However, OTS1.2 clients
do not unconditionally propagate the transaction context, in contrast to the OTS1.1 clients.

In cases where call-backs are used, the call-back object that an OTS1.4 client passes to an OTS1.1 server
must be of type TransactionalObject if the client wants the transaction context to be propagated with
the call back from the OTS1.1 server.

Migration
This section describes migration from a traditional definition of transactional objects to one using
polices.

Transactional Objects that are created using version 5.1 or earlier of VisiBroker use the definition of
inheriting CosTransactions::TransactionalObject interface. In order to be able to control the transactional
behavior, it is necessary to migrate to defining VisiTransact policies.

The steps are as follows:

Remove the TransactionalObject interface from all your idl files. Use proper OTSPolicy values to
control transactional requirements for all target objects.

1. 1.

Backward compatibility and migration.

- 127/262 -

An unshared transaction model is not supported in this release, so only SHARED and EITHER are
meaningful values of Invocation Policy. Users can choose not to set explicit values for this policy; in
that case VisiTransact will set the Invocation Policy for each target object with a value of EITHER.

However, users are free to set Invocation Policy for a target object and VisiTransact will check its
validity against the OTSPolicy value.

Use proper NonTxTargetPolicy at the client side to control invocations on non-transactional objects.

Use CORBA::ORB::create_policy() method to create the corresponding policies.

Compile the code with new VisiTransact libraries.

2. 2.

3. 3.

4. 4.

Migration

- 128/262 -

Session Manager overview

This chapter explains the general process for integrating databases with an VisiTransact-based
application. It describes the Session Manager and XA Resource Director in detail.

Session Manager is supported on the Solaris platform only.

How are databases integrated into a VisiTransact
application?

VisiBroker VisiTransact enables easy integration of a DBMS with the VisiTransact Transaction Service, an
application, and transactional objects. The Session Manager and its associated Resources provide
complete transactional access to the DBMS. Full two-phase commit capability is supported by the XA
implementations of the Session Manager and its Resource implementation (the XA Resource Director).
Alternatively, the DirectConnect version of the Session Manager provides optimized transactional access
to a single database using an integrated Resource, but require a more restrictive programming model.
The Session Manager is always deployed by being embedded in your application programs.

The Session Manager is an implementation of a pseudo-IDL interface allowing C++ applications to
obtain pre-configured database connections. The Session Manager insulates applications from the
database-specific requirements for connection handles, thread management, transaction association,
and Resource registration. Once a connection is obtained using the Session Manager, the transaction is
coordinated automatically by the VisiTransact Transaction Service. The application developer is free
from creating code that incorporates the database's participation in the transaction—the application
code only needs to address issues concerning the data access it requires from the database.

VisiBroker VisiTransact's DBMS integration strategy is part of a larger integration strategy. You can
also integrate VisiTransact with systems that use popular transaction processing monitors (Tuxedo,
CICS[^1}, and IMS) and messaging software (MQSeries) on many platforms including mainframes.

Note

Note

Session Manager overview

- 129/262 -

Currently, the Session Manager provides connectivity with Oracle9i, and the Pluggable Resource
Interface allows you to create session management for the database of your choice. See Pluggable
Database Resource Module for VisiTransact for more information about the Pluggable Resource
Interface.

What is the Session Manager?
The Session Manager is a multi-function component that provides an interface for managing
transactional database connections.

To use the VisiTransact Transaction Service you are not required to use the Session Manager. Other
vendors may provide a component that performs the same functionality as the Session Manager.
The VisiTransact Transaction Service works with any comparable component that is compliant with
the OMG Transaction Service specifications. If you choose to use the XA implementation of the
Session Manager, you must use the XA Resource Director too—they are interdependent. Currently,
the Session Manager and XA Resource Director work only with the VisiBroker VisiTransact
Transaction Service.

The Session Manager provides the following functions:

Opens a connection to a specific type of database or obtains an open connection from its
connection pool.

Associates the connection with the current transaction context.

Registers the appropriate Resource with the Coordinator. Registers the XA Resource Director for
the XA implementation. Registers the local integrated Resource for the DirectConnect Session
Manager implementation.

Pools connections so they can be re-used.

Manages connection threading requirements.

The Session Manager is linked with applications that use it. Using the Session Manager may require
certain command-line parameters to be used when starting these application processes. For
information about the command-line parameters, see Commands, utilities, arguments, and
environment variables.

Note

• •

• •

• •

• •

• •

What is the Session Manager?

- 130/262 -

Opening a connection to a database
The Session Manager allows an application to obtain a VisiTransact-enabled connection to a specific
type of database. This connection is created using a connection profile you have previously configured.
See the information about configuration in the section that follows. Once the connection is made, the
VisiTransact Transaction Service, in conjunction with the Session Manager, handles the transaction
coordination.

How do the application and Session Manager work together? The application uses resolve-initial-
references() to obtain a reference to the Session Manager's ConnectionPool object. The application
provides the ConnectionPool with the appropriate configuration profile name and the ConnectionPool
obtains a connection to the database using the configuration in that profile. The ConnectionPool then
returns a Connection object which represents this database connection to the application.

In order to do database work, the application then requests the native database handle from the
Connection object. Subsequently, the application code talks to the database directly through this native
connection handle. For example, if you are using Oracle, the application code makes direct OCI calls.

For more specific information about using the Session Manager API to get a connection to the
database, see Data access using the Session Manager.

Programming restrictions vary according to the specific Session Manager implementation your
application is using. For information on programming requirements and limitations while using the
database's native API to do the work of the transaction (SQL statements, etc.), see XA Session Manager
for Oracle OCI, version 9i Client and DirectConnect Session Manager for Oracle OCI, version 9i Client.

Connection profiles
All the information needed for the connection is kept in connection profiles. Each profile has a unique
name and consists of attributes such as the database login ID. The set of attributes varies depending
on the Session Manager implementation. For more information, see XA Session Manager for Oracle
OCI, version 9i Client and DirectConnect Session Manager for Oracle OCI, version 9i Client.

Opening a connection to a database

- 131/262 -

Configuring connections
Use the VisiBroker Console to create and configure connection profiles. The connection profile has all
the required attributes to make a connection to the database. For more information about the
VisiBroker Console, see Using the VisiBroker Console.

Associating a connection with a transaction
The Session Manager associates transactions with the database work performed on a database
connection—your application does not have to provide this function. This association is maintained
until the application releases the Session Manager connection.

Registering Resources
The Session Manager automatically registers the appropriate Resources with the Coordinator—
application developers do not need to add anything to their code for Resource registration. While the
DirectConnect implementation contains the Resource object invisibly embedded in the Session
Manager implementation, the XA implementation uses an external process called the XA Resource
Director. The XA Resource Director must be available to use the XA version of the Session Manager. For
information about starting an XA Resource Director, see Integrating VisiTransact with databases using
the Session Manager.

Releasing Connections
The Session Manager requires that a Connection object be released when the application completes a
unit of work against that connection. For implicit transaction contexts, the connection must be released
before the transaction is disassociated from that thread. This disassociation occurs:

In calls to transactional objects, when the call returns to the client.

When the transaction is completed (commit() or rollback()).

When the transaction is suspended.

When the application releases the connection, the Session Manager frees the database connection for
use by other transactions.

• •

• •

• •

Configuring connections

- 132/262 -

After releasing the connection, the application may not continue to use that particular Connection
object or its associated native connection handle. To perform further work on that transaction or
other transactions, the application must obtain a new Connection object.

Pooling connections
The Session Manager pools connections automatically. You do not have to add anything to your
application code. When an application releases a connection, the Session Manager does not
automatically close it. Rather, it keeps it in the connection pool. When there is another request for a
connection, the pool will attempt to reuse connections. It will only open a new connection when there
are no available compatible connections.

Within the same transaction, you can obtain and release Connection objects as many times as you need
to complete work. Since the Session Manager ConnectionPool is more efficient when Connection
objects are released after completing a unit of work, do not wait until the entire transaction is complete
before releasing Connection objects.

Because the DirectConnect implementation of the Session Manager uses a single connection to
perform work for a transaction, the ConnectionPool can not reuse any connection until the
transaction is complete. The connection is returned to the pool for reuse after the transaction is
committed or rolled back.

Managing thread requirements
The Session Manager manages any connection threading requirements imposed by the database.
Since the details about keeping connections with particular threads are incompletely specified by XA,
DBMS companies have interpreted the XA requirements for threading behavior differently. For
example, when using Oracle, a connection opened using XA requires that every single call for the rest
of that connection's life has to be on that same thread. This makes it difficult to integrate with other
software which manages threads according to its own policies.

The Session Manager makes sure that your application will always get a connection handle that works
with the current thread.

Note

Note

Pooling connections

- 133/262 -

Not all database connections have threading restrictions. When restrictions do not exist, the Session
Manager pools connections more efficiently. For more information, see Data access using the Session
Manager.

Global transactions using XA protocol

The Session Manager and XA Resource Director are not restricted to DBMSs or RDBMSs. They work
with any Resource Managers that support XA protocol. Resource Managers are commonly thought
to be databases but they include any XA-compliant Resource that is able to participate in a two-
phase commit. Another example of a Resource Manager is a message queue.

XA is an accepted industry standard protocol specified by X/Open to allow Transaction Managers to
coordinate global (two-phase commit) transactions. Most RDBMS vendors support XA as a way for
external transaction coordinators (like the VisiTransact Transaction Service or TP Monitors) to control
transaction completion.

Both the Session Manager and the XA Resource Director “speak” XA. Generally, they speak different
pieces of XA. The part of XA that has to do with associating work with a transaction is facilitated by the
Session Manager. The part of XA that has to do with transaction completion and recovery is performed
by the XA Resource Director.

The Session Manager, in conjunction with the VisiTransact Transaction Service, performs the XA
interface calls to include, in the transaction, the application's work on that database.

The XA Resource Director performs the two-phase commit for the database as instructed by the
transaction's Terminator, and participates in recovery by acting as a bridge between the VisiTransact
Transaction Service and the XA-compliant database. The XA Resource Director is deployed as a
standalone process.

There should be one XA Resource Director instantiation (or process) deployed for each database.

Note

Global transactions using XA protocol

- 134/262 -

What is the XA Resource Director?

The XA Resource Director is used with the XA implementation of the Session Manager. You do not
use the XA Resource Director with DirectConnect Session Manager deployments.

For transaction completion and recovery, the XA Resource Director bridges the VisiTransact and X/Open
transaction environments, which allows for interoperability between Resource objects and the XA-
compliant database. (The Session Manager does the bridging for associating application work with the
transaction.) The Resource Director is a persistent object which acts as an intermediary during commit,
rollback, or recovery for all transactions using a specific database on a network.

One XA Resource Director is associated with each database server. The Session Manager tells the
VisiTransact Transaction Service which Resource Director will coordinate the completion of the
transaction. After all the work has been done, the VisiTransact Transaction Service communicates with
the Resource Director and tells it to commit or rollback the transaction.

You do not have to implement an XA Resource Director or register it with the VisiTransact
Transaction Service. It is done for you automatically; however, the system administrator must ensure
that the XA Resource Director is available whenever the database is running.

Distributed transaction recovery
The XA Resource Director ensures that all transactions in its associated database, which were initiated
by the VisiTransact Transaction Service, will be completed either by commit or rollback. The
transactions will be completed regardless of failure caused by the VisiTransact Transaction Service, the
XA Resource Director, or the Resource Manager. Any transaction not completed at the time of failure
will be resolved when these three components are back up and running.

For more information about the rules used during transaction completion or a two-phase commit, see
Transaction completion and Coordinating transaction completion with Resource objects.

Note

Note

What is the XA Resource Director?

- 135/262 -

DirectConnect Session Managers
When only one application server talking to one database is involved in a transaction, the DirectConnect
Session Manager is an alternative to using global (two-phase commit) transactions as provided by the
XA implementation of the Session Manager. This consists of a single process containing a Session
Manager with embedded Resources. For optimum performance, an VisiTransact Transaction Service
instance is linked with the application code; however, this is not required. A transaction using the
DirectConnect Session Manager is considered a local transaction because all of the components of the
transaction are located locally in one process. With DirectConnect access transactions one process talks
to one database. All of the work for a particular transaction is done on one physical database
connection. The connection uses the same connection profile whenever the database is accessed for
the same transaction. The benefit of this type of architecture is a gain in performance because it
performs a single-phase commit only. It also allows transactional semantics for work done on
databases which do not support two-phase commit.

When using the DirectConnect Session Manager implementation, you do not need the services of
the XA Resource Director. The Session Manager uses an internal, transparent Resource
implementation.

The single application server process is a multi-threaded process that includes all the methods that
might be used in a particular transaction. This process talks to a single database. Additional Resources
are not allowed—databases or other types of Resources like message queues. For example, if you are
doing a debit and credit transaction, instead of having your debit/credit application server processes on
different machines, they are in a single process on one machine. The debit/credit process can talk to the
single database across a network. But, a transaction talks to one database only. All the interactions with
that one database happen with that one process.

Note

DirectConnect Session Managers

- 136/262 -

The DirectConnect Session Manager can take advantage of several performance optimizations. When
you use a single application server process with a database as the only participant in the transaction,
the transaction (via VisiTransact) performs a single phase commit. If the VisiTransact Transaction Service
is embedded, the Session Manager does all the Resource registrations and all the work of the
transaction locally to that process. The Session Manager, the VisiTransact Transaction Service instance,
and the debit/credit process are all within the same application server process so they are not talking to
each other across a network or across process boundaries. Additionally, because of the single phase
commit, the VisiTransact Transaction Service need not log to the disk. Consequently, there is a
performance gain.

The other advantage when using DirectConnect access transactions is that it is a simpler to get them up
and running. You do not have to install the XA client library or the components that enable global
transactions. For example, if using XA access transactions with Oracle, you have to install Oracle's
distributed option; with DirectConnect access transactions, this is unnecessary.

The XA Resource Director is not used with the DirectConnect Session Manager. The Resource object
used is built in to the DirectConnect implementation of the Session Manager.

When the application requests database access through the Session Manager, the ConnectionPool
object allocates a database connection for that transaction. Unlike XA connections, the DirectConnect
connection remains allocated to that transaction until the whole transaction is done. The application
follows the same procedure (as it would with a distributed transaction) to get a connection and release
a connection. Consequently, the VisiTransact Transaction Service knows what transaction and database
is associated with a particular connection. When the request for a commit comes through, the Resource
object that is embedded in the Session Manager gets that same physical connection and does a single
phase commit or rollback on the transaction.

In other words, because the Session Manager manages connections, every time the application invokes
getConnection() for the same transaction, it will get the same connection. The server can have many
calls for the same transaction and all the work happens within the same transaction even though the
application code did not have to maintain connection state.

Note

DirectConnect Session Managers

- 137/262 -

Registering Resources
If you try to register a Resource (register_resource() call) after a DirectConnect Resource has already
been registered, this results in a CORBA::BAD_PARAM exception. In other words, the VisiTransact
Transaction Service will not accept any register_resource() calls after a DirectConnect connection has
been used.

If getConnection() attempts to obtain a DirectConnect connection, and a Resource has already been
registered with the Coordinator, the request will fail throwing a VISSessionManager::Error exception.

Deployment issues
You can choose to configure a stand-alone or embedded VisiTransact Transaction Service instance. If
you embed an VisiTransact Transaction Service in a single application server, you may realize
performance gains when processing a DirectConnect access transaction.

Restrictions on DirectConnect access transactions
In order to obtain the performance gains of DirectConnect access transactions, there are several
restrictions that apply:

Only one application server can be involved in a transaction.

Only one Resource (Session Manager or other) may be involved in a transaction.

Only one thread at a time can obtain a connection for a particular transaction. Once
getConnection() has been invoked, no other thread will be able to obtain a connection for that
transaction until the connection has been released.

Since it is a single connection, anything the application does that alters a property in that
connection (which some database calls do) sustains through the life of the connection. If the
application uses a different thread later or performs a different unit of work, the properties on the
connection will remain as set earlier. Because connections are reused, this could also affect work
on subsequent transactions.

• •

• •

• •

• •

Registering Resources

- 138/262 -

Coexistence: DirectConnect and XA access transactions
The design of the Session Manager allows for the coexistence of DirectConnect and XA access
transactions in the same process. Certain database implementations will not allow the mixing of
DirectConnect and XA access transactions from the same process. For example, the Oracle 9i
DirectConnect and XA implementations are not compatible in the same process, so VisiTransact will
prevent you from mixing these two implementations. See XA Session Manager for Oracle OCI, version 9i
Client and DirectConnect Session Manager for Oracle OCI, version 9i Client for details on specific
implementations of the Session Manager.

IBM and CICS are registered trademarks of International Business Machines Corporation, registered
in many jurisdictions worldwide.

1. 1.

Coexistence: DirectConnect and XA access transactions

- 139/262 -

Integrating VisiTransact with databases
using the Session Manager

This section provides information you need to administer VisiTransact transactional applications that
integrate with databases.

To integrate VisiTransact with databases, the database administrator is responsible for these tasks:

Evaluating the impact of integrating VisiTransact with databases.

Making sure databases are ready for integration with VisiTransact.

Setting up Session Manager Configuration Servers.

Configuring the connection profiles.

Deploying and setting up the XA Resource Directors. This involves starting the XA Resource
Directors and registering them with the VisiBroker Object Activation Daemon (OAD) if appropriate.
This step is only necessary when using the XA implementation of the Session Manager.

Starting the application objects that embed the Session Manager.

These tasks are described in detail in the sections that follow. Some of the information is presented in
separate sections for XA and DirectConnect. The database administrator has other tasks in addition to
the ones listed above. Additional tasks are as follows:

Handling heuristics.

Tuning for gains in performance.

Managing connection profile persistent store files.

These additional tasks are described in detail later on in the section.

• •

• •

• •

• •

• •

• •

• •

• •

• •

Integrating VisiTransact with databases using the Session Manager

- 140/262 -

Evaluating the impact of integrating VisiTransact with
databases using XA

One of an administrator's most important tasks is to evaluate the impact of processing distributed
transactions in a particular site's environment. Certain circumstances are inherent when processing
distributed transactions. Processing a distributed transaction may not always be appropriate for the
database your company is using. While making your evaluation, consider the following:

Using the XA protocol adds overhead.

The database must have a high degree of availability during two-phase commits.

Data may be locked or unavailable for longer periods, reducing potential concurrency.

The database is involved in a more sophisticated transaction. It may have to work with other
application components.

These items are discussed in the following sections.

Using XA adds overhead
Generally, there is extra overhead when communicating with the database using the XA protocol and
XA interface calls. The overhead incurred for XA is as follows:

A round trip to the database to perform the association with the transaction.

A round trip to the VisiTransact Transaction Service to register the database's participation in the
transaction.

One or two round trips from the VisiTransact Transaction Service to the XA Resource Director to
perform the prepare and commit processing.

With VisiTransact, the calls to associate and disassociate only happen to those database connections
that the application has specifically requested to use at that time. Overhead does not incur for Resource
Managers that have not been used.

• •

• •

• •

• •

• •

• •

• •

Evaluating the impact of integrating VisiTransact with databases using XA

- 141/262 -

Requiring high availability
If the VisiTransact Transaction Service invokes two-phase commit on a set of databases, and if any are
unavailable during the prepare phase, the transaction is rolled back. Any productive work done during
those transactions is lost.

Locked or unavailable data
Performing a two-phase commit may cause concurrency bottlenecks. Between data being locked and
committed, the database prevents anyone from reading or modifying data which is locked by that
particular transaction. For example, if you lock data in a row because you updated it, it will not be
available for someone else to modify until you commit the transaction. This reduces concurrency.

The behavior of databases locking data varies widely. A row or more of data could be locked
depending on the database and the application.

Yielding some control
When evaluating the advantages and disadvantages of processing distributed transactions, consider
that the scope of administrative tasks has increased. This causes a different set of advantages and
disadvantages. You lose some control because you cannot force completion after the prepare phase
has started. This is because the scope is wider and there are other components to consider. If the two-
phase commit is interrupted, a heuristic outcome occurs. You can force a heuristic outcome using
database utilities.

For more information about how the VisiTransact Transaction Service handles heuristics, see
Transaction completion.

Note

Requiring high availability

- 142/262 -

Evaluating the impact of integrating VisiTransact with
databases using DirectConnect

There are fewer administration duties for DirectConnect transactions than for XA transactions.

Restrictions when using DirectConnect are as follows:

Only one Resource (the DirectConnect Resource) can participate in the transaction.

The transaction work with one database is restricted to one process.

Advantages to using DirectConnect are:

Simpler deployment scenarios

Reduced RPCs to the database for XA coordination

Preparing databases
Before you can use the features in the Session Manager, check with the database administrator that the
database has the required software subsets for distributed transaction access. Your database
administrator may need to modify your database installation by loading additional libraries, running
SQL scripts in the database, modifying configuration parameters for the database server, and installing
client-side libraries. For more information, see XA Session Manager for Oracle OCI, version 9i Client and
DirectConnect Session Manager for Oracle OCI, version 9i Client.

In general, for DirectConnect, there are no additional steps in preparing your database because the
connections are regular user connections.

Connection profile sets
For the Session Manager to connect to a database, it must be supplied with information about how to
make that connection. The information is packaged into a set of attributes called the connection profile.
Connection profiles are created using the VisiBroker Console, or using the smconfigsetup utility, and
saved onto disk so that they can be persistently stored and retrieved by the Session Managers running
in the application servers. Because the connection profiles are available on disk, the Configuration
Servers do not have to be running continuously. A profile set (logical grouping of connection profiles) is
associated with the same Configuration Server. Each Configuration Server is identified by a unique
name. This section provides information to help you manage connection profile persistent store files.

• •

• •

• •

• •

Evaluating the impact of integrating VisiTransact with databases using DirectConnect

- 143/262 -

You may want to decouple changes made to profile attributes by an application's Session Manager
from the profile attributes used by the XA Resource Director. To do so, create separate connection
profiles for the Session Manager and the XA Resource Director.

The profile sets are stored in persistent storage files. You can locate the persistent storage files in the
default location, or you can use different locations and then point to these locations using the
argument -Dvbroker.sm.pstorePath .

Modifying connection profiles used by Session Manager clients
To modify a connection profile used by Session Manager clients:

Change the connection profile using the VisiBroker Console.

Shut down any application processes which use this connection profile.

Restart the application processes.

Modifying connection profiles used by XA Resource Directors
To modify a connection profile used by the XA Resource Director:

Change the connection profile using the VisiBroker Console.

Shut down any application processes which use the affected XA Resource Director.

Shut down and restart the XA Resource Director.

While it is possible to leave the application processes running, transactions which attempt
completion while the XA Resource Director is shut down may be rolled back.

Note

1. 1.

2. 2.

3. 3.

1. 1.

2. 2.

3. 3.

Note

Modifying connection profiles used by Session Manager clients

- 144/262 -

Using the XA Resource Director
The XA Resource Director is used in conjunction with the XA implementation of the Session Manager for
transaction completion and recovery processing. The XA Resource Director is deployed as a standalone
program.

If you are using the DirectConnect implementation of the Session Manager, an XA Resource Director is
unnecessary.

Deploying an XA Resource Director
Deploy an instance of the XA Resource Director for each database server accessible from VisiBroker
VisiTransact. The XA Resource Director should be running whenever the database server is running if
the XA implementations are being used. This way the Resource Director is available to take part in the
completion and recovery protocols.

We recommend that only one XA Resource Director be deployed for each database for the same
OSAGENT_PORT . Having multiple XA Resource Directors on the same OSAGENT_PORT for the same database is
inefficient because, although they are successful at committing and rolling back transactions during
normal operation, they also duplicate recovery operations if the VisiTransact Transaction Service goes
down and comes back up. This results in overloading the VisiTransact Transaction Service with replay
requests when it has finished its internal recovery cycle.

Starting an XA Resource Director
Start the XA Resource Director with the following command:

prompt>xa_resdir -Dvbroker.sm.profileName=<profile> [-Dvbroker.sm.pstorePath=<path>] [-

Dvbroker.sm.configName=<name>]

The following table describes the start-up parameters for the XA Resource Director.

Parameter Description

-
Dvbroker.sm.p
rofileName=<p
rofile>

The name of the Session Manager connection profile you want to use to
establish a connection with the database. This is required.

Using the XA Resource Director

- 145/262 -

For information about what defaults are used if you do not specify the -Dvbroker.sm.pstorePath
parameter, see Checking for the default path to persistent store files. For information about how to set
up a Session Manager connection profile, see Using the Session Manager Profile Sets section.

How the XA Resource Director uses connection profiles
Besides creating connection profiles for the Session Manager, you must create them for the XA
Resource Directors as well. Depending on what attributes they need for configuring connections, the
Resource Director may use the same profile as some of the Session Managers use. It might use a
profile that none of the Session Managers use. While there might be multiple profiles that Session
Managers use to contact one database, the XA Resource Director for that database uses only one
profile.

Deploying client-side libraries
The Session Manager and the XA Resource Director must be able to access the client-side database
libraries, including the XA client-side library for the databases that the Session Manager and XA
Resource Director objects will be accessing.

Parameter Description

-
Dvbroker.sm.p
storePath=<pa
th>

The path to the directory where the persistent store files are located. By
default, the persistent store files are located in <VBROKER_ADM>/its/
session_manager/ .

-
Dvbroker.sm.c
onfigName=<na
me>

The name of the Session Manager Configuration Server you're using. By
default, the name assigned to the Session Manager Configuration Server
is <host>_smcs where <host> is the name of the server on which
you created the Session Manager connection profile. This can also be
thought of as the profile set name.

How the XA Resource Director uses connection profiles

- 146/262 -

Shutting down an XA Resource Director remotely
To shut down an XA Resource Director remotely, use the following command:

prompt> vshutdown -type rd [-name <ITS_XA_Resource_Director_name>]

The XA Resource Director's type (rd) is a required argument.

You can find the name of the Resource Director by either using the osfind command, or by looking at
the connection profile. To avoid confusion, it is best to name the Resource Director the same name as
its connection profile and database name. See vshutdown for more details on using the vshutdown
command.

Registering the XA Resource Director with the OAD
To start the XA Resource Director without operator intervention, register it with the VisiBroker OAD
(Object Activation Daemon). Implementations of the XA Resource Director can be registered using the
oadutil reg command-line interface.

The syntax for registering an XA Resource Director with the OAD is as follows:

The following table describes the parameters for registering the XA Resource Director with the OAD.

For description of the profile, path , and name parameters, see Starting an XA Resource Director.

oadutil reg -i visigenic.com/VISSessionManagerSupport/ImplicitResource
-o <resource_director_name> -cpp <installation_dir_path>/bin/xa_resdir -a
-Dvbroker.sm.profileName=<profile> -a -Dvbroker.sm.pstorePath=<path> -a -
Dvbroker.sm.configName=lt;name>

Parameter Description

resource_d
irector_na
me

This is the name of the XA Resource Director you wish to register with the
OAD, and the object name that will be activated. We recommend that the
profile used to start the Resource Directors be named the same as the
Resource Director name in the profile, and reflect the database name. In
installations with multiple databases, this makes it easy to associate Resource
Directors with profile names.

Note

Shutting down an XA Resource Director remotely

- 147/262 -

The connection profile used to start the XA Resource Director should be named the same as the XA
Resource Director name in the profile. Additionally, it should be the same as the database name. In
installations with multiple databases, this makes it easy to associate XA Resource Directors with profile
names.

See Using the Session Manager Profile Sets section for details on how to set up a Session Manager
connection profile.

The OAD must be running before you can use any of the OAD commands. Refer to the VisiBroker for
C++ Developer's Guide for instructions on starting the OAD. When registering an object
implementation, use the same object name that is used when the implementation object is
constructed.

Starting Session Manager-based application processes
It is not necessary for an administrator to explicitly start up the Session Manager. The Session Manager
is started and initialized automatically in the programs in which it is used. The ORB initialization
accesses the command-line arguments that contain the connection profile attributes and any other
options relating to the Session Manager.

If you want to use a path other than the default, or a profile set name other than the default, use the
following arguments when starting the application so that the persistent store of connection profile
attributes is used:

-Dvbroker.sm.pstorePath=<path> -Dvbroker.sm.configName=<name>

The <path> argument is not required. If you do not specify a <path> argument, see Checking for the
default path to persistent store files for information about how the Session Manager and the Session
Manager Configuration Server check for the default path and profile set name.

See Starting an XA Resource Director for a description of the command-line arguments to
application for the Session Manager.

Note

Note

Starting Session Manager-based application processes

- 148/262 -

Checking for the default path to persistent store files
When using the Session Manager, the -Dvbroker.sm.pstorePath argument is not required. If you do not
specify the path argument, the Session Manager and the Session Manager Configuration Server check
the following settings in this order:

What you set in the command-line argument for -Dvbroker.sm.pstorePath . If you did not specify the
path at the command line, it checks:

What was set with the VBROKER_ADM environment variable. This is the default when you accept all the
defaults during installation. VisiTransact puts the persistent store files in subdirectory its/
session_manager under VBROKER_ADM .

Forcing heuristics
You may use database utilities to monitor transactions after they reach the prepare phase. In some
cases, you may need to interfere to resolve transactions; for example, in the case of long-lived failures
with the VisiTransact Transaction Service or one of its participants, or a failure in network connectivity.
When a database administrator intervenes to commit or roll back a prepared transaction without using
the VisiTransact Transaction Service, the resulting state is called a heuristic. This means that the
database may have completed the transaction in a way different than the VisiTransact Transaction
Service has. Most databases which support two-phase commits have interfaces for forcing heuristics.

For more information about how the VisiTransact Transaction Service handles heuristics, see
Transaction completion.

Performance tuning
When you have the VisiTransact Transaction Service embedded in the application server, the client
should ensure that it binds to the correct instance of the VisiTransact Transaction Service to realize the
potential performance gains.

See Embedding a VisiTransact Transaction Service instance in your application for more information on
embedding a VisiTransact Transaction Service in your application server.

1. 1.

2. 2.

Checking for the default path to persistent store files

- 149/262 -

For XA
Reducing network traffic increases performance when using the VisiTransact Transaction Service with
distributed transactions. To reduce network traffic, you can locate some of the components on the
same node as the VisiTransact Transaction Service instance, or on the same node as the database.
Communication occurs between the Session Manager and the VisiTransact Transaction Service, the
Session Manager and the database, the VisiTransact Transaction Service and the XA Resource Director,
and the XA Resource Director and the database. Localizing these components on the same node will
reduce network traffic. Consider trying to locate the transactional objects which use the Session
Manager on the same node with the VisiTransact Transaction Service or the database, and locate the XA
Resource Director with the database or with the VisiTransact Transaction Service.

Session Manager Configuration Server
The Session Manager Configuration Server represents one set of connection profiles and servers as the
agent for VisiBroker Console. Its purpose is to provide network access for the VisiBroker Console to the
connection profiles.

Directory structure for persistent store files
By default, the persistent store files are located on disk in the connection profile set subdirectories. You
can use the default directory or specify another one. The default path may be overridden during
installation, or when using the command line flag -Dvbroker.sm.pstorePath , or with any process that
uses the Session Manager (including the XA Resource Director).

For information about how the Session Manager and the Session Manager Configuration Server checks
for the default path to the persistent store files, see Checking for the default path to persistent store
files.

There is a directory called install under the session_manager directory. Do not change anything in
the install directory or add files to it manually. This directory is created automatically when you
install VisiTransact.

Caution

For XA

- 150/262 -

When you create a connection profile with the VisiBroker Console, a corresponding file is created in a
subdirectory in the session_manager/config directory. The name of subdirectory file corresponds with the
Session Manager Configuration Server's name and can be considered the profile set name. By default,
the Configuration Server's name consists of <host>_smcs where <host> is the name of the machine
where the Configuration Server resides. For example, if the machine's name is athena , the Configuration
Server is named athena_smcs . In the subdirectory for the Configuration Server, the connection profiles
are stored, one per file. You can give the connection profiles significant names like test_oracle_xa . The
name you give a connection profile using the VisiBroker Console is automatically assigned to its
associated persistent store file. You do not have to manually create the persistent store files. They are
created by the Session Manager Configuration Server when you use the VisiBroker Console. VisiTransact
adds the extension .cfg to the persistent store file, as shown in the following example.

test_oracle_xa.cfg

When you create names for the connection profiles using the VisiBroker Console, the case sensitivity
rules for these names are the same as the rules used by your file system where these names are
stored. For example, on UNIX if you mix the upper and lower case when you assign the connection
profile name, that is what you must use when you try to find it later.

While the persistent store files are binary and cannot be edited by hand, it is possible to copy them to
alternate locations as backups. Or, you can copy an entire <configuration_server> subdirectory to
another location and rename it with a different profile set name.

It is possible to partition connection profile sets so that you have multiple connection profile sets on the
same node. Unless there is a strong reason for doing this, it usually has few advantages. If you have
more than one profile set on a node, a subdirectory is created in the session_manager/config (even on
different nodes) directory for each profile set. Do not create multiple profile sets with the same name
since you will not be able to distinguish them from the ones you create with the VisiBroker Console.

A process using the Session Manager can only access one connection profile set by going to the
default location, or to any location you have specified using command-line arguments. It is confined
to that namespace for the default location, or location specified by the command-line arguments. It
cannot access locations that are not specified. For example, an instance of a Session Manager in a
particular application process may only access the Marketing connection profile set. It may not
access the Payroll connection profile set.

Note

Note

Directory structure for persistent store files

- 151/262 -

Deploying persistent store files
Every node which is running an application that uses the Session Manager must be able to read the
persistent store files from disk. Consequently, you have several options when deploying the persistent
store files:

Option 1: One Configuration Server exists on one of the nodes in a connected group of nodes.
The on-disk set of persistent store files is shared through a shared file system.

Option 2: A uniquely-named Configuration Server and its on-disk set of persistent store files exist
on each node.

Option 3: One Configuration Server is shared by a connected group of nodes. There is no shared
file system. When the on-disk set of persistent store files changes, you must manually copy the
sets of persistent store files from the master location to the other nodes.

Option 1: Persistent store files on a shared file system
The preferred method of deployment is to place the set of persistent store files on a shared file system.
When VisiTransact is installed, a Session Manager Configuration Server with an associated on-disk set of
persistent store files is deployed on only one node. When installing VisiTransact on the node which runs
the Session Manager Configuration Server, you can specify the directory structure for the persistent
store files so that it will be created in this shared disk.

After installation, the VisiBroker Console can be used to update all Session Manager connection profiles
that are used on this network. They will all appear in one set of connection profiles. Application servers
which use the Session Manager on other nodes must be configured so that when they start up they
look at the shared disk containing the persistent store (using -Dvbroker.sm.pstorePath=<path>). When you
use the VisiBroker Console to update connection profiles, the modified profile will be seen by
application servers when they start up.

Because the connection profiles are shared with this option, it is very important that there is only
one instance of the Session Manager Configuration Server used in this group of nodes.

Option 2: Persistent store files on each node
Each node that runs the Session Manager has its own Configuration Server and set of persistent store
files. One VisiBroker Console on the network can make modifications to each on-disk persistent store
file. If you update a connection profile on one node, you have to update it on the other nodes through
the VisiBroker Console so that the other nodes are updated with the change too.

• •

• •

• •

Note

Deploying persistent store files

- 152/262 -

This option has the advantage that no disk sharing is needed, but adds much complexity in
synchronizing the connection profiles across many nodes. Neither the VisiBroker Console nor the
Session Manager Configuration Server processes can synchronize different on-disk sets of connection
profiles.

Option 3: Set of persistent store files copied to each node
To distribute the on-disk cache around the network, you can create a master set of persistent store files
and manually copy them to each node. Like the previous option, this option has the disadvantage of
trying to keep numerous nodes synchronized. However, it may be easier to copy the profile files using
operating system or network copy commands than to update each persistent store file using the
VisiBroker Console.

You can copy all persistent store files in a Configuration Server subdirectory or just one persistent
store file at a time. You must copy the entire install subdirectory too if it does not already exist in the
target location.

Starting the Session Manager Configuration Server manually
Once a Session Manager Configuration Server is registered with the OAD, the OAD can start it
automatically; however, if you would like to start the Configuration Server manually, use the following
command:

prompt>smconfig_server [-Dvbroker.sm.pstorePath=<path>] [-Dvbroker.sm.configName=<name>]

The following table describes the start-up parameters for the Session Manager Configuration Server.

Note

Parameter Description

-
Dvbroker.sm.
pstorePath

Provide the path to the directory where the persistent store files are
located. By default, the persistent store files are located in
<VBROKER_ADM>/its/session_manager .

Starting the Session Manager Configuration Server manually

- 153/262 -

Shutting down the Configuration Server
You may want to shut down the Session Manager Configuration Server for the following reasons:

If you need to perform maintenance.

If an error occurs.

If you need to reboot the machine the server is on.

Use this command when you want to shut down a Session Manager Configuration Server manually:

prompt>vshutdown -type smcs [-name <smcs_name>]

The Session Manager Configuration Server name should be the one used in the command-line
argument - Dvbroker.ots.configName when you started the Configuration Server, or the default name
which is <host>_smcs .

If someone else is using the VisiBroker Console to change or create a connection profile that is
associated with the same Session Manager Configuration Server that you are trying to shut down,
the Session Manager Configuration Server will finish the work and then will shut down.

See vshutdown for more information on the vshutdown command.

Security
Database passwords are secure in the sense that they are not displayed through the VisiBroker
Console. Applications which link with the Session Manager are able to query cleartext versions of
database passwords. Since read access to the configuration files is required of these applications, you
can control access to database passwords by restricting access to the connection profile persistent
store files. It is up to the application developer and system administrator to provide proper file access
permissions and develop applications which do not disclose password information to unauthorized
users.

Parameter Description

-
Dvbroker.sm.
configName

Provide the name of the Session Manager Configuration Service you're
using. By default, the name assigned to the Session Manager Configuration
Server is <host>_smcs where <host> is the name of the server on which
you created the Session Manager profile.

• •

• •

• •

Note

Shutting down the Configuration Server

- 154/262 -

Data access using the Session Manager

This chapter explains how to use the Session Manager to manage connections between transactional
objects and databases in a distributed environment—this includes DirectConnect and XA access. It
assumes that you are familiar with the CORBA Transaction Service specification, and database concepts.

Session Manager is supported on the Solaris platform only.

The Session Manager includes the following interfaces:

Connection —represents a transactional database connection.

ConnectionPool —allocates a connection from the pool.

For an overview about the Session Manager and the XA Resource Director, see Session Manager
overview.

Preparing for integration
Before you can use the features in the Session Manager, you must do the following:

Install your database. It may require special configurations depending on whether you are
processing XA access transactions or depending on the other components in your environment.
For more information, see XA Session Manager for Oracle OCI, version 9i Client and DirectConnect
Session Manager for Oracle OCI, version 9i Client.

Ensure that your VisiTransact system administrator has created connection profile(s) for the
Session Manager. If you are processing XA access transactions, your VisiTransact system
administrator must create a connection profile for the XA Resource Director as well.

Verify that your application uses the Session Manager (ConnectionPool and Connection interfaces)
to obtain connection handles. To obtain connections, use connection profiles by name—the name
that was given to the connection profile via the VisiBroker Console.

For XA implementations of the Session Manager: Check with your VisiTransact system
administrator that an instance of the XA Resource Director is deployed and running for each
database that is accessible from VisiBroker VisiTransact. See Integrating VisiTransact with
databases using the Session Manager for more information.

Note

• •

• •

• •

• •

• •

• •

Data access using the Session Manager

- 155/262 -

Check that your application ensures a transaction is in progress. You must have an active
transaction (implicit or explicit context) on the current thread. This ensures that Resources are
included in a VisiBroker VisiTransact transaction. See Creating and propagating VisiTransact-
managed transactions for a description of VisiTransact-managed transactions or see Other
methods of creating and propagating transactions for a description of how to manage
transactions in other ways.

Using the Session Manager: Summary of steps
The following steps summarize how to work with the Session Manager.

Obtain a ConnectionPool object reference.

Ensure that there is an active transaction.

Obtain a Connection object for the appropriate connection profile from the ConnectionPool.

Get a native connection handle from the Connection object using getNativeConnectionHandle() .

Use the native connection handle to access data.

Release the Session Manager Connection object, and cleanup any copies of the native connection
handle.

De-allocate the Connection object.

You can execute lots of pieces of work for a single transaction. Because connections are pooled, you
should keep a Connection object for a short while and not hold onto it. You can get Connection
object as often as needed within a single transaction.

The following sections detail each step.

• •

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Note

Using the Session Manager: Summary of steps

- 156/262 -

Obtaining a ConnectionPool object reference
The following steps describe the general process for obtaining a reference to the ConnectionPool
object, and are followed by a code example.

Call the ORB resolve-initial-references() method, passing the object type
VISSessionManager::ConnectionPool .

Narrow the returned object to a VISSessionManager::ConnectionPool . The following is an example of
obtaining a ConnectionPool object reference in C++.

Using ConnectionPool object references
The ConnectionPool object reference is valid for the entire process under which you create it; you can
use it in any thread. You can either make multiple calls to obtain references to the ConnectionPool
object or use just one reference throughout the entire process, saving duplicate resolve-initial-
references() calls.

Obtaining a Connection object from the Connection Pool
Once the application has obtained a reference to the ConnectionPool object, the getConnection() call
can be used to obtain a Connection object which represents this database connection to the
application. It is at this point that the Session Manager binds a database connection with a Connection
object.

The getConnection() call requires an active implicit transaction context. The
getConnectionWithCoordinator() call can be used to explicitly specify a transaction using its Coordinator.
For more information about getConnectionWithCoordinator() , see Using explicit transaction contexts.

The getConnection() method does the following:

1. 1.

2. 2.

{
CORBA::ORB_var orb = CORBA::ORB_init();
**CORBA::Object_var initRef =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
VISSessionManager::ConnectionPool_var pool =
 VISSessionManager::ConnectionPool::_narrow(initRef);
** ...
}

Obtaining a ConnectionPool object reference

- 157/262 -

Obtains a database connection.

If there is a free connection in the pool with the same connection profile, the pool returns that
connection. If there is no free connection with a matching connection profile available, the Session
Manager creates a new connection. The connection is created using an appropriate method for the
specific Session Manager implementation.

Note

You cannot override connection attributes programmatically.

Associates the work performed on this connection with the transaction.

Registers the appropriate Resource object with the VisiTransact Transaction Service.

The following code sample shows how to get a Connection object to represent a connection.

Any errors that happen during any of the steps will be returned as exceptions to getConnection() or
getConnectionWithCoordinator() . If any of these steps fail, the Session Manager will throw an exception
rather than returning a Connection object.

Using explicit transaction contexts
You can get a connection for an explicit transaction context by using getConnectionWithCoordinator() .
The getConnectionWithCoordinator() method is used for the following reasons:

To get a Connection object when there is no active implicit transaction context.

To get a Connection object and use it with a transaction other than the currently active implicit
transaction context.

If you call getConnectionWithCoordinator() and pass in a Coordinatorreference, the Session Manager will
use the Coordinator to perform all the tasks it normally would do with the implicit context. Instead of
using an implicit VisiTransact-managed transaction, the Session Manager uses the explicitly-stated
transaction Coordinator. The connection will be set with this transaction Coordinator until you release
the connection.

The following code sample shows getConnectionWithCoordinator() passing transaction context via the
Coordinator.

1. 1.

2. 2.

3. 3.

...
VISSessionManager::ConnectionPool_var pool;
// Ask the pool for a database connection
**VISSessionManager::Connection_var conn = pool->getConnection("quickstart");
**...

• •

• •

Using explicit transaction contexts

- 158/262 -

For more information about explicit propagation of transaction context, see Other methods of creating
and propagating transactions.

Optimizing connection pooling
The Session Manager automatically keeps a pool of connections and returns connections to
applications based on a set of attributes. For efficient connection pooling, the application should use
the same connection profile and attributes for all connections to a single data source.

Getting a native connection handle
To use a connection represented by a Connection object, the application must obtain a native
connection handle from the Connection object using the getNativeConnectionHandle() method.
Subsequently, the application code talks to the database directly through this native connection handle.
This native connection handle can then be used to do normal data access. In other words, you can do
the work in the database API with which you are familiar.

The following code sample shows how to get a connection handle to an Oracle database for use with
the OCI interface.

...
VISSessionManager::ConnectionPool_var pool;
// Ask the pool for a database connection using the "quickstart" profile
**VISSessionManager::Connection_var conn =
 pool->getConnectionWithCoordinator("quickstart", coordinator);
**...

Optimizing connection pooling

- 159/262 -

Using the native connection handle
You can use the connection handle obtained through the Session Manager the way you would use any
native connection handle: using the native database API. However, some actions are disallowed when
using the Session Manager. For all implementations, all calls to the database which have an effect on
the transactional state are prohibited, including any calls which begin, commit, or roll back a
transaction. Such calls affect the transactional integrity of the work. Transactional effects may be
hidden. For example, DDL statements (like create table) in Oracle force an implicit commit call. For
more information about actions that are prohibited, see XA Session Manager for Oracle OCI, version 9i
Client and DirectConnect Session Manager for Oracle OCI, version 9i Client.

Threading requirements
The Session Manager automatically manages the database connection's thread requirements, if there
are any. The isSupported() method may be used with the thread-portable argument to determine
whether connections may be used on other threads. In general, the connection returned by the
getConnection() method is only valid on the thread used to acquire it; the application may not use the
connection handle on any other thread. There may be relaxed restrictions for some implementations.
For more information about thread requirements for a specific database, see XA Session Manager for
Oracle OCI, version 9i Client and DirectConnect Session Manager for Oracle OCI, version 9i Client.

Releasing a connection
Calling release() on a Connection object ends the association of the transaction with a particular
connection. Releasing the Connection object does not close the underlying database connection; the
connection is returned to the pool for re-use. After releasing a Connection object, the application may
not use the native connection handle or Connection object again. If you decide to perform more work
on this transaction, you can obtain another Connection object.

There are two methods available for releasing a connection: release() and releaseAndDisconnect() . For
usage, see the following table.

...
VISSessionManager::Connection_var conn;
 // get an Oracle OCI connection handle
** handles = (SampleOraHandle *) smconn->getNativeConnectionHandle();
**...

Using the native connection handle

- 160/262 -

Generally, the native connection handle is a pointer. Therefore, you should set to null any copy you have
of that pointer when releasing the connection.

If you are implementing an IDL interface call, you must release() or hold() the connection before
returning from that call. Failure to do so will circumvent the Session Manager's ability to avoid lost
connections due to unreliable clients, and to enforce threading restrictions imposed by some database
implementations.

The application must not attempt to disconnect using the database API. It should use release() or
releaseAndDisconnect() .

Caution

If the application uses a connection handle after a release method is called, unpredictable results will
occur.

The following table explains the behavior of the release() and releaseAndDisconnect() methods.

The following code sample shows an example of code that releases a transaction successfully.

Method Behavior

release(in
ReleaseType
type)

When the application invokes release() , it must use one of the two
enumerated values. If the application uses release() with
MarkSuccess , the connection is disassociated from the transaction

successfully and the connection returns to the pool.

The application uses release() with MarkForRollback to mark the
transaction for rollback only. The Session Manager signals to the database
and the VisiTransact Transaction Service that the transaction will be rolled
back. The application would take such an action when it detects a condition
which would invalidate the integrity of the transaction.

releaseAndD
isconnect()

This method may be used if the application detects something wrong with
the connection to force the connection to close and to notify the
VisiTransact Transaction Service that the transaction is marked for rollback
only.

Releasing a connection

- 161/262 -

De-allocating the instance of Connection
The release() call does not release the Connection object in the sense of the CORBA _release method.
It indicates to the ConnectionPool that the connection will no longer be needed by the application. The
application will still need to de-allocate the Connection object. Because these are CORBA objects, you
cannot call delete() on them. To ensure the safest management of the Connection object, hold it in a
Connection_var . When the Connection_var is destructed, everything gets cleaned up. For the
ConnectionPool object, hold it in a ConnectionPool_var .

If release() is not called on a Connection object, the default destructor releases the connection and
marks the transaction RollbackOnly. This is an easy way to make sure that all abnormal exits from
this method keep the transaction from proceeding. If the application can maintain transactional
integrity without rolling back, its own exception handling should release the connection explicitly,
marking it for success where appropriate.

Viewing exceptions
Session Manager objects may throw exceptions. The exceptions are defined in IDL. Therefore, the
exceptions are handled in the standard CORBA way—the ORB is responsible for transmitting the
information back to the caller.

...
VISSessionManager::Connection_var conn;
**conn->release(VISSessionManager::Connection::MarkSuccess);
**...

Note

Exception Behavior

VISSessionManager::E
rror

This exception is defined in the VISSessionManager module
and contains a sequence of ErrorInfo structures. An ErrorI
nfo is a struct of reason , subsystem , and error code .

De-allocating the instance of Connection

- 162/262 -

If your application receives the ProfileError exception, there are two fields in the exception: a reason
and an error code. You can look at these fields to see information about the error.

If your application receives the Error exception, you need to see how long the sequence of ErrorInfos
is by invoking the exception.info.length() method on the ErrorInfos sequence. Once you know the
length, you can step through each ErrorInfo in the sequence.

The following code sample shows an example of code that catches exceptions in connection calls.

Exception Behavior

VISSessionManager::
ConnectionPool::Prof
ileError

This exception is defined in the ConnectionPool interface and
consists of a reason and a code.

Viewing exceptions

- 163/262 -

Viewing attributes
There are two methods you can use to view connection profile attributes. They are used for different
purposes: one is used when a connection is currently allocated, the other is used when there is no
connection allocated.

...
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var object =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
 pool = VISSessionManager::ConnectionPool::_narrow(object);
 conn = pool->getConnection("quickstart");
 lda_ptr = (Lda_Def*) conn->getNativeConnectionHandle();
 }
 **catch (VISSessionManager::ConnectionPool::ProfileError &ex)
** {
** cerr << "Profile error: " << ex.code << ex.reason << endl;
**
 conn->releaseAndDisconnect();
 throw ApplicationException(); //This error is defined by the application
 }
 **catch (VISSessionManager::Connection::Error &ex)
** {
** cerr << "Session Manager error: " << endl;
**
 int len = ex.info.length();
 for (CORBA::ULong i=0; i<len; i++)
 {
 cerr << ex.info[i].subsystem << "-" << ex.info[i].code
 << ": " << ex.info[i].reason << endl;
 }
 conn->releaseAndDisconnect();
 throw ApplicationException(); //This error is defined by the application
 }
...

Viewing attributes

- 164/262 -

For more information about getAttribute() and getProfileAttributes() , and for a list of the connection
attributes common to all supported databases, see VISSessionManager module in the VisiBroker for C++
API Reference.

Obtaining Session Manager information
To obtain information such as the version of the Session Manager, whether the hold() method is
supported or not, or the database's threading policy, use the following methods:

The following information types are common to all the Session Managers:

"version" —Returns the version number of the generic Session Manager. The version number is
returned in a 5-field string which is standard in the VisiBroker utility vbver . This info_type does
not return specific information about which component you are talking to. This information is to
be used for informational purposes.

"version_rm" —Returns the version number of the Resource Manager-specific component of the
Session Manager. This information is to be used for informational purposes.

The following support types are available for all types of Session Managers:

"hold" —Returns true if the hold() method is supported; otherwise, returns false.

" thread_portable "—Returns true if the connections are restricted to the thread that made the
connection; otherwise, returns false.

The following code sample is an example for using getInfo().

Method Behavior

VISSessionManager::
Connection::getAttr
ibutes()

This method returns the values of configuration profile attributes
for a connection that is currently allocated. This method is in the
Connection interface.

VISSessionManager::
ConnectionPool::get
ProfileAttributes()

This method may be used to query attributes in a connection
profile without allocating a connection. You may want to use this
method to evaluate which connection profile you want to use.
This method is in the ConnectionPool interface.

string* getInfo(in string info_type)
boolean isSupported(in string support_type)

• •

• •

• •

• •

Obtaining Session Manager information

- 165/262 -

Using hold() and resume()
These methods are used to maintain ownership of a Session Manager Connection when the thread of
control returns to a client.

Using hold()
The Session Manager requires that it be notified if no thread in the current process is active with
respect to this connection. The main reason for this restriction is that if the requester fails or is
otherwise unable to return to this process to release its Resources, the Session Manager must be able
to clean up any resources used for this connection. If the Session Manager does not have knowledge of
whether or not the application is still actively using the connection, it cannot dissociate the transaction
and proceed with cleanup.

There is another more subtle reason to use hold() . Some database connections are restricted in their
use to a particular thread. Here is an example of what may happen:

A client makes an interface call to the server.

The client obtains a Connection object through the Session Manager.

Later, the client makes another interface call to the same server hoping to perform more work on
that transaction. This call may occur on a different thread, depending on the behavior of the BOA
used in the server process.

...
VISSessionManager::Connection_var conn;
**CORBA::String_var info = conn->getInfo("version");
**...

Method Behavior

VISSessionManager::C
onnection::hold()

This method notifies the Session Manager that the thread of
control is leaving the current process and intends to return.

VISSessionManager::C
onnection::resume()

This method is used after a hold() to indicate to the Session
Manager that the thread of control for this Connection is now
back in process.

• •

• •

• •

Using hold() and resume()

- 166/262 -

Using hold() gives the Session Manager a chance to inform the application that making a second
interface call to the same server may not be supported for some Session Manager implementations
which do not allow the connection to be used on another thread.

Using hold() monopolizes the connection and affects performance; use hold() only when it is
necessary.

The timeout parameter specifies the time in seconds that the Session Manager should wait before
timing out the connection and cleaning up its resources. As part of the cleanup process, the connection
is returned to the ConnectionPool and the transaction is marked for rollback.

Your application can send multiple hold() requests with no intervening resume() calls. If hold() is called
twice, the timer is reset with the new value at each call. For example, if you send hold(60) at 8:42:30, it
would expire at 8:43:30. However, if you subsequently invoke hold(45) at 8:42:50, the timer would expire
at 8:43:35 because it had been reset by the second hold() call.

Some database Session Manager implementations may not support this method. Your application
can use isSupported() to query whether the Session Manager supports the hold() method or not.
You can find more information about this in XA Session Manager for Oracle OCI, version 9i Client and
DirectConnect Session Manager for Oracle OCI, version 9i Client

Before the Connection object or the corresponding database connection handle can be used again,
resume() must be called on the Connection object.

Using resume()
The resume() cancels the timer associated with the hold() and guarantees that the Session Manager
will not modify the underlying connection in any way that would cause conflicts with an active
application. Calling resume() when the Connection has not been placed in the hold state results in a
VISSessionManager::Error exception, but does not modify the transaction or connection state.

Note

Note

Using resume()

- 167/262 -

Between the hold() and resume() calls, the application is not allowed to make any other calls on the
Connection object or its associated native database handle. If the hold() call timer expires in this
interval, the Session Manager has the right to release the connection and mark the transaction for
rollback. This is to ensure that Resources held in the application server by that transaction are not
left forever if a client dies or never calls again.

Example of a simple integration
The following code sample shows an example program that integrates a DBMS using the Session
Manager.

Note

Example of a simple integration

- 168/262 -

...
void applicationWork(CosTransactions::Coordinator *coordinator)
{
 VISSessionManager::ConnectionPool_var pool;
 //get the ConnectionPool reference
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
 pool = VISSessionManager::ConnectionPool::_narrow(initRef);
 }
 catch (CORBA::Exception &ex)
 {
 cout << "Corba exception obtaining reference to ConnectionPool"
 << endl;
 cout << ex << endl;
 throw ApplicationException();
 }
 //Declare the Connection_var on the stack to ensure that it destructs.
 VISSessionManager::Connection_var conn;
 Lda_Def *lda_ptr = 0;
 try
 {
 // Ask the pool for a database connection
 // Use the database profile "quickstart"
 conn = pool->getConnection("quickstart");

 // get a connection handle to use for native Oracle OCI calls
 lda_ptr = (Lda_Def*) conn->getNativeConnectionHandle();
 }
 catch(const VISSessionManager::ConnectionPool::ProfileError& ex)
 {
 // we received an error with this profile.
 cerr << "Profile error:\n";
 << " " << ex.code
 << ": " << ex.reason
 << endl;
 throw ApplicationException();
 // This would be something an application would define.
 }
}
 catch(const VISSessionManager::Error& ex)
 {
 cerr << "Session Manager error:\n";
 // print out all the error messages

Example of a simple integration

- 169/262 -

XA implementation issues
The XA implementation supports full participation in VisiTransact transactions. When using the XA
implementation of the Session Manager, some tasks are different than when you are using the
DirectConnect implementation. This section provides information about XA-implementation issues.

Completing or recovering a transaction
The Session Manager automatically registers the XA Resource Director with the VisiTransact
Transaction Service during the getConnection() call. The Resource Director is ready and waiting for
transaction completion (commit or rollback). Once all of the work of the transaction is done and the
application invokes commit() or rollback() , the VisiTransact Transaction Service calls the Resource
Director to either commit or rollback the transaction. Depending on the circumstances, the Resource
Director may coordinate recovery. The Resource Director handles all recovery between XA Resources
(the databases) and the VisiTransact Transaction Service without administrator intervention.

For more information about transaction completion and two-phase commit, see Transaction completion
and Coordinating transaction completion with Resource objects For more information about the
Resource Director, see Session Manager overview.

 for(CORBA::ULong i = 0; i < ex.info.length(); i++)
 {
 cerr << " " << ex.info[i].subsystem
 << "-" << ex.info[i].code
 << ": " << ex.info[i].reason
 << endl;
 }
 throw ApplicationException();
 // This would be something an application would define.
 }
 //use lda to access Oracle data.
 ...
 // If they got here, no unhandled exceptions occurred.
 // Release the connection successfully
 conn->release(VISSessionManager::Connection::MarkSuccess);
}

XA implementation issues

- 170/262 -

DirectConnect implementation issues
When using the DirectConnect implementation of the Session Manager, some tasks are different than
when you are using the XA implementation.

In DirectConnect transactions, the connection has one of the following type of states:

Available and unassociated. The connection is available for any transaction.

Available, but associated with a particular transaction. This connection is unavailable for other
transactions, but can be acquired and used for the same transactions.

In use. This connection is unavailable for other threads or transactions.

These last two states provide behavior that serializes access for clients. Access needs to be serialized
because two different threads should not be able to use the same connection at the same time.
Therefore, two different threads cannot do work on one of these DirectConnect connections at the
same time for the same transaction.

Since the transaction state or Resource state is being maintained in a single process, if any element
fails, the transaction is rolled back. If the failure occurs during the commit phase, you may not be able
to tell if the transaction was committed or not. The commit() may receive either
CosTransactions::HeuristicHazard or CORBA::TRANSACTION_ROLLEDBACK , depending on whether the
VisiTransact Transaction Service knows what happened.

Completing or recovering a transaction
For DirectConnect transactions, the commit process is a single phase commit. The Resource that is
involved is a single phase Resource embedded in the Session Manager. The connection that has been
doing the work up until the time to commit will be available in that process (as long as the process
stays up) to commit the transaction's work. Once the VisiTransact Transaction Service has been told to
commit, it will tell the Resource to perform a single-phase commit, Once the commit happens, the
connection is freed and returns to the pool to do work for a different transaction.

If the application server containing the DirectConnect Session Manager goes down, the single phase
Resource is forgotten and the transaction is rolled back.

The application must have already invoked release() or releaseAndDisconnect() before the commit so
that the connection can be freed up.

• •

• •

• •

Note

DirectConnect implementation issues

- 171/262 -

Changing from DirectConnect to XA
If you originally develop your application for a DirectConnect environment and then want to use it in an
XA environment, there should be no code changes necessary. There is just one basic rule that you
should follow: Conform to the programming restrictions for both DirectConnect and XA. The only
change necessary to convert from DirectConnect to XA is to use a connection profile configured for the
XA implementation of the Session Manager. You must then deploy an XA Resource Director if one is not
already deployed for that database.

Changing from DirectConnect to XA

- 172/262 -

Pluggable Database Resource Module for
VisiTransact

The pluggable database resource module, or Pluggable Resource Interface, is a component that
implements a set of predefined interfaces to allow transactional applications to use databases as their
persistent storage in transactions managed by VisiTransact.

The examples given in this document are for the Oracle9i database, but you can use the Pluggable
Resource Interface to manage transactions with the database of your choice.

Concepts

What is the pluggable database resource module?
The pluggable database resource module is a component that implements a set of predefined
interfaces to allow transactional applications to use databases as their persistent storage in
transactions managed by VisiTransact.

Developers who want to use a specific type of database have to implement the module. After a module
has been properly implemented and compiled, the Session Manager's Connection Manager will load
the module into application.

The pluggable modules are provided in the form of shared libraries. Once the Session Manager's
Connection Manager loads a module, it will interact with the module by the predefined interfaces.
Those predefined interfaces enable the Session Manager's Connection Manager to carry out tasks
necessary for a transaction, including: obtaining a physical connection from the supported database for
the transactional application to manipulate data; informing the database of the association,
dissociation, and the decision (commit or rollback) of a transaction; and disconnecting from the
database when it is no longer needed.

The predefined interfaces are simple and standard-based, which support two kinds of transactions, that
is, local transactions (Direct connections or DCs) and global transactions (XA connections). Direct
connections are used when there is only one resource in a transaction. In that case it does not need to
coordinate the commitment of multiple resources so VisiTransact will send commit or roll back directly
to the database. XA connections are used when more than one databases are involved in a single global
transaction. VisiTransact uses the XA interface defined in the X-Open specification to coordinate the
databases to complete a global transaction.

Pluggable Database Resource Module for VisiTransact

- 173/262 -

Using the pluggable module technique of VisiTransact, a developer can easily integrate different
databases into VisiTransact-managed transactional applications.

Structural descriptions
The following figure shows the basic model for the pluggable modules.

The transaction application is a program that usually initializes transactions to carry out safe business
tasks. The session manager's connection manager sits between the transaction application and the
pluggable modules to take care of the connection and association issues for the access to a database in
transactions. The various pluggable modules are loaded by the application in time of need, through
which all specific databases can be reached.

The session manager's connection manager also caches the live connections for reuse, thus improving
the performance. It also communicates with VisiTransact to register resource objects.

For XA connections a separate component, resource director, is used.

Structural descriptions

- 174/262 -

Connection Management
When a transactional application for the first time starts a transaction and get a connection with a
specified profile name, the session manager's connection manager will load the right pluggable module
into the process according to the profile. The session manager's connection manager makes connection
to the database through the module and wraps the physical link into a standard connection object, and
then associates it with the transaction. After that, it returns the connection object to the application.

Once the connection object is got, the application is safe to use it to update transactional data in the
database. When a part of work is finished, the application must release the connection. This allows the
session manager's connection manager to either recollect the resources allocated to the connection
object or make the current connection available to other tasks.

Each time a connection object is created, it is associated with a specific configure profile which contains
information necessary for the Session Manager Connection Manager to make a physical connection to
a database. The Session Manager Connection Manager also associates some attributes with the
connection object, such as transaction context, internal connection states, and timeout.

A connection obtained from the Session Manager Connection Manager is valid until it is released,
disconnected, or finished with the completion of the associated transaction.

When a pluggable connection object is released, it is pooled for reuse. However the pooling and reuse
mechanism is different between the DC and XA connections.

For a DC connection, the following table gives the detail about how a connection is used, pooled and
reused.

Connection Management

- 175/262 -

Interface call
(clients)

Session Manager
Connection Manager

Plug-in module Database

getConnecti
on()
getConnecti
onWith
Coordinator(
)

It searches the pool for
available connection, if
found, associates it
with the transaction,
and then returns it.

If no connection
available in the pool, it
will load the plug-in
module in and get a
connection through
the module, and then
create a new
connection object and
return it to the client.

It will be loaded into
the session manager
for the new
connection. When the
session manager
reuses a connection,
it doesn't call into the
plug-in module.

It accepts the
connect request
from the plug-in
module. Then the
client may use the
connection to
update data in the
tables.

release() It dissociates the
connection from the
transaction and put the
connection to the
connection pool.

- -

releaseAndD
isconnect()

It first dissociates the
connection with the
transaction, rollback
the current transaction
and then disconnect
from the database
through the plug-in
module.

It is called to rollback
the transaction and
disconnect from the
database. (the
rollback call is from
VisiTransact)

It accepts the
rollback request
and the disconnect
request from the
plug-in module
and release the
connection.

Connection Management

- 176/262 -

For an XA connection, the following table shows the mechanism.

Interface call
(clients)

Session Manager
Connection Manager

Plug-in module Database

hold() It sets the connection
to be in hold state. Any
subsequent calls
(except resume) will
cause an exception.
After the timeout
expires, the session
manager will restore
the connection.

- During the hold
state, the database
receives no
request.

resume() The connection is
resumed and the client
can use it again.

- The database may
receive native calls
from the client to
update the tables.

transaction
commit (from
VisiTransact)

- The commit()
interface will be
called.

The database will
commit any
changes in this
transaction.

transaction
rollback (from
VisiTransact)

The transaction is
rolled back and the
connection is put to
the connection pool.
(for reuse).

The rollback()
interface will be
called.

The database will
roll back any
changes made in
this transaction.

Connection Management

- 177/262 -

Interface call
(clients)

Session Manager
Connection
Manager

Plug-in module Database

getConnect
ion()
getConnect
ionWith
Coordinator
()

It searches the thread
local pool for a
reusable connection.
If none available,
create a new
connection in the
pool and associate
the connection (as
well as the thread)
with the transaction.

To establish a XA
connection, the xa_switch()
interface will be called to
get an pointer to the xa
switch structure. Then the
xa_open_string() will be
called to obtain the string
for the opening of a
resource manager in the
database.

An xa
connection will
be opened and
associated with
the current
calling thread.

release() The calling thread is
dissociated with the
transaction. The
connection object is
made available for
reuse in the pool.

No specific interface will
be called. The necessary
calls will be made through
the xa switch.

The opened
resource will be
suspended from
the current
transaction.

releaseAnd
Disconnect(
)

The calling thread is
dissociated with the
transaction and the
connection is closed.

The
xa_close_string()

interface will be called for
the string used to close
the connection. Other
necessary calls will be
made through the xa
switch.

The xa
connection for
the resource in
the database is
closed.

transaction
commit (from
VisiTransact)

The resource director
will get a connection
on behave of the
transaction and
complete the 2-PC
commit using xa
interfaces. The
connection object will
later be recollected in
the pool and made
ready for reuse.

No specific interface will
be called. The necessary
calls will be made through
the xa switch.

The database
will receive XA
calls from the
resource
director and
commit the
changes made
to the data.

Connection Management

- 178/262 -

One major difference between XA and DC connections are their thread models. For DC connections,
once the application get a connection from a thread, it can pass the connection object to any thread in
the process as long as the specific database allows it to do so; for XA connections, the Session Manager
Connection Manager obtains connections for different threads and then associates each connection
object, as well as the thread who requires the connection, with the global transaction managed by
VisiTransact. Passing an XA connection object across threads may get unexpected results and therefore
is strongly discouraged.

Writing a Pluggable Module

The connection profiles
Each connection that the pluggable modules provides is associated with a configure profile, which
contains the necessary information for the Session Manager Connection Manager to get a connection.
This information is given in the following table:

Interface call
(clients)

Session Manager
Connection
Manager

Plug-in module Database

transaction
rollback (from
VisiTransact)

The resource director
will get a connection
on behalf of the
transaction and roll
back the transaction
using xa interfaces.
The connection
object will later be
recollected in the
pool and made ready
for reuse.

No specific interface will
be called. The necessary
calls will be made through
the xa switch.

The database
will receive xa
calls from the
resource
director and roll
back the
changes made
to the data.

Name Value Meaning

Profile name a string of
maximum length
63 (ASCII
characters)

The profile name is the name of the file that stores the
configuration information. Meanwhile it uniquely
represents a type of connection within the application.

Writing a Pluggable Module

- 179/262 -

When an application calls getConnection() interface (defined in VISSessionManager.idl), it must supply a
configure profile name for the session manager connection manager to load the right module and
make the connections. So before starting your application, the corresponding configure profiles must
be created.

To create a profile, use the smconfigsetup tool included in the product.

To start the smconfigsetup tool, follow these steps:

Start osagent .

Start smconfig_server .

Start smconfigsetup .

After starting the smconfigsetup tool, it will give you a list of options that you can use to manage your
profiles. Select option 7 to create a configure profile for the pluggable modules. Then you can follow the
prompt to give all your information defined in the above table in order. The tool will save the profile in
the specified location for session manager.

Name Value Meaning

Database
type

a string of
maximum length
63 (ASCII
characters)

This is an informative string that tells which database
the pluggable module supports.

version
information

a string of
maximum length
63 (ASCII
characters)

Informative string showing the version info of the
database.

pluggable
module

name

a string of
maximum length
63 (ASCII
characters)

The name of the pluggable module. The session
manager will load the module of this name into the
process when necessary.

connection
parameter

a string of
maximum length
256 (ASCII
characters)

A string parameter the session manager passes to the
getITSDataConnection() call in the pluggable

module to get a new connection. This will give the
module a way to customize different types of
connections it can produce. (See the example included
in the product for detail.)

1. 1.

2. 2.

3. 3.

The connection profiles

- 180/262 -

The Interface Definition
The interfaces that a pluggable module need to implement are defined in a single header file.

In this header file, a function that Session Manager Connection Manager used to get a connection
object from and a connection class are defined. A pluggable module does not need to implement all the
interfaces. Some of the interface are compulsory, some are optional, based on the type of connection
the module is going to support.

The Single Function
Any pluggable module must implement this function.

The function GetITSDataConnection() is defined as follows:

This function, when called by Session Manager Connection Manager, must return a new object that
represents a new connection. If an existing connection is reused, the session manager connection
manager never calls the function again for it. The function uses C calling convention.

This function takes a string as its only parameter. Users are free to specify this parameter in a
configuration file to control the properties of the connections corresponding to the profile, if any. The
Session Manager Connection Manager will get this parameter from the profile and passes it as the
argument to this function.

The return value is a pointer to an object of type ITSDataConnection which contains the connection
related interfaces that a pluggable module should implement.

This function can be taken as the entry point of a pluggable support module - the first call by the
module loader (which is the Session Manager Connection Manager). The session manager connection
manager relies on this function to get an object for connection management.

extern "C"
ITSDataConnection* GetITSDataConnection(const char* param);

The Interface Definition

- 181/262 -

The ITSDataConnection class
This class is defined below.

The methods in ITSDataConnection class can be divided into three groups:

native handle acquisition interface

local transaction connection and completion interface

global transaction connection and completion interface

Native handle acquisition interface

This function is used to get access to the native APIs for a database supported by the module. The
return value is a void pointer, allowing the implementation to return anything necessary to manipulate
data in the database. A transactional application can obtain this pointer through
getNativeConnectionHandle(), in which the Session Manager Connection Manager will call the
native_handle() and return the pointer back to the application.

Any pluggable module must implement this function.

Local transaction connection and completion interface
Pluggable modules that support the local transaction must implement these functions.

These four methods are used by Session Manager Connection Manager to inform the database of the
start and completion of local transactions.

class ITSDataConnection
{
 public:
 virtual void connect() = 0;
 virtual void disconnect() = 0;
 virtual void rollback() = 0;
 virtual void commit() = 0;
 virtual xa_switch_t* xa_switch() { return 0; }
 virtual const char* xa_open_string() { return 0; }
 virtual const char* xa_close_string() { return 0; }
 virtual void* native_handle() { return 0; }
};

1. 1.

2. 2.

3. 3.

void* native_handle();

The ITSDataConnection class

- 182/262 -

void connect();
When it is called, this method establishes the connection to the database and tells the database that a
local transaction begins.

void disconnect();
When this method is called, it means the connection, if established, is no longer needed. So the
connection can be closed.

void rollback();
This method tells the database to commit the transaction.

void commit();
This method tells the database to rollback the transaction.

Global transaction connection and completion interface
Pluggable modules that support global transactions must implement the functions.

The session manager uses X-open's XA interface to talk to a XA conformable database.

xa_switch_t* xa_switch();
All the Session Manager Connection Manager need from the pluggable module is a pointer to a
xa_switch_t data structure which contains all the XA APIs as defined in the xa.h. The xa_switch() function
is just for this purpose. Whenever being called, it must returns a valid pointer to this data.

Usually the specific database implements and exposes the xa_switch_t to its clients. The name of that
data struct varies from database to database. For example, Oracle9i implements its xa_switch_t as a
global variable named xaosw.

This function is also used by Session Manager Connection Manager to judge the type of a connection. If
the function returns zero, the session manager will treat the connection as DC type, otherwise it takes
the connection as XA type.

Pluggable modules that support global transactions must implement the function and must not return
zero.

const char* xa_open_string();
When called, it returns a string used as argument to xa_open() call.

const char* xa_close_string();
When called, it returns a string used as argument to xa_close() call.

The ITSDataConnection class

- 183/262 -

The two methods are called by the session manager to get database specific parameters to open or
close a XA connection to a database. The returned string from the xa_open_string() call will be used in
the call on xa_open() and the returned string from the xa_close_string() is used in xa_close().

Once called for an XA connection, the session manager will keep the returned values for later use. The
implementation does not need to keep the validity of the returned pointer all the time.

Building and Running

Include the required header files.

Compiling the pluggable module doesn't need any VisiTransact specific libraries. However, you have
to include the itsdataconnection.h in your source file. The xa.h is a standard XA header that needed to
be in your include path. Usually databases which support the XA interface provide the xa.h in their
installation directory.

Make sure the needed libraries are available.

No VisiTransact specific libraries are needed during the compile time. However, you may need the
database specific libraries. For example if you want to support the oracle9i database in your
pluggable module and use OCI, you have to put the oracle9i client library in your library path and link
it with your code.

Build the pluggable module.

The pluggable modules must be in form of shared libraries. Different compilers have different flags
that control the build target type. Please refer to our examples to see the flags needed to build a
shared library.

Running Applications using the pluggable modules
A transactional application need not have the knowledge of the pluggable modules. However, it may
need to know the interface of the native handle for accessing data in databases. Building the
application does not need to link with any pluggable modules as those modules, when needed, will be
dynamically loaded into the process in the run time. Therefore, before you start the application make
sure that the pluggable modules are in the library path so that the Session Manager Connection
Manager can successfully loaded them in.

1. 1.

2. 2.

3. 3.

Building and Running

- 184/262 -

Programming restrictions
When using the DirectConnect profile, the following operations should not be called in the application:
“Connection Operation”, “Transaction Operations”, and “Implicit Operations”. Similarly, there is another
set of programming restrictions when using the XA profile. See Programming restrictions and
Programming restrictions for more information.

Known limitations
In any plug-in session manager, the VISSessionManager::Connnection::isSupported() API will have static
return values. In the case of DC connection, isSupported(“hold”) will return true and
isSupported("thread_portable") will return true. In the case of XA connection, isSupported("hold") will
return false and isSupported("thread_portable") will return false.

In any plug-in session manager, the VISSessionManager::Connection::getInfo("version_rm") will now return
NULL. As the information is not applicable in the case of a plug-in session manager.

Programming restrictions

- 185/262 -

Using the VisiBroker Console

This section provides information about the VisiBroker Console including: managing transactions with
the VisiTransact Transaction Service, tracking heuristic completions, viewing error messages, and
configuring a connection to a database for data access using the Session Manager Configuration Server.

VisiBroker Console is no longer automatically installed. It is available as an optional component. To
install, please download and extract the <PRODUCT_VERSION>_opt_GUI_<PLATFORM>.tar.gz archive or
<PRODUCT_VERSION>_opt_GUI_<PLATFORM>.zip archive onto your product installation.

The GUI components archive can be downloaded from the Rocket Customer Community site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

Overview of the VisiBroker Console
The VisiBroker Console provides you with an easy way to graphically monitor transaction status, view
heuristic logs, view message logs, and configure database access. The VisiTransact functionality of the
VisiBroker Console is divided into the following three sections:

Transaction Services section

Session Manager Profile Sets section

Transaction Services section
The Transaction Services section lets you manage VisiTransact Transaction Service instances and their
transactions over the network. Also, you can monitor the status of and control the completion of
transactions running under the VisiTransact Transaction Service instance you choose to monitor.

When you select the Transaction Services section, it displays all the instances of the VisiTransact
Transaction Service that are running at that particular OSAGENT_PORT .

Note

• •

• •

Using the VisiBroker Console

- 186/262 -

https://docs.rocketsoftware.com/

When you select an instance of the VisiTransact Transaction Service, the right panel displays three tabs.
You can move between these tabs to:

View transactions: The Transactions tab lets you view information about the transactions for this
instance of the VisiTransact Transaction Service. You can also view transaction details, force the
transaction to roll back or commit, or shutdown the VisiTransact Transaction Service.

Monitor heuristics: The Heuristics tab lets you view information about heuristic outcomes for
VisiTransact transactions. You can view the specific details for each participant of a transaction
that had a heuristic outcome. For more information about heuristics, see Managing heuristic
decisions.

View log messages: The Message Logs tab lets you view the error, warning, and information
messages in the Message Log for all VisiTransact components on the same node as that instance
of the VisiTransact Transaction Service.

Session Manager Profile Sets section
The Session Manager Profile Sets section lets you create, configure, and edit connection profiles for the
Session Manager. The Session Manager provides pre-configured database connections to applications
and XA Resource Directors.

Starting the VisiBroker Console
Before you start the VisiBroker Console, make sure that you start either an instance of an VisiTransact
Transaction Service, or an instance of an Session Manager Configuration Server. See Starting a
VisiTransact Transaction Service and Starting the Session Manager Configuration Server for instructions.

Starting a VisiTransact Transaction Service
The VisiTransact Transaction Service may have been started by the OAD. However, you can start the
Transaction Service manually by using this command:

prompt>ots

For a complete list of the options for the OTS command, see ots.

• •

• •

• •

Session Manager Profile Sets section

- 187/262 -

If the VisiTransact Transaction Service you want to manage is not running or is not on your network,
then it will not appear in the list of VisiTransact Services you can manage with the VisiBroker
Console. You can use the sfind utility to determine if the instance of the VisiTransact Transaction
Service is running on your network.

Starting the Session Manager Configuration Server
The Session Manager Configuration Server may have been started by the OAD. However, you can start
the Session Manager Configuration Server manually by using this command:

prompt>smconfig_server

For a complete list of the options for the smconfig_server see smconfig_server.

Launching the VisiBroker Console
In Windows, you can click the VisiBroker Console icon, found in the VisiBroker program group, and
enter your credentials.

Alternatively, at the command prompt in either Windows or UNIX, type the following command:

vbconsole

The VisiBroker Console screen displays.

Using the Transaction Services section
You use the features in the Transaction Services section to monitor and manage transaction information
for the VisiTransact Transaction Service you selected, to resolve the status of a transaction by
committing or rolling back the transaction, and to shutdown an instance of the Transaction Service,
monitor heuristics, and view messages.

For more information on using the Transaction Services section, see one of the following sections:

Locating an instance of the Transaction Service

Monitoring transactions

Refreshing the transaction list

Displaying details for specific transactions

Note

• •

• •

• •

• •

Starting the Session Manager Configuration Server

- 188/262 -

Controlling specific transactions

Filtering the transaction list

Viewing heuristic transactions

Viewing heuristic details

Viewing the message log

Filtering the message logs

Locating an instance of the Transaction Service
To view a list of transactions for a specific VisiTransact Transaction Service, you must choose from the
list of VisiTransact Transaction Service instances running on your network. If you want to switch to
another instance, you can select a VisiTransact Transaction Service from the ones listed under
Transaction Services. However, you can view only the transactions for one instance of the VisiTransact
Transaction Service at a time in the Transactions tab.

Monitoring transactions
The Transactions tab displays a list of transactions for the VisiTransact Transaction Service you select.
This lets you keep track of which transactions have not completed. From this list of transactions, you
can view the current status and periodically, you can refresh the view to track the most current
information. Use the following instructions to monitor transactions:

Select the instance of the VisiTransact Transaction Service you want to monitor from the list under
Transaction Services. A list of transactions for that instance displays in the table.

The list provides you with the following information for each transaction:

Transaction Name

Status

Host of the Transaction Originator

Age in seconds

The number of times transaction completion was attempted

To sort the list of transactions in ascending order, click on the header of the column you want to sort.

The status bar at the bottom of the screen provides additional information about the number of
transactions, filtering status, and current system activity.

• •

• •

• •

• •

• •

• •

1. 1.

• •

• •

• •

• •

• •

2. 2.

Locating an instance of the Transaction Service

- 189/262 -

Refreshing the transaction list
You can refresh the list of transactions by clicking the Refresh button on the toolbar in the main
window. Transactions that have completed will no longer display in the table.

Displaying details for specific transactions
You can use the Transactions tab to view the details of a specific transaction. This detailed information
can provide you with insight so you can resolve the status of the transaction.

To view detail for a specific transaction select the row from the list of all the transactions.

The bottom table in the Transaction view tab displays the following information for each participant in
the selected transaction:

IOR of the Participants

Host of the participant

Vote for Prepare

Outcome

The PrepareVote column contains the participant's vote. The possible values are:

Unknown

ReadOnly

Commit

Rollback

The last three values will only appear if the transaction has been prepared.

The Outcome column contains the outcome of the commit phase for a participant. The possible values
are:

None

Commit

Rollback

HeuristicCommit

HeuristicRollback

HeuristicMixed

HeuristicHazard

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Refreshing the transaction list

- 190/262 -

For more information on heuristics and the heuristic logs, see Managing heuristic decisions.

Controlling specific transactions
In the Transactions tab, you can resolve the status of a transaction that has not completed by using the
Force Rollback or Stop Completion functions.

Force Rollback can be used on any transaction that has not finished the prepare phase of
completion.

Stop Completion tells the VisiTransact Transaction Service to stop attempting to complete the
transaction. To stop the completion of a transaction, click Stop Completion.

Resolving hung or in-doubt transactions
If the transaction does not complete in a reasonable amount of time or if the outcome is in doubt, you
can resolve it by either stopping or rolling back the transaction. Use the following instructions to resolve
the transaction:

Use the instructions in Displaying details for specific transactions to view the details of the
transaction in question.

Resolve the transaction by choosing either to rollback or to stop committing.

To roll back the transaction, click Force Rollback.

If the transaction has progressed beyond the prepare phase of completion but still exists, then the
Transaction Is In Second-Phase dialog box displays indicating that you cannot rollback the
transaction.

If the transaction no longer exists, then the Transaction Not Found dialog box displays indicating that
the completed transaction cannot be rolled back.

To stop the completion of a transaction, click Stop Completion.

If the VisiTransact Transaction Service does not know about this transaction (for example, possibly
because it has already completed) then the Unknown Transaction dialog box displays indicating that
you can no longer resolve the transaction.

Note

• •

• •

1. 1.

2. 2.

•

•

Controlling specific transactions

- 191/262 -

Filtering the transaction list
You can filter the transactions that you view in the Transactions tab by clicking Filter Transactions.

The Filter dialog box lets you set the filter value option in minutes and seconds. Only those transactions
older than the age filter value will be displayed.

To cancel the filter option, click Filter Off from the Transactions tab.

Viewing heuristic transactions
The Heuristics tab lets you view the transactions that had heuristic outcomes and were placed in the
heuristic log. To view this information:

Click the Heuristics tab.

VisiTransact produces one heuristic log per instance of the Transaction Service, referred to as the
heuristic.log file. By default, the path to this directory is <VBROKER_ADM>/its/transaction_service/
<transaction_service name>/heuristic.log . The Heuristics tab provides the following information for
each item listed:

transaction's name

originator

time of the heuristic outcome

To cancel the list of transactions from loading in the tab, click Cancel Refresh.

Viewing heuristic details
You can use the Heuristics tab to view the details of a specific heuristic completion. These details
provide you with information so you can resolve the transaction.

To view the detail for a specific heuristic decision, select the row in the list of all the heuristic decisions.

The bottom table in the Heuristics view tab displays the following information for the selected
transaction:

1. 1.

• •

• •

• •

2. 2.

Filtering the transaction list

- 192/262 -

Participant

Host

PrepareVote

Outcome

Last Exception (This is the last exception that occurred before the heuristic occurred.)

The number appearing in the header corresponds to the heuristic's place in the list of heuristics. The
number for the first heuristic in the list is 1 (one).

The PrepareVote column contains the participant's vote. The possible values are Commit or Rollback.

The Outcome column contains the outcome of the commit phase for a participant. The possible values
are HeuristicCommit, HeuristicRollback, HeuristicHazard, HeuristicMixed, or None, which means that
there were no heuristics for that participant.

For more information on heuristics and the heuristic logs, see Managing heuristic decisions

Viewing the message log
A message log is created for every physical machine running a VisiTransact Transaction Service. The
message logs are located in <VBROKER_ADM>/its/message.log .

To view a list of messages for the node on which the selected Transaction Service resides, you must use
the Message Log tab. The Message Log displays these messages:

Error

Information

Warning

• •

• •

• •

• •

• •

Note

Note

• •

• •

• •

Viewing the message log

- 193/262 -

Filtering the message logs
You can filter the messages in the message log by clicking Filter Messages.

This displays the Filter dialog box.

You can filter messages as follows:

By specifying a time window

By specifying the type of message to be displayed

By entering other criteria in the Source, Category, Code or Host fields (information entered in
these fields is case sensitive)

To stop filtering, click Filter Off.

Trimming the message log
You can permanently remove entries from the message log. All messages older than the date and time
you select will be removed permanently from the message log. To trim the message log:

Click Trim Message Log to view the Trim dialog box.

The Trim dialog box opens.

Set the date and time criteria and click OK. The date reads as month, day, and year. The time reads as
hours, minutes, and seconds.

Using the Session Manager Profile Sets section
The Session Manager Profile Sets section lets you access the Session Manager Configuration Server. Do
not confuse this with the Session Manager.

The Session Manager Configuration Server reads and writes connection profiles to the persistent store
file. Once you have gained access to the Session Manager Configuration Server, you can create and
configure a new connection profile or edit an existing connection profile. For more information about
the Session Manager Configuration Server, see Integrating VisiTransact with databases using the
Session Manager For more information on using the VisiBroker Console to configure connection
profiles, see the following sections:

Gaining access to the Session Manager Configuration Server

Creating and configuring a new connection profile

• •

• •

• •

1. 1.

2. 2.

• •

• •

Filtering the message logs

- 194/262 -

Editing an existing connection profile

What are connection profiles?
A connection profile consists of all the required connection attributes to make a connection to a
particular database. For more information, see Session Manager overview.

Attributes required to create Session Manager Configuration Profiles are specific to the type of
database to which you are connecting. For example, to integrate VisiBroker VisiTransact with an Oracle
DBMS, you must use the Session Manager for Oracle OCI. Then you may create a connection profile
using a combination of attributes that are common to all databases, plus specific ones for Oracle.

Currently, the Session Manager provides connectivity with Oracle9i databases. See XA Session Manager
for Oracle OCI, version 9i Client and DirectConnect Session Manager for Oracle OCI, version 9i Client for
more information.

The Pluggable Resource Interface provides the capability to create a Session Manager to integrate with
the database of your choice. See Pluggable Database Resource Module for VisiTransact for more
information.

Gaining access to the Session Manager Configuration Server
Make sure that you have started the Session Manager Configuration Server, as described in Starting the
Session Manager Configuration Server.

To gain access to the Session Manager Configuration Server, choose a Session Manager Configuration
Server under Session Manager Profile Sets.

The profile names and details for connection profiles managed by the selected Session Manager
Configuration Server appear in a table in the right hand panel.

Creating and configuring a new connection profile
Before you can create a new connection profile, you must gain access to the Session Manager
Configuration Server, as described in Gaining access to the Session Manager Configuration Server.

Alternatively, you can use the smconfigsetup utility to create connection profiles. See smconfigsetup
for more information.

• •

Note

What are connection profiles?

- 195/262 -

To create and configure a new connection profile, perform the following steps:

To create a new profile, click New in the right hand panel.

The New Profile dialog box appears.

You can create a new profile based on an existing one by selecting the profile you wish to copy and
clicking Duplicate. You can keep the same attribute settings or change them. However, you must
give this new profile a unique name.

Enter a unique profile name in the New Profile Name field.

Select a database type from the DB Type drop down list box.

The database type indicates the kind of database and transactional access type for the connection
profile. Each database type has particular attributes associated with it. Entering the database type will
determine which attributes display in the Connection Profile Editor screen.

Click OK.

The Connection Profile Editor dialog box appears.

Fill in the Database Name field.

This field requires a value that is database dependent.

In the User Name and Password fields, enter the user name and password for the database.

Click Save.

Once you have saved, the values are written to the persistent store file and any Session Manager or
XA Resource Director that has access can read from that file.

Editing an existing connection profile
Before you can edit an existing connection profile, you must gain access to the Session Manager
Configuration Server. For information on how to gain access, see Gaining access to the Session
Manager Configuration Server.

To edit an existing connection profile, perform the following steps:

To edit an existing profile, select the profile you want to edit from the list.

Click Open.

The Connection Profile Editor dialog box appears.

Make your changes in the Connection Profile Editor screen

1. 1.

Note

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

1. 1.

2. 2.

3. 3.

Editing an existing connection profile

- 196/262 -

Click Save.

See Modifying connection profiles used by Session Manager clients for details on when the new values
will take effect.

Filtering the connection profiles
When you first access connection profiles for a Session Manager Configuration Server, it displays
profiles that are common to all database types.

To filter the profiles by database, select a database type from the DB Type drop down list box.

Only profiles for the selected database type display in the tab.

Each database type has particular attributes associated with it. For example, if you select Oracle as
the DB Type, you will only see the profiles (containing attributes) associated with Oracle databases. If
there are attributes specific to Oracle databases, columns are added to the right of the common
attribute columns.

If you want to see profiles for all databases, you can select All in the DB Type drop down list box.

Deleting a connection profile
To delete a connection profile, select it and click Delete. A confirmation dialog box appears to confirm
your decision.

Refreshing the list of connection profiles
Click Refresh to update the list of connection profiles for the selected Session Manager Configuration
Server.

4. 4.

1. 1.

2. 2.

Filtering the connection profiles

- 197/262 -

Server Application Model

This section describes the server application model supported by VisiTransact, as well as the XA
configuration. With this model, the transaction logic becomes transparent to application business logic.

Server Application transaction and database management
The OMG Object Transaction Se rvice (OTS) specification (version 1.4 or below) standardizes the
following aspects of distributed transactional applications:

A CORBA distributed transaction application management model, which is an OMG version of the
X/Open DTP model, expressed as OMG IDL.

A transactional interoperable protocol, in terms of IDL interfaces and service context, between
application clients, transaction coordinators and participating transactional resource managers in
the DTP model. This protocol is supported by various OTS implementations and by JTS
implementations.

An implicit and an explicit transactional application programming model, presented in IDL
interfaces and local objects (CosTransactions::Current).

OTS does not address application server-side database integration and the implicit transaction
programming model. On the server side, by OMG OTS specification, applications are responsible for
database connection and transaction control explicitly through the XA interface.

Using the ITS server application model, transaction control (and database connection) does not need to
be handled by servant business logic implementation, but becomes an attribute setting specified as
POA creation policy.

Requirements before reading this section
This section assumes the following knowledge:

Database and Embedded SQL You must know how to use database tools (such as Oracle sqlplus)
to create, browse and manipulate database tables. You should be able to program in embedded
SQL, and build applications with the database-provided embedded SQL to C++ pre-compiler (such
as Oracle proc).

XML and DTD You must know how to use XML to describe XA configurations and you must
understand Data Type Definition (DTD).

• •

• •

• •

• •

• •

Server Application Model

- 198/262 -

OMG and the Distributed Transaction Process (DTP) of X/Open You should know the DTP
architecture concepts and terminology, as well as the client side implicit transaction programming
model (using the transaction Current interface to start and end a transaction). You do not need to
read through and understand the entire OMG OTS specification.

XA and database connection configuration You must be able to make minor modifications to
XA and database configurations.

Understanding the terminology of Container Managed Transaction (CMT), a concept of EJB and CCM,
and the concepts of implementation, deployment, and application assembly in either EJB or CCM will
help you use the information in this section.

Concepts and terminology
The following terminology is used in this section:

Client A CORBA application. See Client-initiated transaction (CIT) below for more information.

AP A CORBA client application that can initiate a transaction.

Server A CORBA server application that implements business logic. See RM and Server-initiated
transaction (SIT) below for more information.

TM A Transaction Manager that coordinates global transactions. Typically, it is a stand-alone
server process (such as a VisiTransact OTS server). In-proc TM is also supported in VisiTransact
(ots.dll/so), but is not recommended.

RM A Resource Manager. In OMG OTS, RM usually refers to a database server. RM can also refer to
an application server that uses SQL to access a database.

1PC One phase commit, involving a single RM, committed without a preparation stage.

2PC Two phase commit, involving multiple RMs, committed with a preparation stage.

Global transaction A transaction that can involve multiple RMs. Usually, but not necessarily, a
global transaction needs to be coordinated by a TM and use a 2PC protocol to commit. See Local
Transaction Optimization (LTO) below for more information. By default, all transactions described
in this section are global transactions (initiated either by the client or the server).

Local transaction A transaction, which only involves one single RM, restricted in one thread of
control, and not coordinated by TM.

Client-initiated transaction (CIT) Also known as a Client Demarcated Transaction, this term
refers to a global transaction initiated and terminated by a client. Client-initiated transactions
must be coordinated by a TM.

Server-initiated transaction (SIT) Also known as a Server Demarcated Transaction, this term
refers to a global transaction initiated and terminated by a server PMT engine transparently when

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Concepts and terminology

- 199/262 -

handling a client request. The boundary of this transaction is the given client request. The
transaction starts before performing the business logic, and ends before replying to client. A
server-initiated transaction is global, but not necessarily coordinated by a remote TM.

SIT is a popular transaction model that is well documented and widely used in EJB and CCM (CORBA
Component Model)

Local Transaction Optimization (LTO) A technique that allows a server to initiate and terminate
a global transaction locally without involving a TM, if it only accesses one local RM (database).
Server would only export a SIT to TM and evolve it into a true global transaction when server
makes a forward call to a second RM (another transaction object outside the process). J2EE
document presents a possible scenario of LTO, but not applicable to OTS implementation.
Therefore, VisiTransact’s LTO uses a different technology to ensure it is OMG compliant,
interoperable and applicable to other OTS implementations.

PMT POA Managed Transaction. A server side transaction and database integration engine. PMT
separates and hides all database connection and transaction details from application business
logic developers. With PMT, servant implementation business logic does not need to hardcode
database connection and transaction logic within its implementation. Database connection and
transaction control are independent of business logic, and can be configured and reconfigured
during application assembling. With PMT, a given business logic implementation can involve both
CIT and SIT. In addition, different operation signatures of a given object can be configured with
different transaction attributes.

CosTransactions::Current A single object for client applications, in an implicit transaction model,
to initiate and manipulate thread-specific global transaction. A server implementation can also
use this object to retrieve thread-specific information about the global transaction it currently
involves. The CosTransactions::Current can be retrieved from ORB using the
resolve_initial_references() method.

PMT::Current: A single object for a server application to retrieve information about thread
specific database connection and transaction arranged by PMT engine. The retrieved information,
such as connection name, is necessary for the SQL AT clause. Other retrieved information is useful
for PMT diagnosis. PMT::Current object instance can be retrieved from PMT::Current::instance() .

XA: An API standardized by X/Open. XA API drivers (usually shared libraries) are provided by
database vendors. PMT uses these drivers to manipulate database connections and transactions.
With PMT, XA (as well as database connections and transactions) are transparent to application
developers. It is the responsibility of the application assembler to configure XA correctly. See XA
resources configuration for more information.

Note

• •

• •

• •

• •

• •

Concepts and terminology

- 200/262 -

Session Manager (SM) A service used in previous releases. To use this service in this release, you
must set the vbroker.its.its6xmode property to true . See VisiTransact properties for more
information.

Resource Director (RD) A service used in previous releases. To use this service in this release, you
must set the vbroker.its.its6xmode property to true . See VisiTransact properties for more
information.

Scenarios of global transaction and PMT

Client-initiated global 2PC and 1PC transactions
In the OTS and X/Open DTP model, a distributed transaction means a global transaction initiated by a
client. In this case, a client contacts a TM to initiate and end (commit or rollback) a transaction,
regardless of whether it is 2PC (figure 1) or 1PC (figure 2).

![- Server Application Model

XA Session Manager for Oracle OCI, version 9i Client](images/visitransact1pc.gif)

Transparent server-initiated transactions with PMT
The PMT hides all transaction aspects from business logic developers and provides an optimized way to
perform client-initiated or server-initiated global transactions.

For example, in a server-initiated transaction, PMT uses the local transaction optimization to initiate a
global transaction locally, as shown in the following figure.

• •

• •

•

Scenarios of global transaction and PMT

- 201/262 -

The locally-initiated global transaction is exported to an external TM before the server makes a forward
invocation to another external transactional object, as shown in step 5 of the following figure.

PMT completely hides database access and transaction details. The server side implementation only
needs to write Embedded SQL (or ODBC/CLI) to access an unspecified database, without specific
database connection and transaction control statements. All database connection and transaction
management tasks are performed, implicitly, by PMT integrated in the server-side ORB and POA engine.
Consequently, the deposit() code is simplified, as shown in the following example:

Transparent server-initiated transactions with PMT

- 202/262 -

There is neither connection management nor transaction management code. This same business logic
implementation can be used transparently in either client-initiated or server-initiated transactions.

PMT overview
PMT is set up programmatically. The server setup and transaction attribute configuration must be
arranged in conventional POA creation code, namely POA creation policy.

PMT is modeled after the widely used Container Managed Transaction (CMT) of EJB and CCM. Therefore,
most CMT concepts and features are directly applicable to PMT.

Applications should not explicitly suspend or resume a transaction or obtain a transaction
coordinator/terminator on a POA implicit managed transaction (PMT).

PMT transaction attribute values
In PMT, servant implementations only implement business logic. Details of transactions they are going
to involve are determined by the transaction attribute assigned to specific objects and methods
described in the policy of the POA PMT_ATTRS_TYPE . Using the POA policy, you can configure the
transaction attributes as follows:

PMT_NotSupportedThe propagation context is not copied to transaction current. POA neither joins
the client’s transaction (T1), nor starts a server to initiate a new global transaction (T2). This is the
default PMT attribute. This setting should be used for non-transactional methods to avoid the
overhead of associating a current worker thread with a global transaction.

PMT_Required POA joins or propagates the client-initiated global transaction (T1), if the request
from the client carries a global transaction context. Otherwise, POA initiates and ends a new

void BankImpl::deposit(const char* id, float amount) {
EXEC SQL BEGIN DECLARE SECTION;

const char* account_id = id;
float deposit_amount = amount;

EXEC SQL END DECLARE SECTION;
EXEC SQL UPDATE account_table

WHERE account_id = :account_id
SET balance = balance + :deposit_amount;

}

Note

• •

• •

PMT overview

- 203/262 -

global transaction (T2) for that request. This is the most useful PMT attribute setting for
transactional methods. It ensures the business logic will always be performed with an XA
connection and within a transaction. This attribute is referred as “AUTOTRAN” in classic TP
products.

PMT_SupportsPOA joins or propagates the client-initiated global transaction (T1), if the request
from client carries a global transaction context. Otherwise, if the request is not within a CIT, the
POA does not start a transaction. When combined with a null XA resource (described in XA
resources configuration), this PMT setting is typically used for transaction propagation.

PMT_RequiresNewPOA does not join or propagate a global transaction of a client, but always
initiates and ends a new global transaction (T2) on each client request. To improve performance,
use this PMT setting for all business logic with only a perform read (query) operation on backend
databases.

PMT_MandatoryPOA always joins or propagates the global transactions of a client, if it is in a
context. Otherwise, if the client did not start a transaction, POA raises an exception.

PMT_NeverPOA raises an exception if it is in a client transaction context.

PMT only applies to remote requests. Co-located invocations (although dispatched via POA), remain
in client’s transaction, if any, regardless of the PMT setting. When POA initiated server transaction
(T2) has not yet been exported to an external TM, calling method on transaction Current within
servant implementation is prohibited.

The following table summarizes the PMT transaction attribute mode and its semantic behavior.

In a programmatic approach, an application can specify transaction attributes for a given POA and for
given objects, at POA creation time, by specifying the PMT attribute policy.

The value of the PMT attribute POA creation policy is a sequence of PMTAttr structure, defined as
follows:

• •

• •

• •

• •

Note

PMT transaction attribute values

- 204/262 -

In this definition of a PMTAttr structure:

The oid file specifies the ID of the object this PMT attribute setting applies to. If the oid is an
empty sequence (zero length), this attribute setting applies to all objects of this POA. See the list
of dynamic rules for more details.

The method_name field specifies the request operation name this PMT attribute setting applies to. If
method_name is set to * , this attribute setting will apply to all request operations sending to
objects of this POA.

The mode field specifies the mode of this PMT mode attribute setting.

The xa_resource field specifies the name of a preconfigured XA resource to be associated. For
more information, see XA resources configuration. If this field is an empty string or null, a
PortableServer::POA::InvalidPolicy exception is raised on create_POA() . Literal null is a special
reserved xa-resource name. This name cannot be used to name a physical XA resource in an XA
resource descriptor, but can only be used as value of the xa_resource field of PMTAttr . When a
request condition matches one of the given PMTAttr with xa_resource field equal to null , the PMT
engine does not associate the request processing worker thread with any physical XA connection.
Instead, the PMT engine only ensures that the associated OTS context is propagated if the servant
implementation method makes a forward invocation to the next tier. See the oci example in the
<installation_directory>examplesvbrokerTransaction directory.

module VISTransactions {
…
enum PMTMode {

PMT_NotSupported = 1,
PMT_Required = 2;
PMT_Supports = 3;
PMT_RequiresNew = 4;
PMT_Mandatory = 5;
PMT_Never = 6;

};
struct PMTAttr {

CORBA::OctetSequence oid;
string method_name;
PMTMode mode;
string xa_resource;

};

typedef sequence<PMTAttr> PMTAttrSeq;
};

• •

• •

• •

• •

PMT transaction attribute values

- 205/262 -

It is possible that no, one, or two PMT attribute settings apply to a request. The PMT engine uses the
following rules, in sequence, to decide which PMT mode or attribute should be applied:

For one-way methods, pseudo methods, or IDL interface attribute set/get methods, PMT mode
NotSupported is applied, regardless the PMT attribute setting.

PMT attribute, its oid field exactly matches the request target’s object id and its method_name field
exactly matches the request’s operation name, is applied.

PMT attribute, its oid field exactly matches the request target’s object ID, and has a wildcard (*) in
the method_name field, is applied.

PMT attribute, its method_name field exactly matches the request’s operation name, and has an empty
oid field (indicating a wildcard), is applied.

PMT attribute, which has an empty oid field (indicating a wildcard) and a wildcard (*) in the
method_name field, is applied.

PMT mode NotSupported is applied if none of the other rules applies.

PMT is independent of OMG standardized POA OTS policy. A Server side transaction engine first checks
the target POA's OTS policy against the received request context, and decides whether to raise an OMG-
specified exception (INVALID_TRANSACTION or TRANSACTION_REQUIRED). If no exception is raised, the request is
forwarded to PMT.

If an OTS policy is not specified as an attribute of the POA creation element, and a PMT policy is
specified (other than with an empty PMTAttr sequence), it implies OTS ADAPTS .

If neither an OTS nor a PMT policy is specified (or if the PMT policy is specified with an empty
PMTAttr sequence), it implies an OTS policy of NONE, and the OTS component is not added to
exporting IORs.

A simple example

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

• •

• •

A simple example

- 206/262 -

In this example:

A POA, which is PMT-enabled and has the name account_server_poa , is created.

Invocations on the target object with an ID of account_server_poa , an operation equal to withdraw
is performed with the PMT_Required policy. It will either join the client-initiated transaction (T1), or,
if the client did not initiate one, POA initiates a new global transaction (T2).

An xa-resource with the name account_storage is used by this transaction.

PMT::Current and connection name
OMG OTS defines the CosTransactions::Current object for an application to retrieve information and
manipulate thread specific client-initiated transactions.

PMT also provides an additional object, PMT::Current , for applications to retrieve information about the
transaction and connection associated to the thread by POA.

CORBA::PolicyList policies;
policies.length(1);
PortableServer::ObjectId_var objId=
PortableServer::string_to_ObjectId("account_object");
PMTAttrSeq pmt_seq;
pmt_seq.length(1);
pmt_seq[0].oid = (CORBA::OctetSequence&) objId;
pmt_seq[0].method_name = (const char*)“withdraw”;
pmt_seq[0].mode = VISTransactions::PMT_Required;
pmt_seq[0].xa_resource = (const char*)“account_storage”;
CORBA::Any policy_value;
policy_value <<= pmt_seq;
policies[0] = orb->create_policy(VISTransactions::PMT_ATTRS_TYPE,

policy_value);
// Create myPOA with the right policies

PortableServer::POA_var myPOA = rootPOA->create_POA("account_server_poa",
poa_manager,
policies);

• •

• •

• •

PMT::Current and connection name

- 207/262 -

The name of the connection associated to the current work thread is returned by connectionName() of
the current object. This name can be used to instruct an embedded SQL statement to use a specified
connection, with either the AT <conn_name> clause or the SET CONNECTION <conn_name> statement, as shown
in the following example:

The connection name is similar to the concept of connection handle in Call Level Interface (CLI).

The AT clause in the previous example is optional in some cases. For example, Oracle has the concept of
default connection, which is the connection last opened by the thread-of-control. If an embedded SQL
does not have the AT clause, Oracle uses the default connection. Other databases, such as Sybase, do
not have the concept of default connection, and Borland recommends using the AT clause or SET
CONNECTION statement with those databases.

The following additional PMT::Current methods are used for diagnostic purposes.

const char* PMT::Current::resourceName() const: Returns the XA resource name used by associated
XA connection. See XA resources configuration for more information.

class PMT_Current {
public:

static const PMT_Current* instance();
const char* resourceName() const;
const char* connectionName() const;
// XA diagnoses
const xid_t* xid() const;
int rmid() const;

// PMT diagnoses (these two method does not raise exception)
int attribute() const;
int decision() const;

};

void BankImpl::deposit(const char* id, float amount) {
EXEC SQL BEGIN DECLARE SECTION;

const char* account_id = id;
float deposit_amount = amount;
const char* conn = current->connectionName();

EXEC SQL END DECLARE SECTION;
EXEC SQL **AT :conn UPDATE account_table

** WHERE account_id = :account_id
SET balance = balance + :deposit_amount;

}

• •

PMT::Current and connection name

- 208/262 -

const xid_t* PMT::Current::xid() const: Returns the XID of the transaction associated with the
current thread. If no transaction is associated, this method raises a CosTransactions::unavailable
exception.

int rmid() const; Returns the XA resource manager ID of the XA connection associated with the
current thread. If no XA connections and no transactions are associated, this method raises a
CosTransactions::Unavailable exception.

int attribute() const; Returns the PMT attribute mode of the PMT attribute that matches or
wildcard matches with the current {POA, oid, method-name} triplex. If PMT is not enabled on the
POA, the return value is 0.

int decision() const; Returns a value 1 or 2, indicating the current thread is associated with a
client or server-initiated transaction. If PMT is not enabled on the POA, the return value is 0.

XA resources configuration

xa-resource-descriptor
In VisiTransact, XA resources are also configured using an XML description named xa-resource-
descriptor . An xa-resource-descriptor is the root element of an xa-resource-descriptor XML file, which
typically has following structure:

The <xa-resource-descriptor> root element can have one or multiple <xa-resource> sub-elements, and
follow by zero or multiple <xa-resource-alias> elements with the following structure:

• •

• •

• •

• •

<?xml version="1.0"?>
<!DOCTYPE xa-resource-descriptor SYSTEM "xaresdesc.dtd">
<!-- an example of xa-resource-descriptor -->
<xa-resource-descriptor>
 …

</xa-resource-descriptor>

XA resources configuration

- 209/262 -

xa-resource
An <xa-resource> defines and configures an XA resource supplier. Its sub-elements, <xa-connection>
define connections to be opened on the given xa-resource. The DTD of an <xa-resource> is:

An <xa-resource> specifies one or more <xa-connection> sub-elements. It can be used to configure the
following attributes:

name Specifies a unique name for this xa-resource. This name is used by the PMT <transaction>
element to decide which xa-resource the dispatched request should be associated with. The
default value is default .

xa-library Specifies the library file name of the XA API library, provided by database vendor. If this
attribute is left out, the engine will try to resolve the XA from the application executable module
itself.

xa-switch: Specifies the symbol of the xa_switch_t variable. For example, for Oracle XA, the
symbol is xaosw , for Informix, the symbol is infx_xa_switch , and for DB2, the symbol is
db2xa_switch .

xa-conn-scope: Specifies the scope of XA connection provided by the XA library. This depends on
the XA API library that is used, and on the used XA open string (the info attribute in the <xa-
connection> element).

<!ELEMENT xa-resource-descriptor
 (xa-resource+,
 xa-resource-alias*)
>

!ELEMENT xa-resource
 (xa-connection+)
>&
ATTLIST xa-resource
 name CDATA "default"
 xa-library CDATA #IMPLIED
 xa-switch CDATA #REQUIRED
 xa-conn-scope (thread|process) #REQUIRED
>

• •

• •

• •

• •

xa-resource

- 210/262 -

Avoid the xa-conn-scope=process mode for Oracle XA because the Oracle XA library is not thread-safe
when +Threads=false .

xa-connection
The <xa-connection> element specifies a given XA connection’s name and xa_open info string. The DTD
of <xa-connection> element is:

name Name of the connection. This name is returned from PMT::Current::connectName() method
when the connection is associated with the thread. You must ensure that this name is consistent
with the name assigned in the info string.

Database xa-library xa-switch xa-conn-scope

Oracle 9 and
10

libcIntsh.so/sl/
a

Oraclient9.dll

Xaosw thread , if info contains
+Threads=true

process if info contains
Threads=false

Informix 7 [lib]infxxa.
[extension]

infx_xa_sw
itch

thread

DB2 8 [lib]db2.
[extension]

db2xa_swit
ch

Direct
Connection

Driver

process

<!ELEMENT xa-connection
 EMPTY
>
<!ATTLIST xa-connection
 name CDATA #IMPLIED
 info CDATA #REQUIRED
>

• •

XA API Info substring specifying connection name

Oracle XA +DB=<name>

xa-connection

- 211/262 -

info The string passed to xa_open() . The information specified by this string is XA provider
dependent. The following table shows typical setting templates:

Using the information you provide, the PMT XA engine opens XA open connections. If the value of the
xa-conn-scope attribute of <xa-resource> is process , VisiTransact opens one specified connection and
associates it to one thread at a time. If the value of this attribute is thread , VisiTransact opens a
connection per-work-thread when associating the given worker thread to a transaction.

xa-resource-alias
An <xa-resource-alias> element defines an alias name to a previously-defined <xa-resource> element:

name The xa-resource’s alias name.

XA API Info substring specifying connection name

Informix XA +CON=<name>

Sybase XA -N=<name>

DB2 XA DB=<name>

• •

XA API Typical info string template (items inside the [] are optional)

Oracle XA Oracle_XA+Acc=P/[<uid>]/[<pwd>]
+SqlNet=<dblink>+SesTm=<timeout>[+Threads=<true>|<false
>] [+LogDir=<dir>][+DbgFlag=<0x0 to 0x7>][+DB=<conn_name>]

Informix
XA

[DB=<dbname>][;USER=<uid>][;PASSWD=<pwd>][;RM=<server>]
[;CON=

<conn_name>]

Sybase XA -U<uid> -P<pwd> [-L<logfile>] [-T<traceflg>] [-V12] [-
O<1|-1>] [-N<lrm>]

DB2 XA [UID=<uid>][,PWD=<pwd>][,TPM<tpm>][,DB=<conn_name>]

<!ELEMENT xa-resource-alias
 EMPTY
>
<!ATTLIST xa-resource-alias
 name CDATA #REQUIRED
 xa-resource CDATA #REQUIRED
>

• •

xa-resource-alias

- 212/262 -

xa-resource The actual xa-resource that this alias points to.

When the name of an xa-resource-alias is referred to by a PMT <transaction> element’s xa-resource
attribute, the actual xa-resource is used.

An example of XA resource descriptor
The following example shows a comprehensive description of an xa-resource-descriptor:

In the previous example:

The xa-resource-descriptor contains a single xa-resource, with the name oracle .

The xa-resource specifies the xa-switch symbol xaosw , but not the xa-library file name. Therefore,
VisiTransact resolves the xa switch within the current executable module, rather than from an

• •

<?xml version="1.0"?>
<!DOCTYPE xa-resource-descriptor SYSTEM "xaresdesc.dtd">
<!-- an example of xa-resource-descriptor -->
<xa-resource-descriptor>
 <!-- 1. list of xa resources -->
 <xa-resource
 name="oracle"
 xa-switch="xaosw"
 xa-conn-scope="thread"
 <
 <!- 2. list of xa connections -->
 <xa-connection
 info=
 "Oracle_XA+Acc=P/scott/
tiger+SesTm=10+SqlNet=ora92a+Threads=true"
 />
 </xa-resource>
 <!-- 3. list of resource alias(es) -->
 <xa-resource-alias
 name="default"
 xa-resource="oracle"
 />
 <xa-resource-alias
 name="account-storage"
 xa-resource="oracle"
 />
</xa-resource-descriptor>

• •

• •

An example of XA resource descriptor

- 213/262 -

external loaded library. This is a typical usage scenario because it is likely that the application has
already linked with the client library of the database, which is likely to contain the needed XA API.

The xa-conn-scope is set to thread . This is consistent with the +Threads=true substring in the xa-
connection’s info attribute. In this case, VisiTransact opens one dedicated XA connection per
worker-thread when associating the thread with a transaction.

The xa-connection element omitted the name attribute, as well as the +DB=<name> substring in the
info string. This is a typical usage scenario for an Oracle XA application under thread mode. The
embedded SQL assumes the default connection. Applications do not need to use the AT clause.

An <xa-resource-alias> element is defined with the name default and points to the oracle <xa-
resource> defined previously. Whenever a PMT <transaction> element is defined with the <xa-
resource> name default , the referenced oracle xa-resource is used.

An additional <xa-resource-alias> element is defined with the name account-storage and points to
the oracle <xa-resource> defined previously. Whenever a PMT <transaction> element is defined
with the <xa-resource> name account-storage , the referenced oracle xa-resource is used.

VisiTransact properties

vbroker.its.its6xmode=|
If set to false , all VisiTransact PMT functions and optimizations are enabled. If set to true , PMT
enhancements and optimizations are disabled, and the following deprecated features are enabled:

The transactional application uses in-proc OTS.

The POA is not created with OTS policy, but the object on that POA is inherited from
CosTransactions::TransactionalObject .

The application uses NonTxTargetPolicy on the client side.

The application uses the SessionManager.

The VisiTransact OTS server is used by VBJ Java clients and VBJ Servers.

This property is available for performance comparison, bug isolation, and backward compatibility
requirements. The default value is false .

• •

• •

• •

• •

• •

• •

• •

• •

• •

VisiTransact properties

- 214/262 -

vbroker.its.verbose=|
If set to true, VisiTransact prints low level exception and warning runtime information. The default
value is false .

vbroker.its.xadesc= <xa-resource> xml file name>
Specifies the XA-resource configuration file using this property. The default value is itsxadesc.xml .

RM recovery utility
The two-phase commit mechanism ensures that all nodes either commit or perform a rollback together.
During the course of two-phase commit, if a failure occurs because of a network problem, database
crash, or an unhandled software error, the transaction becomes in doubt and the resources in the
database are locked and are not freed. To solve this problem VisiTransact comes with an RM recovery
utility rmrecover (rmrecover.exe on Windows), along with automatic TM recovery.

Rocket Software recommends that you execute this utility for each Resource Manager involved in the
transaction before restarting a VisiTransact application server that terminated in a failure.

The usage of rmrecover is:

<xa_resource_desc.xml> is the xa resource configuration used by the RM to connect to the
database.

<options> specifies the xa-resource name.

To run the rmrecover utility, complete the following steps:

Modify the user ID and password in <xa_resource_desc.xml> to obtain database administrative rights.

Configure the oracle client library in <xa_resource_desc.xml> as appropriate for the operating system:

For Windows: xa-library="oraclient9.dll"

For Unix: xa-library="libclntsh.so"

Start Transaction Service, ots (ots.exe on Windows) on a specific port ots -
Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number> .

% rmrecover <xa_resource_desc.xml> [<options>]

• •

• •

1. 1.

2. 2.

• •

• •

3. 3.

vbroker.its.verbose=|

- 215/262 -

Start the rmrecover utility rmrecover -ORBInitRef VisiTransactionService=corloc::<host>:<port>/
VisiTransactionService <xa_resource_desc.xml> <xa-resource name> .

The RM recover utility contacts the database and fetches the list of transactions that are in doubt and
either commits or rolls back each transaction.

4. 4.

RM recovery utility

- 216/262 -

XA Session Manager for Oracle OCI, version
9i Client

This chapter covers issues relating to using the Oracle9i version of the Oracle Call Interface (OCI)
database with the XA Session Manager implementation.

This chapter provides you with information on the specific database issues and requirements for using
the Oracle9i version of the Oracle Call Interfaces (OCI) and the Oracle9i database with the VisiTransact
using XA transaction coordination. This includes software requirements, installation and configuration
information, Session Manager and XA Resource Director configuration attributes, and programming
restrictions.

VisiTransact transactional data access occurs through the use of the Session Manager for OCI and the
Oracle XA libraries. A connection to the database is established when the application requests a
Connection object from the Session Manager. The application can then obtain a native handle, which
can be used for making normal OCI calls.

The information covered in this chapter focuses on the specific requirements for accessing an Oracle
DBMS with VisiTransact using the standard XA commit protocol. To properly install and configure
Oracle, you need to follow the instructions in the documentation shipped with your Oracle database.

Who should read this chapter
System administrators and database administrators responsible for administering this database should
read this chapter before installing and configuring the DBMS if it will be used for transaction
processing. In particular, refer to the sections identified below. Application developers building
applications with VisiTransact should review the information in Programming restrictions.

Sections System

administrators

Database

administrators

Application

developers

Oracle9i Software Requirements X X

Oracle9i Installation and
Configuration Issues

X X

XA Session Manager for Oracle OCI, version 9i Client

- 217/262 -

Oracle9i software requirements
You must install the Oracle9i client libraries on every machine on which you will run the XA Resource
Director or an application built using the Session Manager. The XA Resource Director and the Session
Manager are components of VisiTransact.

The following sections list database client and server requirements by platform.

Client requirements
The following Oracle client components for Oracle OCI must be installed and configured on each node
which runs the XA Resource Director or an application built using the Session Manager:

Oracle OCI, version 9i must be installed on Solaris

Oracle XA Libraries

Sections System

administrators

Database

administrators

Application

developers

Required Environment Variables,
Troubleshooting

X X X

Session Manager Connection Profile
Attributes

X X

Programming Restrictions X X

Troubleshooting X X X

• •

• •

Oracle9i software requirements

- 218/262 -

Server requirements
The following Oracle server components must be installed and configured on each database server
machine:

Oracle Server, version 9i

Oracle Distributed Database option

Oracle9i installation and configuration issues
The following sections identify Oracle installation and configuration software issues.

Installation requirements
To install Oracle, you will need the following:

Oracle installation and configuration guide

Corresponding release bulletins

Database configuration
Use the init.ora parameters, described in the following table, to help configure your database for use
with the XA Session Manager for Oracle OCI.

• •

• •

• •

• •

init.ora parameter Description

transactions The number of distributed transactions in which the database can
concurrently participate.

sessions The total number of user and system sessions.

processes See the Oracle9i Server Administrator's Guide for more information
on setting this parameter.

Server requirements

- 219/262 -

With VisiTransact, the number of distributed transactions is limited by the database init.ora parameter
transactions . Transactions remain active from the time of the first getConnection() or
getConnectionWithCoordinator() call until the commit or rollback is complete. The default setting for
transactions is generally set too low for use with the Session Manager. The default is system dependent.

With Oracle OCI, each distributed transaction, as opposed to a connection, consumes a database
session. Make sure that init.ora parameters, sessions and processes , are set high enough to
accommodate the distributed transactions as well as other applications' sessions.

The use of distributed transactions like XA may restrict the use of other Oracle features on some
platforms. For instance, the use of the Oracle Parallel Server option may be restricted on some
platforms.

See Oracle documentation for information on how to set init.ora parameters and for information
about the interaction of Oracle XA with other Oracle features, including Oracle Parallel Server and
Oracle Replication.

DBA_PENDING_TRANSACTIONS view
The view, DBA_PENDING_TRANSACTION is used during recovery processing by the XA Resource Director to
synchronize transaction information between the database and the VisiTransact Transaction Service. All
users specified as Oracle userids in Oracle9i Session Manager profiles must be granted the SELECT
privilege on this view.

To make sure that the permissions to the view are correct and that recovery processing can take place,
log into Oracle using SQL*Plus as the userid for the XA Resource Director and perform the following
query:

select count (*) from SYS.DBA_PENDING_TRANSACTIONS;

If you receive Oracle error ORA-00942: the table or view does not exist , then the XA Resource Director
will not be able to access this view. The user can either logon as user sys or system or connect
internally from the server manager to grant the select privilege on this view to the appropriate user.

init.ora parameter Description

distributed_lock_t
imeout

The amount of time in seconds for distributed transactions to wait
for locked resources.

Note

DBA_PENDING_TRANSACTIONS view

- 220/262 -

Required environment variables
The PATH environment variable needs to include the path to the Oracle client directory where the
database client libraries are installed, as well as the path to the Session Manager libraries.

LD_LIBRARY_PATH PATH

Add $ORACLE_HOME/bin to your PATH and $ORACLE_HOME/lib32 (or $ORACLE_HOME/lib for 64-bit applications) to
your LD_LIBRARY_PATH . For example, with the Borne shell:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${ORACLE_HOME}/lib32 PATH=${ORACLE_HOME}/bin:${PATH}

Session Manager connection profile attributes
The following table contains the configuration profile attributes which are specific to the XA Session
Manager for Oracle OCI.

Attribute UI label Description Range

heartbeat_
retry_per
iod

Heartbeat
Retry

Period

The number of seconds between
heartbeats to the VisiTransact
Transaction Service instance after a
missed heartbeat. Used to detect the
reactivation of an instance of the
VisiTransact Transaction Service in
order to begin recovery. Used in the
Resource Director only.

> 0

heartbeat_
watch_per
iod

Heartbeat
Watch

Period

The number of seconds between
heartbeats to the VisiTransact
Transaction Service instance. Used to
automatically detect VisiTransact
Transaction Service instance failures.
Used in the Resource Director only.

> 0

oracle_tx
n_idle_ti
meout

Transaction
Idle

Timeout

The timeout (in seconds) that an
unprepared transaction can be idle
before Oracle rolls back the
transaction. When using this attribute,
consider the timeout period set for
the VisiTransact Transaction Service.

> 0

Required environment variables

- 221/262 -

Using the Session Manager with the OCI 9i API
In Oracle9i, the OCI interface has been completely rewritten. With this new interface, several handles
are needed in order to executed SQL statements. In order to use this API with the Session Manager,
perform the following steps:

In the connection profile, set the attribute native_handle_type to ITSoracle9i_handles .

Include the file, ora9i_sessmgr.h , in the application source to define the object ITSoracle9i_handles .

Cast the return value of Connection::getNativeConnectionHandle() to the type ITSoracle9i_handles (a
pointer to an object of type ITSoracle9i_handles).

Use accessor methods provided by the class ITSoracle9i_handles to obtain the various handles
needed. These methods are:

OCISvcCtx *getSvcCtx();

OCIEnv *getEnv();

OCIError *getError();

Do not attempt to deallocate the objects obtained through the ITSoracle9i_handles object. These object
instances are managed by the Session Manager.

Attribute UI label Description Range

oracle_xa_
logdir

Log
Directory
Path

Path to the directory where the Oracle
XA log files are to be written.

0 to 256
characters long

resource_
director_
name

Resource
Director

The name of the Resource Director to
be used.

1 to 128
characters long

native_ha
ndle_type

Native
Handle

Type

The type of the native connection
handle requested by the application.

Valid values are
Lda_Def and
ITSoracle9i_
handles

1. 1.

2. 2.

3. 3.

4. 4.

• •

• •

• •

Using the Session Manager with the OCI 9i API

- 222/262 -

Programming restrictions
The following restrictions apply when programming an application for transaction processing:

You must use a Connection object in the thread in which it was created. This is a restriction of the
Oracle9i XA implementation that means that you can only use the native connection handle
obtained from a Connection object instance in the thread that obtained the object. Using this
connection handle on any other threads will cause unexpected results.

Do not use DDL statements in your application. This restriction means that DDL SQL statements
will not be supported in the Oracle XA application. This is because a DDL SQL statement such as
CREATE TABLE performs an implicit commit. Any required DDL statements must be performed by a
process which does not use the XA protocol.

The following operations, shown in the following table, cannot be used on connections obtained
through the Session Manager.

• •

• •

Operations Disallowed SQL commands 9i API disallowed OCI calls

Connection
Operations

CONNECT OCISvcCtxLogon
OCISvcCtxLogoff

Transaction
Operations

COMMIT

ROLLBACK

SAVEPOINT

SET TRANSCTION

(READ
ONLY|READWRITE|USE
ROLLBACK SEGMENT)

OCITransCommit

OCITransRollback

OCIStmtExecute in OCI_COM
MIT_ON_ SUCCESS mode

Programming restrictions

- 223/262 -

Troubleshooting
This section identifies problems that could occur when using the XA Session Manager for Oracle OCI
with the Oracle database and provides you with suggestions for troubleshooting the problem.

VisiTransact message log
The VisiTransact message log may contain Session Manager and native Oracle error messages when a
connection or transaction error happens.

Using the xa_trc files
If errors occur that indicate problems with the XA code, more information on any Oracle errors can be
found in the xa_*.trc files. These files will be placed in the log directory specified in the defined
connection profile. If a log directory is not specified in the Session Manager connection profile, the
xa_*.trc files will be placed in the $ORACLE_HOME/rdbms/log directory if $ORACLE_HOME is available, or in the
current directory if $ORACLE_HOME is not available, when the process is started.

If a directory is specified but does not exist, there will be no log file and you will not receive a
warning.

Operations Disallowed SQL commands 9i API disallowed OCI calls

Implicit
Operations

DDL SQL statements

(for example, CREATE TABLE , CRE
ATE INDEX)

Note

Troubleshooting

- 224/262 -

Distributed update problems
A network or system failure can cause the following types of problems:

A prepare or commit being processed may not be completed at all nodes of the session when a
failure occurs.

If a failure persists (for example, if the network is down for a extended period), the data
exclusively locked by in-doubt transactions (prepared, but not committed or rolled back) is not
available for statements of other transactions.

See the Oracle documentation for more information on the behavior of distributed updates
where one Oracle node serves as a subcoordinator for another Oracle database.

Data access failures
When a user issues a SQL statement, Oracle9i attempts to lock the required data to successfully
execute the statement. However, if the requested data is being handled by statements of other
uncommitted transactions and continues to remain locked for long periods of time, a timeout occurs.

Lock from in-doubt transaction
A query or DML statement that requires locks on a local database may be blocked indefinitely due to
the locked resources of an in-doubt distributed transaction. In this case, the following error message is
returned to the user:

ORA-01591: lock held by in-doubt distributed transaction <IDt>

In this case, the SQL statement is rolled back immediately. The rollback of the SQL statement does not
automatically force a rollback of the transaction. The application that executed the statement can try to
re-execute the statement later. If the lock persists, the user should contact an Administrator to report
the problem, including the ID of the in-doubt distributed transaction.

An in-doubt transaction is a transaction in the prepared state that has not been committed or rolled
back.

• •

• •

Note

Distributed update problems

- 225/262 -

Transaction timeout
A DML statement that requires locks on a remote database may be blocked if another transaction
currently has locks on the requested data. If these locks continue to block the requesting SQL
statement, a timeout occurs, the statement is rolled back and the following error message is returned
to the user.

ORA-02049: timeout: distributed transaction waiting for lock

In this case, the SQL statement is rolled back immediately. The rollback of the SQL statement does not
automatically force a rollback of the transaction. The application should proceed as if a deadlock has
been encountered. The application that executed the statement can try to re-execute the statement at a
later time. If the lock persists, the user should contact an administrator to report the problem.

The timeout interval described in the above situation can be controlled with the initialization parameter
distributed_lock_timeout . This interval is in seconds. For example, to set the timeout interval for an
instance to 30 seconds, include the following line in the associated parameter file:

DISTRIBUTED_LOCK_TIMEOUT=30

With the above timeout interval, the timeout errors discussed in the previous section occur if a
transaction cannot proceed after 30 seconds of waiting for unavailable resources.

See Database configuration for a description of the distributed_lock_timeout parameter.

Oracle error messages
The VisiTransact Message Log contains Oracle error messages which could help you troubleshoot
connections and transaction errors including the following:

Oracle error messages

- 226/262 -

Forcing heuristic completion
Use COMMIT FORCE <local transaction id> or ROLLBACK FORCE <local transaction id> (where <local
transaction id> comes from the dba_2pc_pending table) to force completion of a heuristic transaction.
Refer to the Oracle9i Distributed Database Systems documentation for more information.

Error
message

Description Solution

ORA-12154 The process limit for file
descriptors (ulimit) on Solaris
is set too low for multithreaded
applications.

Check profile name for correct
database name.

Check the tnsnames.ora file for
matching service names entry.

Check that the database and Oracle
listener process are up.

Check that you have set your File
Descriptor limit (ulimit), on Solaris,
high enough to assure that you can
open connections.

See the Solaris Operating System
documentation for information on
setting the ulimit command.

Forcing heuristic completion

- 227/262 -

DirectConnect Session Manager for Oracle
OCI, version 9i Client

This section covers issues relating to using the Oracle9i version of the Oracle Call Interface (OCI)
database with the DirectConnect Session Manager implementation.

This chapter provides you with information on the specific database issues and requirements for using
the Oracle9i version of the Oracle Call Interface (OCI) and the Oracle9i database with the DirectConnect
Session Manager implementation. This includes software requirements, installation and configuration
information, Session Manager configuration attributes, and programming restrictions. This is in
contrast to other DirectConnect Session Manager implementations described in this manual.

VisiBroker VisiTransact transactional data access occurs through the use of the Session Manager for OCI
and the Oracle libraries. A connection to the database is established when the application requests a
Connection object from the Session Manager. The application can then obtain a native handle, which
can be used for making normal OCI calls.

The information covered in this chapter focuses on the specific requirements for accessing an Oracle
DBMS with VisiBroker VisiTransact. To properly install and configure Oracle, you need to follow the
instructions in the documentation shipped with your Oracle database.

For more information about the DirectConnect Session Manager implementation, see Session Manager
overview and Data access using the Session Manager.

Who should read this section
System administrators and database administrators responsible for administering this database should
read this chapter before installing and configuring the DBMS if it will be used for transaction
processing. In particular, refer to the sections identified below. Application developers building
applications with VisiTransact should review the information in Programming restrictions.

Sections System

administrators

Database

administrators

Application

developers

Oracle9i Software Requirements X X

DirectConnect Session Manager for Oracle OCI, version 9i Client

- 228/262 -

Oracle9i software requirements
You must install the Oracle9i client libraries on every machine on which you will run an application built
using the Session Manager. The Session Manager is a component of VisiBroker VisiTransact.

The following sections list database client and server requirements by platform.

Client requirements
The following Oracle client component for Oracle OCI must be installed and configured on each node
which runs an application built using the Session Manager:

Oracle OCI, version 9i must be installed on Solaris

Server requirements
UNIX

The following Oracle server component must be installed and configured on each database server
machine:

Oracle9i Server

Sections System

administrators

Database

administrators

Application

developers

Oracle9i Installation and
Configuration Issues

X X

Required Environment Variables,
Troubleshooting

X X X

Session Manager Connection Profile
Attributes

X X

Programming Restrictions X X

•

•

Oracle9i software requirements

- 229/262 -

Oracle9i installation and configuration issues
The following sections identify Oracle installation and configuration software issues.

Installation requirements
To install Oracle, you will need the following:

Oracle installation and configuration guide

Corresponding release bulletins

Database configuration
Use the init.ora parameters, described in the following table, to help configure your database for use
with the DirectConnect Session Manager for Oracle OCI.

With the DirectConnect Session Manager for Oracle OCI, each transaction consumes a database
session. Make sure that init.ora parameters, sessions and processes , are set high enough to
accommodate the transactions as well as other application sessions.

Each connection opened by the DirectConnect Session Manager will require a session until the
transaction completes. Therefore, the sessions parameter should be set to a number higher than the
maximum number of concurrent DirectConnect transactions that you expect will access the database.

See the Oracle documentation for information on how to set init.ora parameters.

• •

• •

init.ora
parameter

Description

sessions The total number of user and system sessions.

processes See the Oracle9i Server Administrator's Guide for more information on
setting this parameter.

Note

Oracle9i installation and configuration issues

- 230/262 -

Required environment variables
The PATH environment variable needs to include the path to the Oracle client directory where the
database client libraries are installed, as well as the path to the Session Manager libraries.

UNIX:

LD_LIBRARY_PATH PATH

Add ORACLE_HOME/bin to your PATH and $ORACLE_HOME/lib32 (or $ORACLE_HOME/lib for 64-bit applications) to
your LD_LIBRARY_PATH . For example, with the Bourne shell:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${ORACLE_HOME}/lib32 PATH=${ORACLE_HOOME}/bin:${PATH}

Session Manager connection profile attributes
The following table contains the configuration profile attributes which are specific to the XA Session
Manager for Oracle OCI.

The following table contains the attributes for the XA Session Manager for Oracle OCI.

Using the Session Manager with the OCI 9i API
In Oracle9i, the OCI interface has been completely rewritten. With this new interface, several handles
are needed in order to executed SQL statements. In order to use this API with the Session Manager,
perform the following steps:

In the connection profile, set the attribute native_handle_type to ITSOracle9i_handles .

Include the file, ora9i_sessmgr.h , in the application source to define the object ITSOracle9i_handles .

Cast the return value of Connection::getNativeConnectionHandle() to the type ITSOracle9i_handles * (a
pointer to an object of type ITSOracle9i_handles).

Attribute UI label Description Range

native_han
dle_type

Native
Handle

Type

The type of the native
connection handle
requested by the
application.

Valid values are Lda_D
ef and
ITSOracle9i_handl
es .

1. 1.

2. 2.

3. 3.

Required environment variables

- 231/262 -

Use accessor methods provided by the class ITSOracle9i_handles to obtain the various handles
needed. These methods are:

OCISvcCtx *getSvcCtx();

OCIEnv *getEnv();

OCIError *getError();

Do not attempt to deallocate the objects obtained through the ITSOracle9i_handles object; these object
instances are managed by the Session Manager.

Programming restrictions
The following restrictions apply when programming an application for transaction processing with
VisiBroker VisiTransact and Oracle OCI.

Since the VisiTransact Transaction Service and the Session Manager control connection and transaction
management, platforms should not use the disallowed operations shown in the following table:

4. 4.

• •

• •

• •

Operations Disallowed SQL
commands

9i API disallowed OCI calls

Connection
Operations

CONNECT OCISvcCtxLogon OCISvcCtxLogoff

Transaction
Operations

COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTION

OCITransCommit

OCITransRollback

OCIStmtExecute in OCI_COMMIT_ON_S
UCCESS mode

Programming restrictions

- 232/262 -

Troubleshooting
This section identifies problems that could occur when using the DirectConnect Session Manager for
Oracle OCI with the Oracle database and provides you with suggestions for troubleshooting the
problem.

VisiBroker VisiTransact message log
The VisiTransact message log may contain Session Manager and native Oracle error messages when a
connection or transaction error happens.

Oracle error messages
The VisiTransact message log and the VISSessionManager::Error exceptions also contain Oracle error
messages which could help you troubleshoot connections and transaction errors including the
following:

Operations Disallowed SQL
commands

9i API disallowed OCI calls

Implicit Operations DDL SQL Statements

(for example, `CREATE
TABLE)

Error
message

Description Solution

ORA-0101 7` Invalid
username/

password

Check connection profile for correct user name and
password.

Troubleshooting

- 233/262 -

Error
message

Description Solution

ORA-12154 Cannot
resolve

service name

Check profile name for correct database name.

Check the tnsnames.ora file for matching service
names entry.

Check that the database and Oracle listener process are
up.

Check that you have set your File Descriptor limit
(ulimit), on Solaris, high enough to assure that you can
open connections.

See the Solaris Operating System documentation for
information on setting the `ulimit command.

Oracle error messages

- 234/262 -

Commands, utilities, arguments, and
environment variables

This appendix provides information about arguments for VisiTransact commands and ORB_init() and
environment variables used with VisiTransact.

Overview of VisiTransact commands
The commands in the next few sections relate to one another as described in the following table.

VisiTransact
component

Related commands

VisiBroker Console vbconsole. This command starts the VisiBroker Console.

VisiTransact
Transaction Service

ots. This command starts an instance of the VisiTransact Transaction
Service.

vshutdown. This command shuts down an instance of the VisiTransact
Transaction Service.

Session Manager xa_resdir. This command starts an instance of the XA Resource
Director, part of the Session Manager.

smconfig_server. This command starts an instance of the Session
Manager Configuration Server.

vshutdown. This command shuts down an instance of the XA Resource
Director or Session Manager Configuration Server.

Commands, utilities, arguments, and environment variables

- 235/262 -

vbconsole

VisiBroker Console is no longer automatically installed. It is available as an optional component. To
install, please download and extract the <PRODUCT_VERSION>_opt_GUI_<PLATFORM>.tar.gz archive or
<PRODUCT_VERSION>_opt_GUI_<PLATFORM>.zip archive onto your product installation.

The GUI components archive can be downloaded from the Rocket Customer Community site.

The GUI components have been separated from the product as they do not fully comply with the
Section 508 and WCAG accessibility requirements and guidelines. It is intended that future product
releases will include updated GUI components that comply with the relevant accessibility guidelines.

This command invokes the VisiBroker Console, and can be run on any node that has the executable for
the VisiBroker Console installed. The VisiBroker Console does not have to be local to the VisiTransact
Transaction Service or Session Manager Configuration Server instances that it administers. However, to
administer these instances, they must be running when the VisiBroker Console is started.

Syntax
prompt>vbconsole

Example
`prompt>vbconsole``

Arguments
None.

VisiTransact
component

Related commands

Session Manager

Coniguration Setup

smconfigsetup. This utility creates the connection profile for use with
the Pluggable Resource Interface for creating a customized Session
Manager.

Note

vbconsole

- 236/262 -

https://docs.rocketsoftware.com/

ots
This command starts an instance of the VisiTransact Transaction Service.

Syntax

Example
prompt>ots -Dvbroker.ots.defaultTimeout=60 -Dvbroker.ots.defaultMaxTimeout=120 -Dvbroker.ots.name=Sales -

Dvbroker.log.enable=true

Arguments
The following arguments can be used with this command.

prompt>ots [-Dvbroker.ots.defaultTimeout=<seconds>]
 [-Dvbroker.ots.defaultMaxTimeout=<seconds>]
 [-Dvbroker.ots.name=<transaction_service_name>]
 [-Dvbroker.ots.logDir=<directory_name>]
 [-Dvbroker.log.enable=<Boolean>]
 [vbroker.ots.logPurgeTransactions=<true|false>]
 [vbroker.ots.logSleep=<milliseconds>]
 [vbroker.ots.logCache=<cache_size_in_kilobytes>]
 [vbroker.ots.logUnit=<transaction_log_size>]

Argument Description

-
Dvbroker.ots.defaul
tTimeout=<seconds>

Sets the default transaction timeout value for this VisiTransact
Transaction Service instance. If not set, this defaults to 600
seconds.

-
Dvbroker.ots.defaul
tMaxTimeout=<seconds
>

Sets the maximum allowed transaction timeout value for this
VisiTransact Transaction Service instance. If not set, this defaults
to 3600 seconds.

-
Dvbroker.ots.name=<
transaction_service_
name>

Sets the name of the VisiTransact Transaction Service instance
used when registering its interface with the Smart Agent. The
default is <host_name>_ots .

ots

- 237/262 -

smconfig_server
This command is used to start an instance of the Session Manager Configuration Server. You use the
Session Manager Configuration Server as the agent to create a connection profile that accesses your
database.

Syntax
prompt>smconfig_server [-Dvbroker.sm.pstorePath=<path>] [-Dvbroker.sm.configName=<name>] [-m{32|64}]

Example
prompt>smconfig_server -Dvbroker.sm.pstorePath=C:\vbroker\adm\its\session_manager -

Dvbroker.sm.configName=athena_smcs -m64

Argument Description

-
Dvbroker.ots.logDir=
<directory_name>

Names the directory in which logs and logger information are
kept. If you do not specify, the default is
<VBROKER_ADM>\its\<transaction_service_name>\logg
er .

-
Dvbroker.log.enable=
<Boolean>

To see the debug log statements from this service, set this
property to true . For the various source names options for
debug log filtering, see the Debug Logging properties section of
the VisiBroker for C++ Developer's Guide.

vbroker.ots.logPurg
eTransactions=<true>
|<false>

Indicates whether transaction logs are new files.

vbroker.ots.logSleep
=<milliseconds>

Indicates the number of milliseconds of sleep time before
checking if the cache is full and needs to flush into physical file.
The default is 0.

vbroker.ots.logCache
=<cache_size_in_kil
obytes>

Indicates the size of cache before flushing into the physical file.
The default is 64k.

vbroker.ots.logUnit=
<transaction_log_si
ze>

Indicates the size of the log file. The default is 8M.

smconfig_server

- 238/262 -

Arguments
The following arguments can be used with this command.

vshutdown
This command can be used to shutdown the VisiTransact Transaction Service, XA Resource Director, and
the Session Manager Configuration Server.

If it is used to shutdown an instance of the VisiTransact Transaction Service, it defaults to allow the
VisiTransact Transaction Service to wait for outstanding transactions to complete before shutting down,
but will not accept any new transactions. You can direct the instance of the VisiTransact Transaction
Service to shutdown without resolving transactions by using the optional -immediate argument.

You can use this command to shutdown an instance of the VisiTransact Transaction Service that is
embedded within an application process provided the - OTSexit_on_shutdown argument was passed to
the application's ORB_init() method. For information about shutting down an instance of the
VisiTransact Transaction Service that is embedded in an application process, see Arguments for
applications with an embedded VisiTransact Transaction Service instance.

Argument Description

-
Dvbroker.sm.p
storePath=<pa
th>

Provide the path to the directory where the persistent store files are
located. By default, the persistent store files are located in <VBROKER_A
DM>\its\session_manager .

-
Dvbroker.sm.c
onfigName=<na
me>

Provide the name of the Session Manager Configuration Server you're
using. By default, the name assigned to the Session Manager
Configuration Server is <host>_smcs where host is the name of the
host on which you created the Session Manager profile.

-m{32|
64}

Generates 32-bit or 64-bit shared plug-in libraries name into the profiles.

- -m32 used for 32-bit naming

- -m64 used for 64-bit naming

Note

vshutdown

- 239/262 -

Syntax

Example
prompt>vshutdown -type ots -name myTxnSvc

Arguments
The following arguments can be used with this command.

prompt>vshutdown -help
prompt>vshutdown -type <object_type>
 [-name <object_name>]
 [-host <host_name>]
 [-immediate]
 [-noprompt]

Argument Description

-help Use this argument to display the usage information for this command. If you
use this argument, vshutdown ignores all other arguments and just gives
you usage information.

-type Valid types are:

- ots for VisiTransact Transaction Service

- rd for XA Resource Director

- smcs for Session Manager Configuration Server

If you specify only the type, vshutdown lists all the services of that particular
type and prompts you whether to shut them down or not.

-name
<object_na
me>

The name of the object to be shutdown. By default vshutdown looks up all
the objects of the specified type and prompts you whether to shut them
down or not.

-host
<host_name>

The host machine where the service resides that you wish to shutdown. By
default vshutdown locates all the objects of a particular type and name (if
mentioned) on the network and prompts you whether to shut them down or
not.

vshutdown

- 240/262 -

xa_resdir
This command is used to start an instance of the XA Resource Director. You must have already created a
connection profile that accesses your database using the VisiBroker Console.

Syntax

Example
prompt>xa-resdir -Dvbroker.sm.profileName=quickstart -Dvbroker.sm.pstorePath=C:

\vbroker\adm\its\session_manager -Dvbroker.sm.configName=athena_smcs

Arguments
The following arguments can be used with this command.

Argument Description

-immediate Use this argument to direct the instance of the VisiTransact Transaction
Service to shutdown immediately without resolving any outstanding
transactions.

-noprompt Use this argument if you do not want to be prompted for confirmation when
you get a list of all object types, names, or hosts to be shut down.

prompt>xa-resdir -Dvbroker.sm.profileName=<profile>
 [-Dvbroker.sm.pstorePath=<path>]
 [-Dvbroker.sm.configName=<name>]
 [-Dvbroker.sm.connectionIdleTimeout=<seconds>]

Argument Description

-
Dvbroker.sm.pro
fileName=
<profile>

Provide the name of the Session Manager connection profile you want
to use to establish a connection with the database. This is required.

-
Dvbroker.sm.pst
orePath=<path>

Provide the path to the directory where the persistent store files are
located. By default, the persistent store files are located in <VBROKER_
ADM>\its\session_manager> .

xa_resdir

- 241/262 -

VisiTransact utilities

smconfigsetup
The smconfigsetup utility allows you to create connection profiles. The following procedure is provided
as a guide when using it to create profiles for use with the Session Manager. The bold type indicates
entries from the user. The profile is created upon exit from the smconfigsetup utiltiy.

Creating a profile for use with the Session Manager
To create profile for use with the Session Manager:

Enter smconfigsetup at the command prompt.

prompt>smconfigsetup

Enter the number 1 (one) to create a profile.

Argument Description

-
Dvbroker.sm.con
figName=<name>

Provide the name of the Session Manager Configuration Server you're
using. By default, the name assigned to the Session Manager
Configuration Server is <host>_smcs where <host> is the name of
the server on which you created the Session Manager profile.

-
Dvbroker.sm.con
nectionIdleTime
out=<seconds>

Provide the number of seconds a connection may stay idle and
unassociated with a transaction before being closed automatically by
the Session Manager ConnectionPool. This is used to shrink the
number of connections in the pool when they are unused. This
parameter defaults to 300 seconds.

1. 1.

2. 2.

VisiTransact utilities

- 242/262 -

Enter the number corresponding to the database type.

Enter a connection profile name.

Please enter the name for the new profile: quickstart

Enter a database name.

Attribute name "database_name" New value for attribute Database Name (default value) : itso9idb

Enter the user name.

Attribute name "userid" New value for attribute User Name (default value) : scott

Enter the user's password.

Attribute name "password" New value for attribute Password (default value) : tiger

Enter the Native Handle Type.

Attribute name "native_handle_type" New value for attribute Native Handle Type (default value

<ITSoracle9i_handles>) : ITSoracle9i_handle

Enter 0 (zero) to exit the utility.

(0) Quit
(1) Add a profile
(2) List all profiles
(3) List attributes of a profile
(4) Copy a profile
(5) Delete a profile
(6) Create metadata files
(7) Add pluggable data resources
Enter the number of your selection: **1**

3. 3.

2 known Session Manager implementations:
(0) Oracle OCI 9i DirectConnect
(1) Oracle OCI 9i XA
Please enter the database type you are trying to create: **0**

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

smconfigsetup

- 243/262 -

The profile is created upon exit from the smconfigsetup utiltiy.

Command-line arguments for applications
You can pass arguments to ORB_init() which affect the VisiTransact Transaction Service and your
application components. The following sections explain these options.

Passing command-line arguments to ORB_init() using argc and
argv

As a component of VisiBroker, command line arguments are passed to VisiTransact components
through the VisiBroker ORB initialization call ORB_init() . Therefore, for arguments specified on the
command line to have effect on the VisiTransact operation in a given application process, applications
must pass the original argc and argv arguments to ORB_init() from the main program. For example,

Do you wish to
(0) Quit
(1) Add a profile
(2) List all profiles
(3) List attributes of a profile
(4) Copy a profile
(5) Delete a profile
(6) Create metadata files
(7) Add pluggable data resources
Enter the number of your selection: **0
**
Bye!

Command-line arguments for applications

- 244/262 -

The ORB_init() function will parse both ORB arguments and VisiTransact arguments, removing them
from the argv vector before returning.

By default, the first time you start a transaction with Current::begin(), an instance of the VisiTransact
Transaction Service is found using the Smart Agent. You can specify an instance of the VisiTransact
Transaction Service to use, and the timeout value for transactions, by using the arguments described in
this section.

You pass these arguments at the command line when starting your transactional server manually. Your
application handles these command-line input arguments using the ORB_init() method as described in
Passing command-line arguments to ORB_init() using argc and argv.

The following table explains the arguments that can be passed to ORB_init() from the command line
for applications that originate transactions.

int main(int argc, char * const* argv)
{

try
{

// initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

}
...
}

Argument to
ORB_init()

Description

-
Dvbroker.ots.
currentFacto
ry

VisiTransact uses the specified IOR for the requested Transaction Service
(CosTransactions::TransactionFactory) to locate the desired
instance of the VisiTransact Transaction Service on the network. This
argument enables VisiTransact to operate without the use of a Smart
Agent (osagent).

-
Dvbroker.ots.
currentHost

The Smart Agent will find any available VisiTransact Transaction Service
instance that is located on the specified host.

-
Dvbroker.ots.
currentName

The Smart Agent will find the named VisiTransact Transaction Service
instance anywhere on the network.

- 245/262 -

For example, to start the billing C++ transactional server that uses the Accounting VisiTransact
Transaction Service, you would use the following command:

prompt>billing -Dvbroker.ots.currentName=Accounting

To start the Billing transactional server that uses the Accounting VisiTransact Transaction Service, and
has a timeout period of 2400 seconds, you would use this command:

prompt>billing -Dvbroker.ots.currentName=Accounting -Dvbroker.ots.currentTimeout=2400

If you specify a combination of -Dvbroker.ots.currentHost and -Dvbroker.ots.currentName , the Smart
Agent will find the named VisiTransact Transaction Service instance on the named host. If you specify
the -Dvbroker.ots.currentFactory with either the -Dvbroker.ots.currentHost or -Dvbroker.ots.currentName ,
the Smart Agent will find the VisiTransact Transaction Service instance by IOR only. It ignores the other
arguments.

Arguments for applications with an embedded VisiTransact
Transaction Service instance

You can specify an instance of the VisiTransact Transaction Service to use with the arguments described
in this section. You can also specify whether your application process will be brought down when the
embedded instance of the VisiTransact Transaction Service terminates.

You pass these arguments at the command line when starting your transactional server manually. Your
application handles these command-line input arguments using the ORB_init() method as described in
Passing command-line arguments to ORB_init() using argc and argv.

The following table explains the arguments that can be passed to ORB_init() from the command line
for applications that embed an instance of the VisiTransact Transaction Service.

Argument to
ORB_init()

Description

-
Dvbroker.ots.
currentTimeo
ut

Sets the transaction timeout value for Current . If the transaction is still
alive after the timeout expires, the transaction is automatically rolled back.

Arguments for applications with an embedded VisiTransact Transaction Service instance

- 246/262 -

Argument to
ORB_init()

Description

-
Dvbroker.ots.def
aultTimeout=<sec
onds>

Sets the default transaction timeout value for this VisiTransact
Transaction Service instance. If not set, this defaults to 600 seconds.

-
Dvbroker.ots.def
aultMaxTimeout=<
seconds>

Sets the maximum allowed transaction timeout value for this
VisiTransact Transaction Service instance. If not set, this defaults to
3600 seconds.

-
Dvbroker.ots.name
=
<transaction_ser
vice_name>

Sets the name of the VisiTransact Transaction Service instance used
when registering its interface with the Smart Agent. The default is <
host_name>_ots .

-
Dvbroker.ots.log
Dir=<directory_n
ame>

Names the directory in which logs and logger information are kept.
If you do not specify, the default is <VBROKER_ADM>\its\<transa
ction_service_name>\logger .

Arguments for applications with an embedded VisiTransact Transaction Service instance

- 247/262 -

Arguments for applications that use the Session Manager
By default, the Session Manager Configuration Server for the machine where the Session Manager
connection profile was created is used <host>_smcs . The persistent store classes are located in
<VBROKER_ADM>\its\session_manager by default.

You pass these arguments at the command line when starting your transactional server manually. Your
application handles these command-line input arguments using the ORB_init() method as described in
Passing command-line arguments to ORB_init() using argc and argv.

The following table explains the arguments that can be passed to ORB_init() from the command line
for applications that use the Session Manager.

Argument to
ORB_init()

Description

-
Dvbroker.ots.exi
tOnShutdown

If set to true, this will terminate your in-process instance of the
VisiTransact Transaction Service and bring down your application
process as well when the VisiTransact Transaction Service is shut
down remotely using vshutdown or the VisiBroker Console.

If it is either not set or set to false, this will deactivate the
VisiTransact Transaction Service objects registered with the Smart
Agent but will NOT bring down your application process.

Argument to
ORBinit()

Description

-
Dvbroker.sm.c
onfigName

The name of the Session Manager Configuration Server (profileset).
By default, this value is <host>_smcs where <host> is the name of the
server on which you created the Session Manager profile.

-
Dvbroker.sm.p
storePath

The path to the directory where the persistent store classes are located.
By default, this is <VBROKER_ADM>\its\session_manager .

Arguments for applications that use the Session Manager

- 248/262 -

Environment variables
The following environment variable can be set for VisiBroker VisiTransact.

Argument to
ORBinit()

Description

-
Dvbroker.sm.c
onnectionIdle
Timeout

Provides the number of seconds a connection may stay idle and
unassociated with a transaction before being closed automatically by the
Session Manager ConnectionPool. This is used to shrink the number of
connections in the pool when they are unused. This parameter defaults to
300 seconds.

Environment variable Description

VBROKER_ADM Defines the path to the directory where ITS-specific files are stored.

Environment variables

- 249/262 -

Error codes

This chapter provides information about error codes for VisiTransact.

VisiTransact common error codes

Error code Description Possible causes Solutions

201 Permission to
access the file or
directory is
denied.

The process does not
have the necessary
permissions for
accessing the file or
directory.

Change the file or
directory permissions to
allow the process to
access it.

202 The process
cannot open the
requested file.

The file is in the wrong
directory.

The process does not
have permission to
access the file.

Verify that the file is in
the correct directory, and
try again.

Change the file
permissions to allow the
process to access it.

203 An error occurred
while reading the
file.

The process does not
have permission to read
the file.

Change the file
permissions to allow the
process to read the file.

204 An error occurred
while writing to
the file.

The process has read-
only permission—it
does not have
permission to write to
the file.

The storage is full, and
the system does not
have enough room to
write the changes to the
file.

Change the file
permissions to allow the
process to write to the
file.

Clean up the storage,
and then try again.

Error codes

- 250/262 -

VisiTransact Transaction Service error codes

Error code Description Possible causes Solutions

801 An error occurred
while attempting
to list an object of
the given type.

No Location Service is
available.

No Smart Agent is
running.

The process is
experiencing a
communication
problem.

Verify that a Location
Service is available. See
the VisiBroker ORB
documentation for
details.

Start the Smart Agent
using the osagent
command. See the
VisiBroker ORB
documentation for
details.

Verify that all required
processes are running,
and all machines are up,
and try again.

Error

code

Description Possible causes Solutions

4000 An instance of the
VisiTransact
Transaction
Service was
started
successfully.

This is an informational
message only.

This message requires
no action.

VisiTransact Transaction Service error codes

- 251/262 -

Error

code

Description Possible causes Solutions

4001 An instance of the
VisiTransact
Transaction
Service is shutting
down by request.

An administrator or
other individual has
shutdown the instance
of the VisiTransact
Transaction Service
using either the vshut
down command, Ctrl+C,

or the kill command.

This message requires
no action.

4002 The instance of
the VisiTransact
Transaction
Service is prepared
to shutdown, but
is waiting for
outstanding
transactions to
enter the
completion stage
before exiting.

The request to shutdown
the instance of the
VisiTransact Transaction
Service was issued
without the -
immediate argument,

allowing the instance to
let outstanding
transactions enter the
completion stage before
exiting.

This message requires
no action.

If you want to shutdown
an instance of the
VisiTransact Transaction
Service without allowing
outstanding
transactions to enter the
completion stage, use
the -immediate
argument when issuing
the vshutdown
command.

4003 The instance of
the VisiTransact
Transaction
Service is shutting
down without
waiting for
outstanding
transactions to
enter the
completion stage.

The request to shutdown
the instance of the
VisiTransact Transaction
Service was issued with
the -immediate
argument, allowing the
instance to shutdown
without letting
outstanding transactions
enter the completion
stage.

This message requires
no action.

If you want to shutdown
an instance of the
VisiTransact Transaction
Service and allow
outstanding
transactions to enter the
completion stage, issue
the vshutdown
command without the
-immediate

argument.

VisiTransact Transaction Service error codes

- 252/262 -

Error

code

Description Possible causes Solutions

4004 A HeuristicHaz
ard exception

was raised by a
Resource. For
complete details
on this exception,
see the output of
the heuristic log
file.

A Resource made a
heuristic decision and
does not know the
outcome of at least one
relevant update.

There is a possible loss
of data integrity. Look
up the error in the
heuristic log, and notify
your database
administrator of the
transaction identifier.
Your database
administrator will need
to locate this error on
the Resource and
correct any problems
manually.

4005 A HeuristicCom
mit exception

was raised by a
Resource. For
complete details
on this exception,
see the output of
the heuristic log
file.

A Resource made a
heuristic decision to
commit all relevant
updates.

There is a possible loss
of data integrity. Look
up the error in the
heuristic log, and notify
your database
administrator of the
transaction identifier.
Your database
administrator will need
to locate this error on
the Resource and
correct any problems
manually.

VisiTransact Transaction Service error codes

- 253/262 -

Error

code

Description Possible causes Solutions

4006 A HeuristicRol
lback exception

was raised by a
Resource. For
complete details
on this exception,
see the output of
the heuristic log
file.

A Resource made a
heuristic decision to
rollback all relevant
updates.

There is a possible loss
of data integrity. Look
up the error in the
heuristic log, and notify
your database
administrator of the
transaction identifier.
Your database
administrator will need
to locate this error on
the Resource and
correct any problems
manually.

4007 A HeuristicMix
ed exception was

raised by a
Resource. For
complete details
on this exception,
see the output of
the heuristic log
file.

A Resource made a
heuristic decision which
differs from the outcome
of the transaction. Some
updates have been
committed, others have
been rolled back.

There is a possible loss
of data integrity. Look
up the error in the
heuristic log, and notify
your database
administrator of the
transaction identifier.
Your database
administrator will need
to locate this error on
the Resource and
correct any problems
manually.

4008 An exception was
caught and
ignored during the
callback for a
specific alarm
(listed in the
message).

This message could be
thrown for various
reasons, including
running out of system
resources.

Ignore this message.

VisiTransact Transaction Service error codes

- 254/262 -

Error

code

Description Possible causes Solutions

4009 An internal
application error
occurred.

An internal module of
VisiTransact Transaction
Manager, used by
several VisiTransact
components, could not
be initialized due to an
unknown exception.

Contact Rocket Software
Support.

4010 An internal
application error
occurred, as
described in the
message.

An internal module of
VisiTransact Transaction
Manager, used by
several VisiTransact
components, could not
be initialized due to the
exception listed in the
message.

Contact Rocket Software
Support.

4011 An exception
occurred while
parsing the
initialization
arguments listed
in the message.

The wrong command-
line arguments were
entered when executing
a VisiTransact command.

Verify the command-line
arguments, and try
again. See Commands,
utilities, arguments, and
environment variables.

4012 An exception
occurred while
parsing some
initialization
arguments, but it
is unknown which
arguments were
incorrect.

The wrong command-
line arguments were
entered when executing
a VisiTransact command.

Verify the command-line
arguments, and try
again. See Commands,
utilities, arguments, and
environment variables.

VisiTransact Transaction Service error codes

- 255/262 -

Error

code

Description Possible causes Solutions

4014 An initialization
failure (specified in
the message)
occurred while
starting an
instance of the
VisiTransact
Transaction
Service.

The wrong configuration
file was used, or
incorrect values were
entered for initialization
parameters.

An internal application
error has occurred.

Verify you are using the
correct configuration
file, and are entering
correct values for the
initialization
parameters.

Contact Rocket Software
Support.

4015 A runtime
exception
occurred within a
running instance
of the VisiTransact
Transaction
Service.

An internal application
error has occurred.

Contact Rocket Software
Support.

4016 The default
transaction
timeout has been
changed to the
value of the
maximum
transaction
timeout.

The value of the default
transaction timeout was
higher than the value of
the maximum
transaction timeout.

Verify that you have
coordinated your
timeout settings
between your
applications and any
command-line
arguments you are
using when starting
instances of the
VisiTransact Transaction
Service.

4017 An invalid value
was provided for
the default
transaction
timeout. The
timeout value was
reset to 600
seconds.

When setting the default
timeout value, a zero or
a negative value was
provided. The default
timeout value must be at
least 1 second.

When setting the default
timeout value, make
sure to set it to a value
greater than or equal to
1 second. The
recommended value is
600 seconds.

VisiTransact Transaction Service error codes

- 256/262 -

Error

code

Description Possible causes Solutions

4018 An unexpected
exception was
received by the
VisiTransact
Transaction
Service during
transaction
completion. The
VisiTransact
Transaction
Service will retry
transaction
completion.

An internal application
error has occurred.

Contact Rocket Software
Support.

VisiTransact Transaction Service error codes

- 257/262 -

VisiTransact transaction log error codes

Error

code

Description Possible causes Solutions

4019 An unexpected
CORBA exception
was received by
the VisiTransact
Transaction
Service during
transaction
completion. The
VisiTransact
Transaction
Service will retry
transaction
completion.

An internal application
error has occurred.

Contact Rocket Software
Support.

Error

code

Description Possible
causes

Solutions

8001 An internal error
occurred in the logger
module. See the
message log for details.

See the error
text in the
message log.

If you cannot resolve this
error from the error text
displayed in the message
log, contact Rocket Software
Support.

VisiTransact transaction log error codes

- 258/262 -

Problem determination

This section provides information about how you can determine the causes of failures. It focuses on
developer-specific issues of problem determination, spending more time on development rather than
deployment.

General approaches
A starting point to help research problems you might be encountering is the host's message log located
in vbroker\adm\its .

Dealing with problems in transactions
There are a few typical problems that can occur within applications that use transactions and VisiBroker
VisiTransact:

The transaction experiences a timeout. There are several situations related to the expiration of
a timeout. A transaction may have timed out and rolled back before the transaction originator
issued commit() , or you may have received a CORBA::OBJECT_NOT_EXIST exception when trying to
register a Resource. If you experience these problems, make sure that your timeout period is long
enough.

The VisiTransact Transaction Service disappears. If the VisiTransact Transaction Service
instance is restarted or fails while a transaction is underway, you may temporarily receive a
CORBA::NO_IMPLEMENT exception when invoking VisiTransact methods.

A Resource Director is unavailable. The Session Manager will throw a VISSessionManager::Error
exception if it cannot find an XA Resource Director when the Session Manager attempts to obtain
a new connection to a Resource Manager. Additionally, the VisiTransact Transaction Service should
roll the transaction back if a participating Resource Director is unavailable at prepare time. (This is
the same behavior experienced when any other Resource is unavailable at commit time.)

You receive a CosTransactions::NoTransaction exception. You will get this exception if there is no
transaction context. It means that your application tried to attempt a connection without first
beginning a transaction.

Session Manager configuration files are unavailable. You might be requesting the wrong
connection profile.

• •

• •

• •

• •

• •

Problem determination

- 259/262 -

Notices

Copyright
© 1996-2025 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 260/262 -

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 261/262 -

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 262/262 -

	VisiBroker Visitransact Guide
	V8.5.9

	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Platform conventions

	VisiTransact basics
	What is VisiTransact?
	VisiTransact architecture
	VisiTransact Transaction Service
	Database integration (Solaris only)
	VisiBroker Console
	VisiBroker ORB

	VisiTransact features
	VisiTransact CORBA compliance
	Monitoring tools
	Minimum overhead with a light footprint
	Flexible deployments
	Support for open transaction processing standards
	Full support for multithreading
	Extensions to the OMG specification
	VisiTransact and the CORBAservices specification

	Overview of transaction processing
	What are transactions in a distributed environment?
	What is CORBA?
	What is the CORBA Transaction Service?
	Model for a basic transaction
	Beginning the transaction
	Issuing requests to transactional objects
	Completing a transaction

	A quick start with VisiTransact
	Overview of the example
	Files for the quick start example
	Prerequisites for running the example
	What you will do in this example
	Writing the quick start IDL
	Writing the transaction originator (transfer client program)
	Initializing the ORB
	Binding to the Bank object
	Beginning the transaction
	Obtaining references to transactional objects (source and destination accounts)
	Invoking methods (debit() and credit()) on the transactional (account) objects
	Committing or rolling back the transaction
	Handling exceptions

	Writing the bank_server program
	Writing the Bank object
	Understanding the BankImpl class hierarchy
	Implementing the Bank object and its get_account() method

	Writing the transactional object (Account)
	Understanding the AccountImpl class hierarchy
	Making the Account object a transactional object
	Implementing the Account object and its methods

	Building the example
	Selecting a Makefile
	Compiling the example with make

	Running the example
	Starting the Smart Agent (osagent)
	Starting the VisiTransact Transaction Service
	Starting the storage_server program
	Starting the bank_server program
	Running the Transaction Originator (transfer Client Program)
	Results

	Viewing the complete example
	IDL for the quick start example
	Transfer client program
	bank_server program
	Bank and account (transactional) objects

	Creating a transactional object
	Inheriting transactional object interfaces
	Implementing transactional object interfaces
	Transactional POA policy interfaces
	OTSPolicy
	InvocationPolicy
	NonTxTargetPolicy

	Affected Server Behaviors
	Affected Client Behaviors
	Dealing with UNSHARED transactions

	Determining your approach to transactions
	Transaction management approaches
	Direct vs. indirect context management
	Implicit vs. explicit propagation
	Context management and propagation
	Indirect context management with implicit propagation
	Indirect context management with explicit propagation
	Direct context management with implicit propagation
	Direct context management with explicit propagation

	In-process vs. out-of-process VisiTransact transaction service
	Integrating existing applications and transactional systems
	Using a combination of approaches
	Implementing transactions for the web
	Building C++ VisiTransact applications
	Using stand-alone VisiTransact Transaction Service instances
	Embedding a VisiTransact Transaction Service instance in your application
	Binding to the embedded instance of the VisiTransact Transaction Service
	Using header files supplied with VisiTransact

	Creating and propagating VisiTransact-managed transactions
	Introducing Current as used in VisiTransact-managed transactions
	How does Current work?
	Obtaining a Current object reference
	For C++
	For Java

	Working with the Current interface and its methods
	Multiple threads participating in the same transaction
	Using multiple transactions within a context or thread
	Discovering an instance of the VisiTransact Transaction service

	Propagating VisiTransact-managed transactions
	Ensuring a transaction is in progress
	Marking a transaction for rollback
	Obtaining transaction information
	Extensions to the Current interface

	Other methods of creating and propagating transactions
	Introduction
	Creating transactions with the TransactionFactory
	Gaining control of a transaction with the control object
	Explicitly propagating transactions from the originator
	Changing from explicit propagation to implicit
	Getting the explicit context from Current
	Committing or rolling back transactions with Terminator
	Marking a transaction for rollback
	Obtaining transaction information

	Transaction completion
	Transaction completion
	How does the VisiTransact Transaction Service ensure completion?
	How does the VisiTransact Transaction Service ensure checked behavior?

	Heuristic completion
	Enabling heuristic reporting to your application
	Handling heuristic reporting

	OTS exceptions

	Coordinating transaction completion with Resource objects
	Understanding transaction completion
	Participating in transaction completion
	Resource object is registered for the transaction
	Transaction originator initiates transaction completion
	Terminator tells Resource objects to prepare
	Resource objects return a vote to the terminator
	Terminator decides whether to commit or roll back
	Resource objects vote to commit the transaction
	Summary of steps for two-phase commit

	Summary of steps for single-phase commit
	Summary of steps for a rollback
	Participating in transaction recovery after failure

	Managing heuristic decisions
	What is a heuristic decision?
	What is the heuristic.log file?
	Interpreting the heuristic log
	What to do once the problem has been isolated

	Implementing Synchronization objects
	What are Synchronization objects?
	Using Synchronization objects before the commit protocol
	Using Synchronization objects after rollback or commit
	Registering Synchronization objects
	How failures affect Synchronization objects

	The role of Synchronization objects in transaction objects

	Backward compatibility and migration.
	Backward compatibility
	OTS1.1 Clients vs OTS1.4 Servers
	OTS1.1 Servers vs OTS1.4 Clients

	Migration

	Session Manager overview
	How are databases integrated into a VisiTransact application?
	What is the Session Manager?
	Opening a connection to a database
	Connection profiles
	Configuring connections
	Associating a connection with a transaction
	Registering Resources
	Releasing Connections
	Pooling connections
	Managing thread requirements

	Global transactions using XA protocol
	What is the XA Resource Director?
	Distributed transaction recovery

	DirectConnect Session Managers
	Registering Resources
	Deployment issues

	Restrictions on DirectConnect access transactions
	Coexistence: DirectConnect and XA access transactions

	Integrating VisiTransact with databases using the Session Manager
	Evaluating the impact of integrating VisiTransact with databases using XA
	Using XA adds overhead
	Requiring high availability
	Locked or unavailable data
	Yielding some control

	Evaluating the impact of integrating VisiTransact with databases using DirectConnect
	Preparing databases
	Connection profile sets
	Modifying connection profiles used by Session Manager clients
	Modifying connection profiles used by XA Resource Directors

	Using the XA Resource Director
	Deploying an XA Resource Director
	Starting an XA Resource Director
	How the XA Resource Director uses connection profiles
	Deploying client-side libraries
	Shutting down an XA Resource Director remotely
	Registering the XA Resource Director with the OAD

	Starting Session Manager-based application processes
	Checking for the default path to persistent store files

	Forcing heuristics
	Performance tuning
	For XA

	Session Manager Configuration Server
	Directory structure for persistent store files
	Deploying persistent store files
	Option 1: Persistent store files on a shared file system
	Option 2: Persistent store files on each node
	Option 3: Set of persistent store files copied to each node

	Starting the Session Manager Configuration Server manually
	Shutting down the Configuration Server
	Security

	Data access using the Session Manager
	Preparing for integration
	Using the Session Manager: Summary of steps
	Obtaining a ConnectionPool object reference
	Using ConnectionPool object references

	Obtaining a Connection object from the Connection Pool
	Using explicit transaction contexts
	Optimizing connection pooling

	Getting a native connection handle
	Using the native connection handle
	Threading requirements

	Releasing a connection
	De-allocating the instance of Connection
	Viewing exceptions
	Viewing attributes
	Obtaining Session Manager information
	Using hold() and resume()
	Using hold()
	Using resume()

	Example of a simple integration
	XA implementation issues
	Completing or recovering a transaction

	DirectConnect implementation issues
	Completing or recovering a transaction

	Changing from DirectConnect to XA

	Pluggable Database Resource Module for VisiTransact
	Concepts
	What is the pluggable database resource module?
	Structural descriptions

	Connection Management
	Writing a Pluggable Module
	The connection profiles
	The Interface Definition
	The Single Function
	The ITSDataConnection class
	Native handle acquisition interface
	Local transaction connection and completion interface
	void connect();
	void disconnect();
	void rollback();
	void commit();

	Global transaction connection and completion interface
	xa_switch_t* xa_switch();
	const char* xa_open_string();
	const char* xa_close_string();

	Building and Running
	Running Applications using the pluggable modules

	Programming restrictions
	Known limitations

	Using the VisiBroker Console
	Overview of the VisiBroker Console
	Transaction Services section
	Session Manager Profile Sets section

	Starting the VisiBroker Console
	Starting a VisiTransact Transaction Service
	Starting the Session Manager Configuration Server
	Launching the VisiBroker Console

	Using the Transaction Services section
	Locating an instance of the Transaction Service
	Monitoring transactions
	Refreshing the transaction list
	Displaying details for specific transactions
	Controlling specific transactions
	Resolving hung or in-doubt transactions

	Filtering the transaction list
	Viewing heuristic transactions
	Viewing heuristic details
	Viewing the message log
	Filtering the message logs
	Trimming the message log

	Using the Session Manager Profile Sets section
	What are connection profiles?
	Gaining access to the Session Manager Configuration Server
	Creating and configuring a new connection profile
	Editing an existing connection profile
	Filtering the connection profiles
	Deleting a connection profile
	Refreshing the list of connection profiles

	Server Application Model
	Server Application transaction and database management
	Requirements before reading this section
	Concepts and terminology

	Scenarios of global transaction and PMT
	Client-initiated global 2PC and 1PC transactions
	Transparent server-initiated transactions with PMT

	PMT overview
	PMT transaction attribute values
	A simple example
	PMT::Current and connection name

	XA resources configuration
	xa-resource-descriptor
	xa-resource
	xa-connection
	xa-resource-alias
	An example of XA resource descriptor

	VisiTransact properties
	vbroker.its.its6xmode=|
	vbroker.its.verbose=|
	vbroker.its.xadesc=<xa-resource> xml file name>

	RM recovery utility

	XA Session Manager for Oracle OCI, version 9i Client
	Who should read this chapter
	Oracle9i software requirements
	Client requirements
	Server requirements

	Oracle9i installation and configuration issues
	Installation requirements
	Database configuration
	DBA_PENDING_TRANSACTIONS view

	Required environment variables
	Session Manager connection profile attributes
	Using the Session Manager with the OCI 9i API
	Programming restrictions
	Troubleshooting
	VisiTransact message log
	Using the xa_trc files
	Distributed update problems
	Data access failures
	Lock from in-doubt transaction
	Transaction timeout

	Oracle error messages

	Forcing heuristic completion

	DirectConnect Session Manager for Oracle OCI, version 9i Client
	Who should read this section
	Oracle9i software requirements
	Client requirements
	Server requirements

	Oracle9i installation and configuration issues
	Installation requirements
	Database configuration

	Required environment variables
	Session Manager connection profile attributes
	Using the Session Manager with the OCI 9i API
	Programming restrictions
	Troubleshooting
	VisiBroker VisiTransact message log
	Oracle error messages

	Commands, utilities, arguments, and environment variables
	Overview of VisiTransact commands
	vbconsole
	Syntax
	Example
	Arguments

	ots
	Syntax
	Example
	Arguments

	smconfig_server
	Syntax
	Example
	Arguments

	vshutdown
	Syntax
	Example
	Arguments

	xa_resdir
	Syntax
	Example
	Arguments

	VisiTransact utilities
	smconfigsetup
	Creating a profile for use with the Session Manager

	Command-line arguments for applications
	Passing command-line arguments to ORB_init() using argc and argv
	Arguments for applications with an embedded VisiTransact Transaction Service instance
	Arguments for applications that use the Session Manager

	Environment variables

	Error codes
	VisiTransact common error codes
	VisiTransact Transaction Service error codes
	VisiTransact transaction log error codes

	Problem determination
	General approaches
	Dealing with problems in transactions

	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

